Keldysh Institute « Publication search

Keldysh Institute preprints « Preprint No. 19, 2012

Klimov A.V., Klyuchnikov I.G.,
Romanenko S.A.

Automatic verification of

counter systems via domain-
specific multi-result
supercompilation

Recommended form of bibliographic references: Klimov A.V., Klyuchnikov |.G., Romanenko S.A.
Automatic verification of counter systems via domain-specific multi-result supercompilation. Keldysh
Institute preprints, 28 p. URL:
http://library. . '



http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2012-19&lg=e
http://library.keldysh.ru/author_page.asp?aid=1286&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/author_page.asp?aid=1291&lg=e
http://library.keldysh.ru/preprint.asp?id=2012-19&lg=e

KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Andrei V. Klimov, Ilya G. Klyuchnikov, Sergei A. Romanenko

Automatic verification of counter systems
via domain-specific multi-result supercompilation

Moscow
2012



Andrei V. Klimov, Ilya G. Klyuchnikov, Sergei A. Romanenko. Auto-
matic verification of counter systems via domain-specific multi-result
supercompilation

We consider an application of supercompilation to the analysis of counter transi-
tion systems. Multi-result supercompilation enables us to find the best versions of
the analysis by generating a set of possible results that are then filtered according
to some criteria. Unfortunately, the search space may be rather large. However,
the search can be drastically reduced by taking into account the specifics of the
domain. Thus, we argue that a combination of domain-specific and multi-result
supercompilation may produce a synergistic effect. Low-cost implementations of
domain-specific supercompilers can be produced by using prefabricated compo-
nents provided by the MRSC toolkit.

Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a
and RF President grant for leading scientific schools No. NSh-4307.2012.9.

Anapeit Kinumos, Uaba Kiatounukon, Cepreii PomaneHKo. ABToMaTu3m-
poBaHHas BepudUKAaINdg CIETINKOBBIX CUCTEM IIOCPEACTBOM MPEIMETHO-
OPUEHTUPOBAHHOW MHOTOPE3YJIbTATHON CyNepKOMITUISIIINYA

PaccmarpuBaercst mpuMeHeHne CyMepKOMIHIANNN K aHAJIN3Y TOBEJICHUS CUETIH-
KOBBIX CHCTEM MepexonoB. MHOropesysibraTHas CynepKOMITIIISITUS TIO3BOJISIET 00-
HAPY?KUBATH HAUIYYIIHe BAPUAHTLI AHAJINA3a, OJIaromapsa TOMY, 9TO IOPOKIAETC
MHOKE€CTBO BO3MOXKHBIX Pe3yJbTATOB aHAIM3a, KOTOpoe 3aTeM (PUILTPyeTcd B
COOTBETCTBUM C HEKOTOPLIMU KpuTepuamu. K COXaIeHnIo, TPOCTPAHCTBO TIONCKA,
[IPU 3TOM MOYKET TMOJIyYaThCs BeCbMa OOMUPHBIM. OIHAKO, MOKHO 3HAUYUTEIb-
HO YMEHBITUTH 00beM TIOUCKA 33 CYeT yUera 0COOEHHOCTEH MpeaMeTHON 00IacTH.
Takum 06pa3oM, coYeTaHue IpeaMeTHO-OPHEHTHPOBAHHON I MHOIOPE3YIbTATHOMR
CYIEPKOMIIUJISIUY MOXKET JIaBaTh cuHeprerudeckuil a¢pdexr. 3arparsl Ha peaJiu-
3aIUI0 IIPEIMETHO-OPUEHTUPOBAHHBIX MHOIOPE3yJbTATHBIX CYHEPKOMIIMIATOPOB
MOTYT OBITH HEBEJIMKU, €CJIM KCIOJIH30BATH KOMIOHEHTHI, TPEI0CTABIAEMbIE WH-
crpymentapuem MRSC.

Pabora Boimonnena npu noggep:xkke rpanra POOU Ne 12-01-00972-a u rpanTta
IIpesugenra P® mma Bemymumx Hayanbrx mkosa Ne HITT-4307.2012.9.



Contents

[1__Introductionl 3

|2 Analyzing the behavior of systems by means of supercompilation| 5

13 Domain-specific supercompilation as a means of analysis| 9
[3.1  Drawbacks ot general-purpose supercompilation|. . . . . .. . ... 9

9

0

[3.2 Domain-specific algorithms of supercompilation| . . . . . . ... ..
[3.3~ Domain-specific supercompilers for domain-specific languages| . . . 1

4 Using multi-result supercompilation for finding short proofs| 13

[5 Domain-specific residualization of the graphs of configurations| 16

6 Improving the efficiency of supercompilation by taking into ac-

: count the specifics of the domain| 19
[6.1  Exploiting the mathematical properties of domain-specific operations| 19
[6.2  Handling non-determinism in a direct way| . . . . . . .. ... ... 19
[6.3  Filtering graphs of configurations, rather than residual programs| . 21

[rConclusions| 24

[References| 25

1 Introduction

Supercompilation [40, [41] is a program manipulation technique that was origi-
nally introduced by V. Turchin in terms of the programming language Refal (a
first-order applicative functional language) [39], for which reason the first super-
compilers were designed and developed for the language Refal [38] [42] [31] [30].

Further development of supercompilation led to a more abstract reformula-
tion of supercompilation and to a better understanding of which details of the
original formulation were Refal-specific and which ones were universal and appli-
cable to other programming languages [35] 36 [5]. It particular, it was shown that
supercompilation is as well applicable to non-functional programming languages
(imperative and object-oriented ones) [g].

Also, despite the fact that from the very beginning supercompilation was re-
garded as a tool for both program optimization and program analysis [39], the
research in supercompilation, for a long time, was primarily focused only on pro-
gram optimization. Recently, however, we have seen a revival of interest in the
application of supercompilation to inferring and proving properties of programs

[28, 14, [13].



4

Multi-result supercompilation is a technique of constructing supercompilers

that,

given an input program, are able to produce a set of residual programs,

rather than just a single one [106] [IT].

The purpose of the present work is to show, by presenting a concrete example,
that multi-result, domain-specific supercompilation is not a theoretical curiosity,
but rather a workhorse having certain advantages over general-purpose, single-
result (deterministic) supercompilation. Some of the reasons are the following.

Tautologically speaking, a general-purpose supercompiler should deal with
programs written in a general-purpose subject language that, by definition,
is not dedicated to a particular problem domain. Thus, for a given domain,
the subject language may be too sophisticated, but, on the other hand,
lacking in certain features.

In cases where supercompilation is used for the purposes of analysis and
verification, the problem of reliability and correctness of the supercompiler
itself becomes rather actual. Can we trust the results produced by a (large
and intricate) general-purpose supercompiler?

On the other hand, it is only natural for a domain-specific supercompiler to
accept programs in a domain-specific language (DSL) that provides domain-
specific operations and control constructs whose mathematical properties
may be known in advance. This domain knowledge can be hard-coded
into the supercompiler, thereby increasing its power and enabling it to
achieve better results at program analysis and transformation, as compared
to “pure” supercompilation.

