
Оценка вероятности сближения (столкновения) контролируемого КА с наблюдаемыми космическими объектами

А. И. Козориз, В. П. Павлов

«Космический мусор»

Постановка задачи

- Рассчитать вероятность столкновения КА с рассматриваемым «КО риска».
- Найти мат. ожидание и СКО вектора минимального расстояния и вектора относительной скорости.
- Построить таблицу параметров относительного движения КА и «КО риска» в окрестности ТОС.

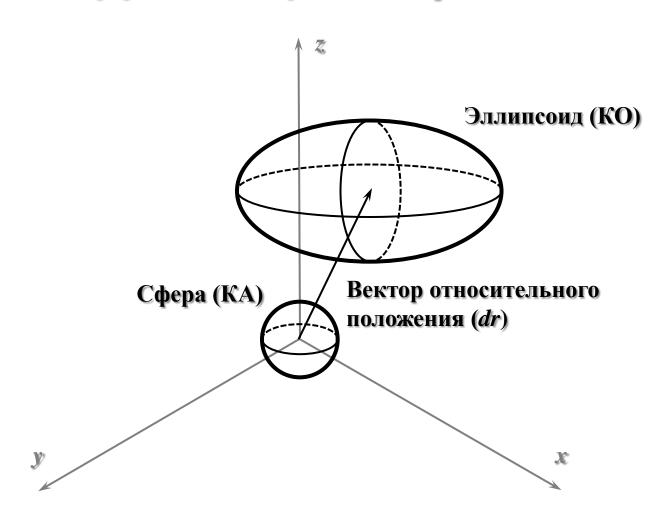
Исходные данные

При наличии прогнозных сообщений

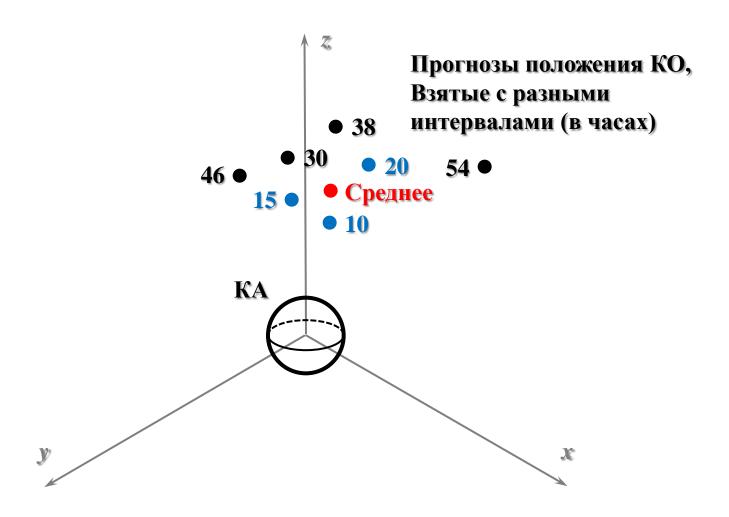
- Векторы состояния КА и «КО риска», спрогнозированные с разными интервалами на момент прохождения ТОС.
- Радиус сферы, описывающей КА.

При наличии программы измерений

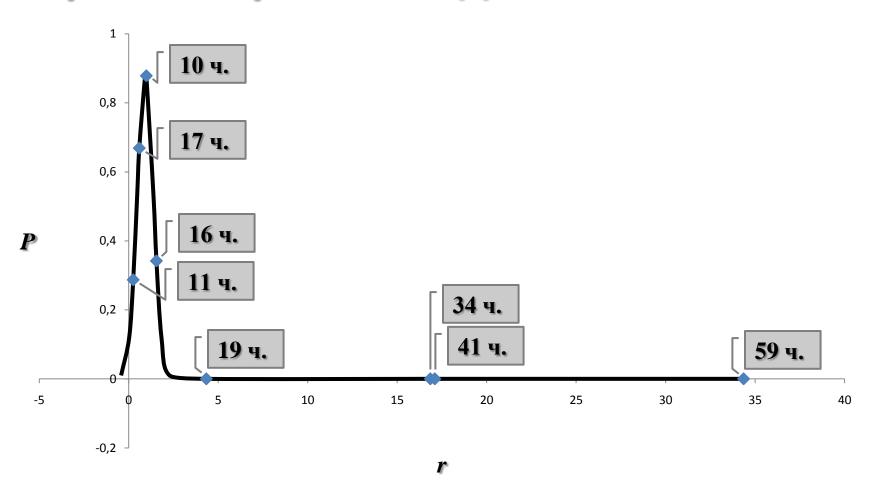
- Массивы векторов состояния и матриц ошибок КА и «КО риска», спрогнозированные с некоторым шагом на интервал времени, содержащий ТОС.
- Радиус сферы, описывающей КА.


