
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 77, 2011

Klyuchnikov I.G., Romanenko S.A.

MRSC: a toolkit for building
multi-result supercompilers

Recommended form of bibliographic references: Klyuchnikov I.G., Romanenko S.A. MRSC: a
toolkit for building multi-result supercompilers. Keldysh Institute preprints, 2011, No. 77, 27 p. URL:
http://library.keldysh.ru/preprint.asp?id=2011-77&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2011-77&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/author_page.asp?aid=1291&lg=e
http://library.keldysh.ru/preprint.asp?id=2011-77&lg=e

KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Ilya Klyuchnikov, Sergei Romanenko

MRSC: a toolkit for building multi-result supercompilers

Moscow
2011

Ilya Klyuchnikov, Sergei Romanenko. MRSC: a toolkit for building
multi-result supercompilers

The paper explains the principles of multi-result supercompilation. We introduce
a formalism for representing supercompilation algorithms as rewriting rules for
graphs of configurations. Some low-level technical details related to the imple-
mentation of multi-result supercompilation in MRSC are discussed. In particular,
we consider the advantages of using spaghetti stacks for representing graphs of
configurations.

Supported by Russian Foundation for Basic Research project No. 09-01-00834-a.

Илья Ключников, Сергей Романенко. MRSC: инструментарий для
создания многорезультатных суперкомпиляторов

В работе рассматриваются принципы многорезультатной суперкомпиляции.
Вводится формализм для представления алгоритмов суперкомпиляции в ви-
де правил переписываний графа конфигураций. Разбираются технические
детали поддержки многорезультатной суперкомпиляции в инструментарии
MRSC. Особое внимание уделяется представлению графов конфигураций в
виде спагетти-стеков.

Работа выполнена при поддержке проекта РФФИ № 09-01-00834-a.

3

Contents

1 Introduction 3
1.1 Growing variety in the field of supercompilation 3
1.2 The goal of MRSC . 5
1.3 The approach of MRSC . 5
1.4 The structure of MRSC . 6
1.5 What is in this preprint . 7
1.6 The structure of the preprint . 7

2 Schemes of traditional supercompilation 8
2.1 Rewrite rules for graphs of configurations 9
2.2 Basic operations . 10
2.3 Scheme of supercompilation algorithm 12
2.4 Scheme of transformation relation 12

3 Multi-result supercompilation 14
3.1 Scheme of multi-result supercompilation 14
3.2 Tree of graphs . 15
3.3 Decoupling whistle and generalization 16
3.4 Multi-result supercompilation as branching growth of the penulti-

mate level . 16

4 The core of MRSC 17
4.1 Two data structures for a graph of configurations 17
4.2 Basis of operations on S-graphs . 20
4.3 Generating graphs of configurations 22

5 Conclusion 23

References 24

1 Introduction

1.1 Growing variety in the field of supercompilation

Supercompilation is a program manipulation technique that was originally intro-
duced by V. Turchin in terms of the programming language Refal (a first-order
applicative functional language) [36], for which reason the first supercompilers
were designed and developed for the language Refal [34, 38, 25].

It might create the impression that supercompilation is a specific technique
only applicable to Refal (and Refal-like languages).

Further development of supercompilation lead to a more abstract reformula-
tion of supercompilation and to a better understanding of which details of the

4

original formulation were Refal-specific and which ones were universal and appli-
cable to other programming languages [28, 32, 6]. It particular, it was shown that
supercompilation is as well applicable to non-functional programming languages
(imperative and object-oriented ones) [9].

As a result, the distinction between “supercompilation” and a “supercompiler”
was realized. Supercompilation is a general method, while a supercompiler is a
program transformer (based on the principles of supercompilation). Thus the
transition from the idea of supercompilation to a specific supercompiler involves
making a number of decisions. Namely, we have to:

∙ Select an input language: programs in this language will be dealt with by
the supercompiler. (Note that the supercompiler may produce programs in
another language, in which case we have as well to select an output language.)

∙ Choose, for the selected input language, some kind of its operational se-
mantics. This step is necessary because driving is a “generalized” form of
program execution using partially known input data, which degenerates into
ordinary program execution in the case of the completely known input data,
and whose correctness is defined with respect to the underlying operational
semantics.

∙ Develop (or select) a language of configurations (for representing sets of
execution states). Implement operations over configurations (such as testing
two configurations for equivalence or subclass relation).

∙ Develop a driving algorithm (based on the previously selected kind of oper-
ational semantics).