The subject language of a domain-specific supercompiler may be very lim-
ited in its means of expression, in which case some parts of the supercompiler
can be drastically simplified. For example, in some areas there is no need
to deal with nested function calls in configurations. The simplifications of
that kind increase the reliability of the supercompiler and make it easier to
prove its correctness by formal methods (as was shown by Krustev [I7]).

The implementation of a domain-specific supercompiler may be very cheap
if it is done on the basis of prefabricated components (for example, by
means of the MRSC toolkit [I6] [15]), so that the costs of implementation
can be reduced by an order of magnitude, as compared to implementations
of general-purpose supercompilers.

The source codes of the MRSC toolkit and of the supercompilers considered
in the paper can be found at https://github.com/ilya-klyuchnikov/mrsc.


https://github.com/ilya-klyuchnikov/mrsc

5
2 Analyzing the behavior of systems by means of
supercompilation

One of the approaches to the analysis of systems consists in representing systems
by programs. Thus the task of analyzing the behavior of a system is reduced to
the task of inferring and analyzing the properties of a program p.

The program p, modeling the original system, may in turn be analyzed us-
ing the transformational approach, in which case p is transformed into another
program p’ (equivalent to p), so that some non-obvious properties of p become
evident in the program p’.

For example, suppose that the original program p is complicated in structure
and contains statements return False. Can this program return False? This
question is not easy to answer. Suppose, however, that by transforming p we
get a trivial program p’ whose body consists of a single statement return True.
Then we can immediately conclude that p’ can never return False. Since p’ is
equivalent to p, it implies that p also can never return False.

Initial states:
(iz 07 O, 0)
Transitions:

(i—1,0,s+e+m+1,0)
(i,e—1,s,m+1)

(i+e+s+m—1,1,0,0)
(i+e+s+m—1,1,0,0)

Sl o .
VvV IV
[ S )
LI

Unsafe states:

(i,e,8,m)|m > 2
(i,e,8,m)[s >

\Y
—

Figure 1: MESI protocol: a protocol model in form of a counter system

One of the applications of the transformational approach is the verification of
cache coherence and communication protocols modeled by counter systems [3].
For instance, let us consider a model of the MESI protocol in form of a counter
system that is informally described in Fig.

The states of the system are represented by quadruples of natural numbers.
The specification of the system includes the description of a set of initial states
and a set of transition rules of the form

(i,e,s,m)|p — (7', ¢',s,m’)

where i, e, s, m are variables, p is a condition on the variables which must be




6

fulfilled for the transition to be taken, and 7/, ¢/, s’, m’ are expressions that may
contain the variables i, e, s, m.

The system is non-deterministic, as several rules may be applicable to the
same state.

The specification of a protocol model also includes the description of a set of
unsafe states. The analysis of such a protocol model is performed for the purpose
of solving the reachability problem: in order to prove that unsafe states are not
reachable from the initial states.

As was shown by Leuschel and Lehmann [23] 20, 21 (18], reachability prob-
lems for transition systems of that kind can be solved by program specialization
techniques. The system to be analyzed can be specified by a program in a domain-
specific language (DSL) [23]. The DSL program is then transformed into a Prolog
program by means of a classic partial evaluator LOGEN [7 [I9] by using the first
Futamura projection [4]. The Prolog program thus obtained is then transformed
by means of ECCE [24] [22], a more sophisticated specializer, whose internal work-
ings are similar to those of supercompilers.

Lisitsa and Nemytykh [27), 28] 29] succeeded in verification of a number of
communication protocols by means of the supercompiler SCP4 [31], [30 25]. The
input language of SCP4 is Refal, a first-order functional language developed by
Turchin [39]. SCP4 is a descendant of earlier supercompilers for Refal [38],[39, 42}
40, [41].

Later the verification of the protocols has been reproduced with the Java
supercompiler JScp [9] [I0] as well as with other supercompilers.

According to the approach by Lisitsa and Nemytykh, protocol models are
represented as programs in the source language of the respective supercompiler:
Refal for the Refal Supercompiler SCP4 [30] and Java for the Java Supercompiler
JScp [9, 10]. For instance, the MESI protocol [3] 28] [26] is modeled by the Refal
program in Fig.[2] The program is written in such a way that, if an unsafe state
is reached, it returns the symbol False and terminates.

The supercompiler SCP4 takes this program as input and produces the resid-
ual program shown in Fig. [3] which contains no occurrences of the symbol False.
This suggests the conclusion that the residual program is unable to return False.
However, strictly speaking, this argument is not sufficient in the case of a dynam-
ically typed language (like Lisp, Scheme and Refal): a program can still return
False, even if False does not appear in the text of the program. Namely, the
program may receive False via its input data and then transfer it to the output.
And, indeed, “engineering solutions” of that kind are extremely popular with
hackers as a means of attacking web-applications [37]. Fortunately, there exist
relatively simple data flow analysis techniques that are able to compute an upper
approximation to the set of results that can be produced by a function, even for
dynamically-typed languages [6], and which are able to cope with Refal programs
like that in Fig.



*$MST_FROM_ENTRY;
*$STRATEGY Applicative;
*$LENGTH 0;

$ENTRY Go {e.A (e.I) =
<Loop (e.A) (Invalid e.I)(Modified ) (Shared ) (Exclusive ) >;}

Loop {
() (Invalid e.1)(Modified e.2)(Shared e.3)(Exclusive e.4) =
<Result (Invalid e.1) (Modified e.2)(Shared e.3) (Exclusive e.4)>;
(s.A e.A) (Invalid e.l1)(Modified e.2)(Shared e.3)(Exclusive e.4) =
<Loop (e.A)
<RandomAction s.A
(Invalid e.1) (Modified e.2)(Shared e.3) (Exclusive e.4)>>;
}

RandomAction {

* rh Trivial

* rm

A (Invalid s.1 e.1) (Modified e.2) (Shared e.3) (Exclusive e.4) =

(Invalid e.1) (Modified ) (Shared s.1 e.2 e.3 e.4 ) (Exclusive );

* whl Trivial

*wh2

B (Invalid e.1l) (Modified e.2)(Shared e.3) (Exclusive s.4 e.4) =
(Invalid e.1) (Modified s.4 e.2)(Shared e.3)(Exclusive e.4);

* wh3

C (Invalid e.1) (Modified e.2)(Shared s.3 e.3)(Exclusive e.4) =

(Invalid e.4 e.3 e.2 e.1)(Modified )(Shared ) (Exclusive s.3);

wim

D (Invalid s.1 e.l1)(Modified e.2)(Shared e.3)(Exclusive e.4) =
(Invalid e.4 e.3 e.2 e.1)(Modified )(Shared ) (Exclusive s.1);

}

%

Result{
(Invalid e.1) (Modified s.2 e.2)(Shared s.3 e.3)(Exclusive e.4) = False;
(Invalid e.1) (Modified s.21 s.22 e.2)(Shared e.3) (Exclusive e.4) = False;

(Invalid e.1) (Modified e.2)(Shared e.3)(Exclusive e.4) = True;
}

Figure 2: MESI protocol: a protocol model in form of a Refal program




*

}

InputFormat: <Go e.41 >
$ENTRY Go {

(e.