Критерии достоверности

- В случае расчета по прогнозным сообщениям, использовалось, как минимум, три последних сообщения с прогнозами относительного положения МКС и «КО риска».
- Последнее из прогнозируемых положений конечной точки вектора относительного положения «КО риска», а также два из трех предыдущих находятся в пределах доверительного интервала 2 о, в соответствии с требованиями по ошибкам прогнозирования параметров МКС.
- Время до наибольшего сближения КО с МКС составляет менее 30 ч.


Основные положения

- Необходимо определить вектор относительного положения.
- Необходимо определить параметры рассеивания конечной точки вектора относительного положения.


Задача оценки риска

Первый метод

Распределение ошибок прогнозирования для КО № 33246

Вычисление ошибок параметров траектории КО

СКО параметров траектории КО вычисляются из Правила трех сигм:

$$\boldsymbol{\sigma}_{\boldsymbol{q}} = \frac{3}{m} \sum_{i=1}^{m} |\boldsymbol{q}^{i} - \boldsymbol{q}_{\rm cp}|$$

где

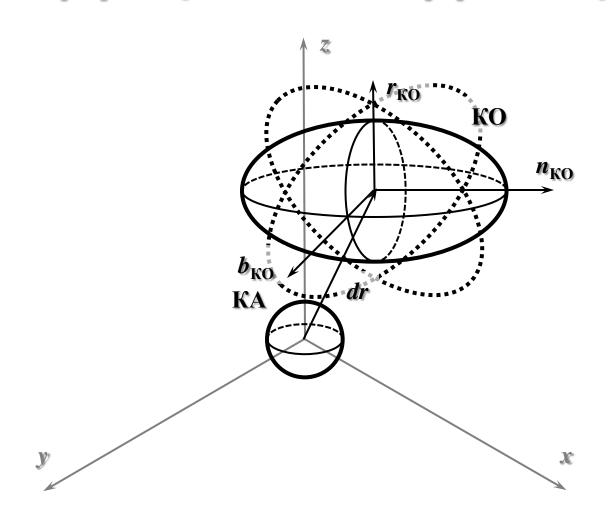
$$\boldsymbol{q}_{\rm cp} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{q}^{i}$$

Разработанные модели ошибок

1. В орбитальной системе координат *rnb*:

$$\sigma_r, \sigma_n, \sigma_b, \sigma_i, \sigma_i, \sigma_i$$

2. В элементах орбиты:


$$\sigma_a, \sigma_e, \sigma_i, \sigma_\Omega, \sigma_\omega, \sigma_\tau$$

3. В модифицированных элементах орбиты:

$$\sigma_T, \sigma_{\varphi_1}, \sigma_{\varphi_2}, \sigma_i, \sigma_{\Omega}, \sigma_{t_{\Omega}}$$

$$\varphi_1 = e \cdot \sin \omega$$
 $\varphi_2 = e \cdot \cos \omega$

Коэффициенты корреляции

Вычисление ковариационных матриц вектора состояния КО и КА

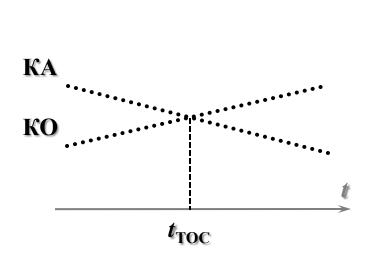
Матрицы ошибок вычисляются по формулам вида:

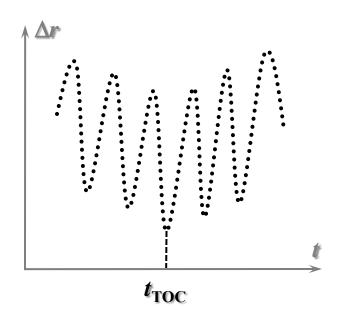
$$\boldsymbol{C}(6\times6) = \begin{pmatrix} \boldsymbol{\sigma}_1 & & 0 \\ & \ddots & \\ 0 & & \boldsymbol{\sigma}_6 \end{pmatrix} \cdot \boldsymbol{K}(6\times6) \cdot \begin{pmatrix} \boldsymbol{\sigma}_1 & & 0 \\ & \ddots & \\ 0 & & \boldsymbol{\sigma}_6 \end{pmatrix}$$

Для КО формируется усредненная матрица ошибок:

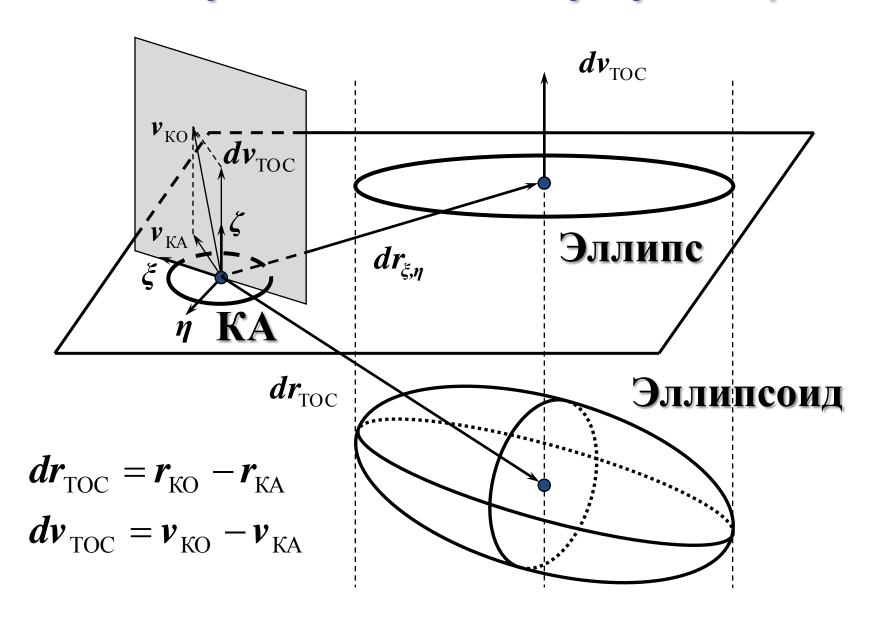
$$\boldsymbol{C}_{\text{KO}}(3\times3) = \frac{1}{3}(\boldsymbol{C}_{\text{KO1}} + \boldsymbol{C}_{\text{KO2}} + \boldsymbol{C}_{\text{KO3}})$$

Оценивание средних значений


Используется схема Метода Монте-Карло:


$$P_{\rm C} = \frac{1}{N} \sum_{i=1}^{N} P_i$$

Погрешность метода с вероятностью ≈0.9973 не превосходит:


$$\delta_N \approx 3 \cdot \left(\frac{D[P]}{N}\right)^{\frac{1}{2}}$$

Второй метод

Геометрическая интерпретация

Испытания методики

№	<u>№</u>	Дата	Время	Интервал	P _C	P _C
п/п	объекта		(ДМВ) и расстояние	в часах	(ЦУП-А)	(ЦУП-М)
			в км			
1	33246	27.8.2008	21:12:48	10	1.39·10-2	9.8·10-3
			1.627			
2	33048	30.8.2009	04:09:38	16	0	0
			21.173			
3	33257	6.9.2009	17:00:29	3	1.61·10 ⁻¹⁵	2.76.10-12
			7.668			
4	33134	24.9.2009	13:03:24	36	2.25·10 ⁻²²	3.74·10 ⁻¹⁸
			20.037			