101 ) =

True ;

A e.41 (s.103 e.101 ) = <F24 (e.41 ) (e.101 ) s.103 > ;

D e.41 (s.104 e.101 )

<F35 (e.41 ) (e.101 ) s.104 > ;

* InputFormat: <F35 (e.109 ) (e.110 ) s.111 e.1l12 >
F35 {

}

0O

(e.110 )

s.111 e.112 = True ;

(A e.109 ) (e.110 ) s.111 s.118 e.112 =

<F24 (e.

109 ) (e.112 e.110 ) s.118 s.111 > ;

(A e.109 ) (s.119 e.110 ) s.111 = <F24 (e.109 ) (e.110 ) s.119 s.111 >;
) (e.110 ) s.111 e.112 = True ;

(B
(B

(B

(B

(B

(@)

(@)

A e.109
<F24 (e.
A e.109
<F24 (e.
D e.109
<F35 (e.
D e.109
<F35 (e.
e.109 )
<F35 (e.
e.109 )

) (e.110 ) s.111 s.125 e.112 =

109 ) (e.112 e.110 ) s.125 s.111 > ;
) (s.126 e.110 ) s.111 =

109 ) (e.110 ) s.126 s.111> ;

) (e.110 ) s.111 s.127 e.112 =

109 ) (s.111 e.112 e.110) s.127 > ;
) (s.128 e.110 ) s.111 =

109 ) (s.111 e.110 ) s.128> ;

(e.110 ) s.111 s.120 e.112 =

109 ) (s.111 e.112 e.110) s.120 > ;
(s.121 e.110 ) s.111 = <F35 (e.109 ) (s.111 e.110 ) s.121 >;

* InputFormat: <F24 (e.109 ) (e.110 ) s.111 e.1l12 >
F24 {

0O
(A

(C

(@)

(e.110 )
e.109 )
<F24 (e.
e.109 )
<F35 (e.
e.109 )
<F35 (e.

s.111 e.112 = True ;

(s.114 e.110 ) s.111 e.112 =

109 ) (e.110 ) s.114 s.111 e.112 > ;
(e.110 ) s.111 e.112 =

109 ) (e.110 ) s.111 e.112 >;

(s.115 e.110 ) s.111 e.112 =

109 ) (s.11l1l e.112 e.110) s.115 > ;

Figure 3: MESI protocol: the residual Refal program.




9
3 Domain-specific supercompilation as a means
of analysis

3.1 Drawbacks of general-purpose supercompilation

An obvious advantage of general-purpose supercompilation is just its being general-
purpose. Upon having designed and implemented a general-purpose supercom-
piler, we can apply it to various problems again and again, in theory, without
any extra effort. However, there are some disadvantages associated with general-
purpose supercompilation. As an example, let us consider the use of the specializer
SCP4 [30] for the analysis of counter systems [27], 28, [29], in which case the tasks
for the supercompiler are formulated as Refal programs |25, 26]. This causes the
following inconveniences.

e Natural numbers in input programs are represented by strings of star sym-
bols, and their addition by string concatenation. This representation is
used in order to take into account the behavior of some general-purpose al-
gorithms embedded in SCP4 (the whistle, the generalization), which know
nothing about the specifics of counter systems. Thus, the representation of
data has to conform to subtle details of the internal machinery of SCP4,
rather than comply with the problem domain.

e The programs modeling counter systems have to be supplemented with some
directions (in form of comments) for SCP4, which control some aspects of its
behavior. In this way SCP4 is given certain information about the problem
domain, and without such directions, residual programs produced by SCP4
would not possess desirable properties. Unfortunately, in order to be able
to give right directions to SCP4, the user needs to understand its internals.

e There remains the following question: to what extent can we trust the results
of the verification of counter systems, obtained with the aid of SCP47 The
internals of SCP4 are complicated and the source code is big. Thus the
problem of verifying SCP4 itself seems to be intractable.

3.2 Domain-specific algorithms of supercompilation

Which techniques and devices embedded into SCP4 are really essential for the
analysis of counter systems? This question was investigated in [IT], 12| [I3] where
several specialized supercompilation algorithms were presented, proven to be cor-
rect, always terminating, and able to solve reachability problems for a certain
class of counter systems.

It was found that, in the case of counter systems, supercompilation can be
simplified in the following ways.

e The structure of configurations is simpler, as compared to the case of classic
supercompilation for functional languages.



10

— There are no nested function calls.
— There are no multiple occurrences of variables.

— A configuration is a tuple, all configurations consisting of a fixed num-
ber of components.

— A component of a configuration is either a natural number n, or the
symbol w (a wildcard, representing an arbitrary natural number).

e The termination of the supercompilation algorithm is ensured by means of
a very simple generalization algorithm: if a component of a configuration is
a natural number n, and n > [, where [ is a constant given to the supercom-
piler as one of its input parameters, then n must be replaced with w (and in
this way the configuration is generalized). It can be easily seen that, given
an [, the set of all possible configurations is finite.

3.3 Domain-specific supercompilers for domain-specific lan-
guages

The simplest known domain-specific supercompilation algorithm for counter sys-
tems described in [I2] turned out to be easy to implement with the aid of the
MRSC toolkit [I6} [I5]. The simplicity of the implementation is due to the follow-
ing.

e We have only to implement a simplified supercompilation algorithm for a
domain-specific language, rather than a sophisticated general-purpose algo-
rithm for a general-purpose language.

e The MRSC toolkit is based on the language Scala that provides power-
ful means for implementing embedded DSLs. The implementations can be
based either on interpretation (shallow embedding) or on compilation (deep
embedding).

e The MRSC toolkit provides prefabricated components for the construction
of graphs of configurations (by adding/removing graph nodes), for manip-
ulating sets of graphs and pretty-printing graphs. When implementing a
supercompiler, it is only necessary to implement the parts that depend on
the subject language and on the structure of configurations.

When we develop a domain-specific supercompiler, it seems logical for its
subject language also to be domain-specific, rather than general-purpose.

In this case the formulations of problems that are submitted to the supercom-
piler can be concise and natural, since the programs written in the subject DSL
may be very close to the informal formulations of these problems. For instance,
consider the 3 specifications of the MESI protocol: the informal one (Fig. , the
one in form of a Refal program (Fig. , and the one written in a domain-specific
language (Fig. [4)).



11

object MESI extends Protocol {

val start: Conf = List(Omega, 0, 0, 0)

val rules: List[TransitionRule] = List(
{case List(i, e, s, m) if i>=1 => List(i-1, 0, s+e+m+1, 0)},
{case List(i, e, s, m) if e>=1 => List(i, e-1, s, m+1)},
{case List(i, e, s, m) if s>=1 => List(i+e+s+m-1, 1, 0, 0)},
{case List(i, e, s, m) if i>=1 => List(i+e+s+m-1, 1, 0, 0)})

def unsafe(c: Conf) = c match {
case List(i, e, s, m) if m>=2 => true
case List(i, e, s, m) if s>=1 && m>=1 => true
case => false

Figure 4: MESI protocol: a protocol model in form of a DSL program

package object counters {
type Conf = List[Expr]
type TransitionRule = PartialFunction[Conf, Conf]

}
sealed trait Expr { ... }

trait Protocol {
val start: Conf
val rules: List[TransitionRule]
def unsafe(c: Conf): Boolean

}

Figure 5: DSL for specifying counter systems: the skeleton of its implementation
in Scala

A protocol model encoded as a DSL program is, in terms of Scala, an object
implementing the trait Protocol (Fig. p). Thus this program is not a first-
order value (as is implicitly assumed in the classic formulation of the Futamura
projections [4]), but rather is a mixture of first-order values (numbers, lists) and
higher-order values (functions). This approach is close to the DSL implementation
technique known as “shallow embedding”.

By supercompiling the model of the MESI protocol, we obtain the graph of
configurations shown in Fig. [6]




1 \ 1

\ [w,O,Q,O] [w,0,0,l]
\\\ /1

Figure 6: MESI protocol: the graph of configurations (single-result supercompi-
lation)

! \ 1 9

\ [w,O,Z,O] [w,0,0, 1]
1

\

Figure 7: MESI protocol: the minimal graph of configurations (multi-result su-
percompilation)



13
4 Using multi-result supercompilation for finding
short proofs

When analyzing a transition system, a graph of configurations produced by su-
percompilation describes an upper approximation of the set of reachable states.
This graph can be transformed in a human-readable proof that any reachable
state satisfy some requirements (or, in other words, cannot be “unsafe”).

The smaller the graph the easier it is to understand, and the shorter is the
proof that can be extracted from this graph. However, a traditional single-result
supercompiler returns a single graph that may not be the smallest one.

A multi-result supercompiler returns a set of graphs, rather than a single
graph. Thus the set of graphs can be filtered, in order to select “the best” ones.
In the simplest case, “the best” means “the smallest”, although the graphs can be
filtered according to other criteria (for example, we may select the graphs that are,
in a sense, “well-structured”, to transform them into “well-structured” proofs).

For example, the graph produced for the MESI protocol (see Fig. @ by single-
result positive supercompilation [35] [36] contains 12 nodes, while, by filtering the
set of graphs produced by multi-result supercompilation, we can find the graph
shown in Fig. [7} which only contains 8 nodes.

The point is that single-result supercompilers, especially those meant for pro-
gram optimization try to avoid the generalization of configurations by all means.
This strategy is reasonable and natural in the case of optimizing supercompilation,
but it is unlikely to produce minimal graphs. In the above example, single-result
supercompilation starts from the configuration (w, 0, 0,0) and, after a while, comes
to the configuration (w,0,w, 0), which is more general than (w,0,0,0).

However, multi-result supercompilation, by “a sudden flash of inspiration”,
starts with generalizing the initial configuration. From the viewpoint of optimizing
supercompilation, this action appears to be strange and pointless. But it leads to
producing the graph shown in Fig. [7} which is a subgraph of the graph in Fig. [6]

Another interesting point is that in the case of single-result supercompilation
the whistle and the generalization algorithm are tightly coupled, since generaliza-
tion is performed at the moments when the whistle blows, in order to ensure ter-
mination of supercompilation. For this reason, the whistle and the generalization
algorithm, to be consistent, have to be developed together. In the case of multi-
result supercompilation, however, the whistle and generalization are completely
decoupled. In particular, configurations can be generalized at any moment, even if
the whistle does not regard the situation as dangerous. As a result, a multi-result
supercompiler can find graphs that are not discovered by single-result supercom-
pilation.

As an example, let us consider the verification of the MOESI protocol (Fig. .
The graph produced by single-result supercompilation (Fig. E[) contains 20 nodes,
while the graph discovered by multi-result supercompilation (Fig. contains 8
nodes only.



14

case object MOESI extends Protocol {
val start: Conf = List(Omega, 0, 0, 0, 0)
val rules: List[TransitionRule] =
List({ // rm
case List(i, m, s, e, o) if i>=1 =>
List(i-1, O, s+e+l, 0, o+m)
¥y, { // wh2
case List(i, m, s, e, o) if e>=1 =>
List(i, m+1, s, e-1, o)
¥, { // wh3
case List(i, m, s, e, o) if s+o>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)
Y, { // wm
case List(i, m, s, e, o) if i>=1 =>
List(i+e+s+m+o-1, 0, 0, 1, 0)

»

def unsafe(c: Conf) = c match {
case List(i, m, s, e, o) if m>=1 && e+s+o>=1 => true
case List(i, m, s, e, o) if m>=2 => true
case List(i, m, s, e, o) if e>=2 => true
case => false

Figure 8: MOESI protocol: a protocol model as a DSL program

This is achieved due to a “brilliant insight” of multi-result supercompilation
that the initial configuration (w,0,0,0,0) can be immediately generalized to the
configuration (w,0,w,0,w). This leads to an 8-node graph that is not contained
as a subgraph in the 20-node graph produced by single-result supercompilation.
Note that the configuration (w,0,w,0,w) does not appear in the 20-node graph,
and, in general, the structure of the graphs in Fig. [0 and Figll0] is completely
different.

It should be noted that there exists a domain-specific supercompilation algo-
rithm for counter systems [13] that, in some cases, is able to reduce the number
of nodes in the graphs, because, as compared to general-purpose optimizing su-
percompilers, it generalizes configurations more energetically. For instance, for
the MESI protocol, it generates the same graph,(Fﬁg.Em, as that produced by
multi-result supercompilation.

The idea of this feature of the supercompilation algorithm is the following.
Suppose, in the process of supercompilation there appears a configuration ¢, such
that ¢ is an instance of a configuration ¢’ that is already present in the graph.
Then c has to be generalized to ¢’




Figure 9: MOESI protocol: the graph of configurations (single-result supercom-
pilation)

Unfortunately, this algorithm is not always successful in generating minimal
graphs. For example, in the case of the MOESI protocol, multi-result supercom-
pilation finds such configurations that do not appear in the process of classic
positive supercompilation [35] [36].

The table in Fig. [11] compares the results of verifying 13 cache coherence and
communication protocols. The column SC shows the number of nodes in the
graphs produced by classic single-result positive supercompilation, and the col-
umn MRSC shows the number of nodes in the graphs produced by straightforward
multi-result supercompilation derived from positive supercompilation [35] [36] ac-
cording to the scheme described in [I5]. It is evident that, practically always,
multi-result supercompilation is able to find graphs of smaller size than those
produced by single-result supercompilation.




16

/ ’
a4 / ].
,7
I
’
/1
’1
/o wvovwaovw
I
[
I

\

L 1
\ @,0,2,0,0] @,1,0,0,0]

" |w,0,0,1,0
' 1 |
w,0,1,0,1 w,0,0,1,0

Figure 10: MOESI protocol: the minimal graph of configurations (multi-result
supercompilation)

SC | MRSC
Synapse 11 6
MSI 8 6
MOSI 26 14
MESI 14 9
MOESI 20 9
Illinois 15 13
Berkley 17 6
Firefly 12 10
Futurebus 45 24
Xerox 22 13
Java meta-locking | 35 25
ReaderWriter 48 9
DataRace 9 5

Figure 11: Single-result vs. multi-result supercompilation: the size of proofs
(represented by graphs of configurations)

5 Domain-specific residualization of the graphs
of configurations

Traditionally, general-purpose supercompilation is performed in two steps. At the
first step, a finite graph of configurations is produced. At the second step, this
graph is “residualized”, i.e. transformed into a residual program. For example,
the supercompiler SCP4 generates residual programs in the language Refal (see
Fig.

When the purpose of supercompilation is the analysis of counter systems,




17

theory mesi
imports Main

begin
inductive mesi :: "(nat * nat * nat * nat) => bool" where
"mesi (i, 0, O, 0)" |
"mesi (Suc i, e, s, m) ==> mesi (i, 0, Suc (s + e + m), 0" |
"mesi (i, Suc e, s, m) ==> mesi (i, e, s, Suc m)" |
"mesi (i, e, Suc s, m) ==> mesi (i + e + s + m, Suc 0, 0, 0" |
"mesi (Suc i, e, s, m) ==> mesi (i + e + s + m, Suc 0, 0, O)"
inductive unsafe :: "(nat * nat * nat * nat) => bool" where

"unsafe (i, e, s, Suc (Suc m))" |
"unsafe (i, e, Suc s, Suc m)"

* * *

inductive mesi’ :: "(nat nat nat nat) => bool" where
"mesi’(_, Suc 0, 0, 0" |
"mesi’(_, 0, 0, Suc 0" |
"mesi’(_, 0, _, O)"

lemma inclusion: "mesi c ==> mesi’ c"

apply(erule mesi.induct)

apply(erule mesi’.cases | simp add: mesi’.intros)+

done

lemma safety: "mesi’ c¢ ==> ~unsafe c"
apply(erule mesi’.cases)
apply(erule unsafe.cases | auto)+

done

theorem valid: "mesi ¢ ==> ~unsafe c"
apply(insert inclusion safety, simp)

done

end

Figure 12: MESI protocol: the script for the proof assistant Isabelle produced by
the domain-specific supercompiler.

residual programs are not executed, but analyzed to see whether they possess
some desirable properties. For example, as regards the program in Fig. (3| all that
matters is whether it can return False, or not? This can be determined either by
asking a human’s opinion, or, in a more rigorous way, by submitting the program
to a data flow analysis algorithm [6].




18

However, when using supercompilation for the analysis of counter systems,
we can take an easier way: it turns out that graphs of configurations are easier
to analyze, than residual programs. Thus, we can dispense with the generation
of residual programs for the purposes of separating the good outcomes of super-
compilation from the bad ones. Moreover, upon selecting a graph with desirable
properties, instead of generating a residual program in a programming language,
we can transform the graph into a script for a well-known proof assistant [I§], in
order to verify the results obtained by supercompilation.

In particular, we have implemented a domain-specific supercompiler that trans-
forms graphs of configurations into scripts for the proof assistant Isabelle [32]. A
script thus produced specifies the reachability problem for a protocol and, in ad-
dition, a number of tactics that instruct Isabelle how to formally prove that all
reachable states are safe.

For example, in the case of the MESI protocol, the script shown in Fig. is
produced. The script comprises the following parts.

e Inductive definitions of the predicate mesi, specifying the set of reach-
able states, and the predicate unsafe, specifying the set of unsafe states
(unsafe), which are the same (modulo notation) as in the source DSL pro-
gram.

e An inductive definition of the predicate mesi’, specifying a set of states
that is an upper approximation to the set specified by mesi. This defini-
tion (modulo notation) enumerates configurations appearing in the graph
in Fig. In order to reduce the size of the script, a simple optimization
is applied: if the graph contains two configurations ¢’ and ¢, where ¢ is
an instance of ¢, then ¢’ is not included into the definition of the predicate
mesi’. The definition of mesi’ is the most important (and non-trivial) part
of the script.

e The lemma inclusion, asserting that any reachable state belongs to the
set specified by mesi’, or, in other words, for any state ¢, mesi ¢ implies
mesi’ c.

e The lemma safety, asserting that all states in the set specified by mesi’
are safe, or, in other words, for any state ¢, mesi’ ¢ implies —unsafe c.

e The main theorem: any reachable state is safe. In other words, for all
states ¢, mesi ¢ implies —unsafe c. This trivially follows from the lemmas
inclusion and safety).

The fundamental difference between the definitions of mesi and mesi’ is that
mesi is defined inductively, while the definition of mesi’ is just an enumeration
of a finite number of cases. For this reason, the lemma safety can be proven by
tedious, yet trivial case analysis.



19

Thus the réle of supercompilation in the analysis of counter systems amounts
to generalizing the description of the set of reachable states in such a way that
proving the safety of reachable states becomes trivial. Therefore, supercompila-
tion can be regarded as a useful supplement to other theorem-proving and verifi-
cation techniques.

6 Improving the efficiency of supercompilation
by taking into account the specifics of the do-
main

6.1 Exploiting the mathematical properties of domain-spe-
cific operations

In the case of supercompilation for counter systems it is sufficient to deal with
configuration of the form (ay, ..., a,), whose each component a; is either a natural
number N, or the symbol w. As regards driving, it is sufficient to deal with tests
of the form either e = N, or e > N, where N is a natural number and e is an
arithmetic expression that can only contain the operators 4+, —, natural numbers
and w. The operations on arguments with w are performed in the following way:
N <w="True and w+ N = w — N = w+ w = w. The operations are easy to
implement in terms of the language Scala (see Fig.

But, if we use a general-purpose supercompiler, dealing with programs in a
general-purpose language, the supercompiler does not have any knowledge about
the problem domain and the operations over domain-specific data structures. For
example, when the supercompiler SCP4 is used for the verification of protocols,
natural numbers have to be encoded as strings of the star symbol, and addition
of natural numbers as concatenation of strings (see Fig. [2| and . As a conse-
quence, it becomes difficult (both for humans and for supercompilers) to see that
a program operates on natural numbers.

6.2 Handling non-determinism in a direct way

When a supercompiler is a general-purpose one, its subject language is usually
designed for writing deterministic programs. This causes some inconveniences in
cases where supercompilation is used for the analysis of non-deterministic systems.
If a model of a non-deterministic system has to be encoded as a deterministic
program, there arises the need for using various tricks and artificial workarounds,
which, certainly, complicates the program and obscures its meaning.

Consider, for example, the model of the MESI protocol in Fig. 2] encoded as
a Refal program. The entry point of the program is the function Go which takes
2 parameters: e.A and e.I [25] 20].



20

package object counters {

implicit def intToExpr(i: Int): Expr = Num(i)
}

sealed trait Expr {
def +(comp: Expr): Expr
def -(comp: Expr): Expr
def >=(i: Int): Boolean
def ===(i: Int): Boolean
}

case class Num(i: Int) extends Expr {
def +(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i + j)
}
def -(comp: Expr) = comp match {
case Omega => Omega
case Num(j) => Num(i - j)
}
def ===(j: Int) = 1i == j
def >=(j: Int) =1i >= j
}

case object Omega extends Expr {
def +(comp: Expr) = Omega
def -(comp: Expr) = Omega
def >=(comp: Int) = true
def ===(j: Int) = true

}

Figure 13: Counter systems: operations over components of configurations imple-
mented in Scala.

$ENTRY Go {e.A (e.I) =
<Loop (e.A) (Invalid e.I)(Modified ) (Shared ) (Exclusive ) >;}

The parameter e.I is used for building the initial state, while the parameter
e.A has been artificially introduced in order to simulate non-determinism. Since
the rules describing the transition system are not mutually exclusive, more than
one rule can be applicable at the same time, and the value of the parameter e.A
is a sequence of rule names, prescribing which rule must be applied at each step.

Unfortunately, this additional parameter, pollutes not only the source pro-
gram, but also the configurations emerging during supercompilation and, finally,
the residual program (see Fig. , thereby obscuring its meaning.




21

However, if a model of a non-deterministic system is encoded as a program
in a non-deterministic language (see Fig. , then there disappears the need for
using tricks and workarounds related to non-determinism. Also note that non-
determinism, by itself, does not create additional problems for supercompilation,
as, unlike an ordinary interpreter, a supercompiler has to consider all possible
ways of executing a program (for a given set of initial states).

6.3 Filtering graphs of configurations, rather than residual
programs

As has been discussed in Section [2] multi-result supercompilation can be used for
finding residual programs satisfying some criteria. Since a multi-result supercom-
piler may produce hundreds, or even thousands of residual programs, there is a
need for automatic filtering of residual programs.

For example, when applying a general-purpose supercompiler for the analysis
of counter systems, we need a filter for selecting residual problems that are certain
not to return False, and such a filter can be constructed on the basis of well-
known data-flow analysis algorithms [6].

In the case of domain-specific supercompilation, however, “residual programs”
may not be programs in traditional sense of the word. For instance, the result
produced by analyzing a counter system can be presented as a script for an au-
tomatic proof assistant (see Section . So the filtering of programs should be
replaced with the filtering of something else.

Fortunately, it turns out that filtering of the final results of supercompilation
can be replaced with filtering of graphs of configurations. Moreover, taking into
account the specifics of the domain allows the process of filtering to be optimized
by discarding some graphs that are in construction, without waiting for them to
be completed. This can considerably reduce the amount of work performed by
a multi-result supercompiler, because discarding an incomplete graph prunes the
whole set of graphs that would be generated by completing the discarded graph.

As regards counter systems, the specifics of the domain are the following.
The predicate unsafe must be monotonic with respect to configurations: for all
configurations ¢ and ¢/, such that ¢ is an instance of ¢, unsafec implies unsafec’.
Another point is that if a configuration ¢ has appeared in a graph of configurations,
it can be removed by supercompilation only by replacing ¢ with a more general
configuration ¢’ (such that ¢ is an instance of ¢’). Thus, if ¢ is unsafe, it can
only be replaced with an unsafe configuration (due to the monotonicity of the
predicate unsafe). Therefore, if a graph contains an unsafe configuration, it can
be discarded immediately, since all graphs produced by completing that graph
would also contain unsafe configurations.

The detection of unsafe configurations can be performed at various places in
the supercompilation algorithm, and the choice of such places bears great influence
on the efficiency of multi-result supercompilation.

The next optimization, depending on the specifics of the domain, takes into



22

SC1 SC2 SC3 Sc4 SC5

completed 48 37 3 3 1

Synapse pruned 0 0 0 0 2
commands 321 252 25 25 15

completed 22 18 2 2 1

MSI pruned 0 0 0 0 1
commands 122 102 15 15 12

completed 1233 699 6 6 1

MOSI pruned 0 0 0 0 5
commands 19925 11476 109 109 35

completed 1627 899 6 3 1

MESI pruned 0 0 27 20 21
commands 16329 9265 211 70 56

completed 179380 60724 81 30 2

MOESI pruned 0 0 0 24 36
commands | 2001708 711784 922 384 126

completed 2346 1237 2 2 1

Tllinois pruned 0 0 21 17 18
commands 48364 26636 224 74 61

completed 3405 1463 30 30 2

Berkley pruned 0 0 0 0 14
commands 26618 12023 282 282 56

completed 2503 1450 2 2 1

Firefly pruned 0 0 2 2 3
commands 39924 24572 47 25 21

completed - - - - 4

Futurebus pruned - - - - 148328
commands - - - - 516457

completed 317569 111122 29 29 2

Xerox pruned 0 0 0 0 1
commands | 5718691 2031754 482 482 72

completed - - - - 10

Java pruned - - - - 329886
meta-locking | commands - - - - | 1043563
completed 892371 402136 898 898 6

ReaderWriter | pruned 0 0 19033 | 19033 1170
commands | 24963661 | 11872211 | 123371 | 45411 3213

completed 51 39 8 8 3

DataRace pruned 0 0 0 0 4
commands 360 279 57 57 31

Figure 14: Resources consumed by different various of multi-result supercompila-
tion




23

account the properties of the set of all possible generalizations of a given config-
uration c.

Namely, all generalizations of ¢ can be obtained by replacing some numeric
components of ¢ with w. Thus, the configuration (0,0) can be generalized in 3
ways, to produce (w,0), (0,w) and (w,w). Note that (w,w) is a generalization
with respect to (w,0) and (0,w).

A naive multi-result supercompilation algorithm, when trying to rebuild a
configuration ¢ by replacing it with a more general configuration ¢/, considers all
possible generalizations of ¢ immediately. If a generalization ¢’ is not a maximal
one, after a while, it will be, in turn, generalized. For instance, (w,0), and (0,w)
will be generalized to (w,w). Thus the same graph of configurations will be
produced 3 times: by immediately generalizing (0, 0) to (w,w), and by generalizing
(0,0) to (w,w) in two steps, via (w,0), and (0,w).

The number of graphs, considered during multi-result supercompilation, can
be significantly reduced, by allowing only minimal generalization of a configu-
ration, which can be obtained by replacing a single numeric component in a
configuration with w.

We have studied the performance of 5 variations of a supercompilation algo-
rithm for counter systems: SC1, SC2, SC3, SC4 and SC5. Each variant differs
from the previous one in that it introduces an additional optimization.

e SCI. Filtering and generation of graphs are completely decoupled. A graph
is examined by the filter only after having been completed. Thus, no use
is made of the knowledge about domain-specific properties of generalization
(its decomposability into elementary steps) and the predicate unsafe (its
monotonicity). This design is modular, but inefficient.

e SC2. The difference from SC1 is that, when rebuilding a configuration
¢, SC2 only considers the set of “minimal” generalizations (produced by
replacing a single component of ¢ with w).

e SC3. The difference from SC2 is that the configurations produced by gen-
eralization are checked for being safe, and the unsafe ones are immediately
discarded.

e SC4. The difference from SC3 is that the configurations that could be
produced by driving a configuration ¢ are checked for being safe. If one
or more of the new configurations turn out to be unsafe, driving is not
performed for c.

e SC5. The difference from SC4 is that the graphs that are too large are dis-
carded, without completing them. Namely, the current graph is discarded
if there is a complete graph that has been constructed earlier, and whose
size is smaller than that of the current graph. (Note that, due to the opti-
mizations introduced in SC2, SC3 and SC4, all configurations in completed
graphs are guaranteed to be safe.)



24

The optimization introduced in SC5 is typical for algorithms in the field of
artificial intelligence, where it is known as “pruning” [34].

The table in Fig. shows the resources consumed by the 5 versions of the
supercompiler while verifying 13 cache coherence and communication protocols.
For each protocol, the row completed shows the number of completed graphs
that have been produced (with possible repetitions), the row pruned shows the
number of discarded incomplete graphs, and the row commands shows the number
of graph building steps that have been performed during supercompilation.

In the case of the Futurebus and the Java meta-locking protocols, the data are
only given for the version SC5, as the resource consumption by the other versions
of the supercompiler turned out to be too high, for which reason data were not
obtained.

The data demonstrate that the amount of resources consumed by multi-result
supercompilation can be drastically reduced by taking into account the specifics
of the problem domain.

7 Conclusions

Multi-result supercompilation is not a theoretical curiosity, but rather a workhorse
that, when exploited in a reasonable way, is able to produce results of practical
value.

e The use of multi-result supercompilation in the field of the analysis and ver-
ification of transition systems improves the understandability of the results,
by considering various versions of the analysis and selecting the best ones.

e The use of multi-result supercompilation allows the whistle and the algo-
rithm of generalization to be completely decoupled, thereby simplifying the
structure of the supercompiler. This, in turn, makes it easier to ensure the
correctness of the supercompiler.

The usefulness of domain-specific supercompilation is due to the following.

e The tasks for a domain-specific supercompiler can be written in a domain-
specific language that is better at taking into account the specifics of the
problem domain, than a general-purpose language. (For example, this DSL
may be non-deterministic, or provide domain-specific data types and oper-
ations.)

e In the case of a domain-specific supercompiler, the machinery of supercom-
pilation can be simplified, since, in a particular domain, some complexities
of general-purpose supercompilation may be of little usefulness.

e The efficiency of multi-result supercompilation can be improved by early
discarding of unsatisfactory variants of supercompilation.



25

e The MRSC toolkit allows domain-specific multi-result supercompilers to be

manufactured at low cost, making them a budget solution, rather than a
luxury.

Thus, the combination of domain-specific and multi-result supercompilation

produces a synergistic effect: generating multiple results gives the opportunity to
select the best solutions to a problem, while taking into account the specifics of
the problem domain reduces the amount of resources consumed by multi-result
supercompilation.

Acknowledgements

The authors express their gratitude to the participants of the Refal seminar at
Keldysh Institute for useful comments and fruitful discussions.

References

1]

3]
(4]

[5]

D. Bjgrner, M. Broy, and I. V. Pottosin, editors. Perspectives of Sys-
tems Informatics, Second International Andrei Ershov Memorial Conference,
Akademgorodok, Novosibirsk, Russia, June 25-28, 1996, volume 1181 of Lec-
ture Notes in Computer Science. Springer, 1996.

E. Clarke, I. Virbitskaite, and A. Voronkov, editors. Perspectives of Systems
Informatics, 8th Andrei Ershov Informatics Conference, PSI 2011, Akadem-
gorodok, Novosibirsk, Russia, June 27 — July 01, 2011, volume 7162 of Lec-
ture Notes in Computer Science. Springer, 2012.

G. Delzanno. Constraint-based verification of parameterized cache coherence
protocols. Form. Methods Syst. Des., 23:257-301, November 2003.

Y. Futamura. Partial evaluation of computation process — an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

N. D. Jones. The essence of program transformation by partial evaluation
and driving. In D. Bjgrner, M. Broy, and A. V. Zamulin, editors, Perspec-
tives of Systems Informatics, Third International Andrei Ershov Memorial
Conference, PSI 1999, Akademgorodok, Novosibirsk, Russia July 6-9, 1999,
volume 1755 of Lecture Notes in Computer Science, pages 62-79. Springer,
2000.

N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional
programs. Theor. Comput. Sci., 375(1-3):120-136, 2007.

J. Jorgensen and M. Leuschel. Efficiently generating efficient generating
extensions in Prolog. In O. Danvy, R. Gliick, and P. Thiemann, editors,
Dagstuhl Seminar on Partial FEvaluation, volume 1110 of Lecture Notes in
Computer Science, pages 238-262. Springer, 1996.



[8]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

26

A. V. Klimov. An approach to supercompilation for object-oriented lan-
guages: the Java Supercompiler case study. In A. P. Nemytykh, editor, First
International Workshop on Metacomputation in Russia, Pereslavl-Zalessky,
Russia, July 2-5, 2008, pages 43-53. Ailamazyan University of Pereslavl,
Pereslavl-Zalessky, 2008.

A. V. Klimov. JVer project: Verification of Java programs by the Java
Supercompiler. http://pat.keldysh.ru/jver/, 2008.

A. V. Klimov. A Java Supercompiler and its application to verification of
cache-coherence protocols. In Pnueli et al. [33], pages 185-192.

A. V. Klimov. Multi-result supercompilation in action: Solving coverability
problem for monotonic counter systems by gradual specialization. In In-
ternational Workshop on Program Understanding, PU 2011, Novososedovo,
Russia, July 2-5, 2011, pages 25-32. Ershov Institute of Informatics Systems,
Novosibirsk, 2011.

A. V. Klimov. Yet another algorithm for solving coverability problem for
monotonic counter systems. In V. Nepomnyaschy and V. Sokolov, editors,
Second Workshop “Program Semantics, Specification and Verification: The-
ory and Applications”, PSSV 2011, St. Petersburg, Russia, June 12-13,
2011, pages 59-67. Yaroslavl State University, 2011.

A. V. Klimov. Solving coverability problem for monotonic counter systems
by supercompilation. In Clarke et al. [2], pages 193-209.

I. G. Klyuchnikov and S. A. Romanenko. Proving the equivalence of higher-
order terms by means of supercompilation. In Pnueli et al. [33], pages 193—
205.

I. G. Klyuchnikov and S. A. Romanenko. MRSC: a toolkit for building multi-
result supercompilers. Preprint 77, Keldysh Institute of Applied Mathemat-
ics, 2011.

I. G. Klyuchnikov and S. A. Romanenko. Multi-result supercompilation as
branching growth of the penultimate level in metasystem transitions. In
Clarke et al. [2], pages 210-226.

D. Krustev. A simple supercompiler formally verified in Coq. In A. P. Ne-
mytykh, editor, Second International Valentin Turchin Memorial Workshop
on Metacomputation in Russia, Pereslavl-Zalessky, Russia, July 1-5, 2010,
pages 102-127. Ailamazyan University of Pereslavl, Pereslavl-Zalessky, 2010.

H. Lehmann and M. Leuschel. Inductive theorem proving by program spe-
cialisation: Generating proofs for Isabelle using Ecce. In M. Bruynooghe,
editor, LOPSTR, volume 3018 of Lecture Notes in Computer Science, pages
1-19. Springer, 2003.

M. Leuschel and J. Jorgensen. Efficient specialisation in Prolog using the
hand-written compiler generator LOGEN. FElectr. Notes Theor. Comput.


http://pat.keldysh.ru/jver/

[20]

[21]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

27
Sei., 30(2):157-162, 1999.

M. Leuschel and H. Lehmann. Coverability of reset Petri nets and other
well-structured transition systems by partial deduction. In Proceedings of
the First International Conference on Computational Logic, CL ’00, pages
101-115, London, UK, 2000. Springer.

M. Leuschel and H. Lehmann. Solving coverability problems of Petri nets by
partial deduction. In Proceedings of the 2nd ACM SIGPLAN international
conference on Principles and practice of declarative programming, PPDP 00,
pages 268-279, New York, NY, USA, 2000. ACM.

M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and
polyvariance in partial deduction of normal logic programs. ACM Trans.
Program. Lang. Syst., 20:208-258, January 1998.

M. Leuschel and T. Massart. Infinite state model checking by abstract in-
terpretation and program specialisation. In Selected papers from the 9th In-
ternational Workshop on Logic Programming Synthesis and Transformation,
pages 62-81, London, UK, 2000. Springer.

M. Leuschel and D. D. Schreye. Logic program specialisation: How to be
more specific. In H. Kuchen and S. D. Swierstra, editors, PLILP, volume
1140 of Lecture Notes in Computer Science, pages 137-151. Springer, 1996.

A. P. Lisitsa and A. P. Nemytykh. SCP4: Verification of protocols. http:
//refal.botik.ru/protocols/.

A. P. Lisitsa and A. P. Nemytykh. Verification of MESI cache coherence
protocol. http://www.csc.liv.ac.uk/~alexei/VeriSuper/node5.html.

A. P. Lisitsa and A. P. Nemytykh. Towards verification via supercompila-
tion. In Proceedings of the 29th Annual International Computer Software
and Applications Conference (COMPSAC’05), 25-28 July 2005, Edinburgh,
Scotland, UK, pages 9-10. IEEE Computer Society, 2005.

A. P. Lisitsa and A. P. Nemytykh. Verification as a parameterized testing
(experiments with the SCP4 supercompiler). Programming and Computer
Software, 33(1):14-23, 2007.

A. P. Lisitsa and A. P. Nemytykh. Reachability analysis in verification via
supercompilation. Int. J. Found. Comput. Sci., 19(4):953-969, 2008.

A. P. Nemytykh. The supercompiler SCP4: General structure. In M. Broy
and A. V. Zamulin, editors, Perspectives of Systems Informatics, 5th In-
ternational Andrei Ershov Memorial Conference, PSI 2003, Akademgorodok,
Novosibirsk, Russia, July 9-12, 2003. Revised Papers, volume 2890 of Lecture
Notes in Computer Science, pages 162—170. Springer, 2003.

A. P. Nemytykh and V. A. Pinchuk. Program transformation with meta-
system transitions: Experiments with a supercompiler. In Bjgrner et al. [I],
pages 249-260.


http://refal.botik.ru/protocols/
http://refal.botik.ru/protocols/
http://www.csc.liv.ac.uk/~alexei/VeriSuper/node5.html

[32]

[33]

28

T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: a proof assistant
for higher-order logic. Springer, Berlin, Heidelberg, 2002.

A. Pnueli, 1. Virbitskaite, and A. Voronkov, editors. Perspectives of Sys-
tems Informatics, 7th International Andrei Ershov Memorial Conference,
PSI 2009, Akademgorodok, Novosibirsk, Russia, June 15-19, 2009. Revised
Papers, volume 5947 of Lecture Notes in Computer Science. Springer, 2010.

D. Poole and A. K. Mackworth. Artificial Intelligence - Foundations of Com-
putational Agents. Cambridge University Press, 2010.

M. H. Sgrensen. Turchin’s supercompiler revisited: an operational theory
of positive information propagation. Master’s thesis, Dept. of Computer
Science, University of Copenhagen, 1994.

M. H. Sgrensen, R. Gliick, and N. D. Jones. A positive supercompiler. Journal
of Functional Programming, 6(6):811-838, 1996.

Z. Su and G. Wassermann. The essence of command injection attacks in web
applications. In Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, POPL ’06, pages 372—
382. ACM, 2006.

V. F. Turchin. A supercompiler system based on the language Refal. ACM
SIGPLAN Not., 14(2):46-54, 1979.

V. F. Turchin. The language Refal: The theory of compilation and meta-
system analysis. Technical Report 20, Courant Institute of Mathematical
Sciences, New York University, 1980.

V. F. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems (TOPLAS), 8(3):292-325, 1986.

V. F. Turchin. Supercompilation: Techniques and results. In Bjgrner et al.
[1], pages 227-248.

V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with
a supercompiler. In LFP ’82: Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming, August 15-18, 1982, Pittsburgh, PA,
USA, pages 47-55. ACM, 1982.



	Untitled.pdf
	prep2012_19_eng
	Introduction
	Analyzing the behavior of systems by means of supercompilation
	Domain-specific supercompilation as a means of analysis
	Drawbacks of general-purpose supercompilation
	Domain-specific algorithms of supercompilation
	Domain-specific supercompilers for domain-specific languages

	Using multi-result supercompilation for finding short proofs
	Domain-specific residualization of the graphs of configurations
	Improving the efficiency of supercompilation by taking into account the specifics of the domain
	Exploiting the mathematical properties of domain-specific operations
	Handling non-determinism in a direct way
	Filtering graphs of configurations, rather than residual programs

	Conclusions
	References