∙ Develop (or choose) an algorithm of recognizing “dangerous” (potentially
infinite) branches in the trees of configurations produced by driving. In
the field of supercompilation such algorithms are traditionally referred to as
whistles.

∙ Develop (or choose) an algorithm of generalization that replaces a configu-
ration with a more general one (which represents a larger set of states).

∙ Develop an algorithm for generating an output (residual) program from a
finite graph of configurations.

Recently, in addition to “traditional” supercompilation, there have emerged
new kinds of supercompilation, such as distillation [4, 5], two-level supercompila-
tion [20, 16] and multi-result supercompilation [21, 10]. Thus, while initially the
topic of research was believed to be the supercompiler, it became apparent later
that the true interest is in investigating the ways of constructing supercompilers.

Hence, there is an obvious increase in diversity among the various forms of su-
percompilation (both in terms of object languages and different supercompilation

5

algorithms). It can be seen as a manifestation of the general law of “branching
growth of the penultimate level” [33].

Also, despite the fact that from the very beginning supercompilation was re-
garded as a tool for both program optimization and program analysis [35], the
research in supercompilation, for a long time, was primarily focused only on pro-
gram optimization. Recently, however, we have seen a revival of interest in the
application of supercompilation to inferring and proving properties of programs
[22, 19, 11].

So there are some reasons to believe that we are witnessing the emergence
of such research directions as language-specific supercompilation (LSSC) and
domain-specific supercompilation (DSSC), technical details of the implementa-
tion of the general idea of supercompilation being dependent on both the object
language and the intended usage of a supercompiler.

As a consequence, the paradigm of research in supercompilation changes. Until
recently, the goal of the research was to find “the best” combination of various
components in order to produce “the best” supercompiler. However, it has become
apparent that “the best” supercompiler just does not exist, because what is good
for a particular programming language and/or a domain may not be appropriate
for other languages and/or domains.

Thus there arises a new field of research: the systematic study of various forms
and techniques of supercompilation, as well as of their applicability (in various
combinations) in different areas.

For example, there is a paper comparing 64 (!) variations of a supercompiler
in order to investigate how changes in different parts of the supercompiler affect
its ability to prove the equivalence of higher-order expressions [14].

1.2 The goal of MRSC

Obviously, to carry out such experiments one needs some tools for producing a
large number of supercompilers or, at least, a large number of variations of a
supercompiler. However, it often takes several years for a supercompiler to be
constructed by traditional techniques as they are based on “manual labor”. This
is hardly adequate for research purposes!

Thus the goal of the MRSC project is to provide a set of “prefabricated
components” or, in other words, a toolkit that could facilitate rapid
design and prototyping of supercompilers.

1.3 The approach of MRSC

The term “multi-result supercompilation” (section 3) implies that, given an input
program, a supercompiler may produce a (non-empty) set of residual programs,
rather than just a single residual program.

6

During the development of MRSC it was found that, although it was possible
to provide separate implementations for both multi-result and single-result su-
percompilation, a simpler solution is to regard single-result supercompilation as a
special case of the multi-result one (by throwing away all residual programs, ex-
cept for the first one). This approach is acceptable in terms of efficiency, provided
that the set of residual program is generated incrementally, in a lazy way.

In the context of MRSC, the arguments for considering multi-result supercom-
pilation to be “the main case” are the following.

∙ Traditional supercompilation can be regarded as a special case of multi-
result supercompilation. This allows us to treat various kinds of super-
compilation in a uniform way. In particular, by describing them by sets of
rewriting rules (see sections 2 and 3).

∙ As will be shown later, multi-result supercompilation enables the compo-
nents of a supercompiler to be, to a large extent, decoupled from each other.
In the first place, this is true of the whistle and the generalization algorithm.
So, in the case of multi-result supercompilation, it is easy to perform com-
parative study of the relative “power” of whistles by considering all possible
generalization. This is not possible in the case of traditional supercompila-
tion, because modifications in the whistle bring about modifications in the
generalization algorithm, so that the effects produced by changes in differ-
ent parts of the supercompiler cannot be separated from each other. Thus
multi-result supercompilation provides new opportunities for comparative
studies in the field of supercompilation.

∙ Finally, during the development, it became clear that building MRSC on
the basis of multi-result supercompilation leads to a more modular, flexible
and declarative design of the whole toolkit.

That is why the paper focuses on multi-result supercompilation. Accordingly,
MRSC stands for Multi-Result SuperCompilation toolkit.

1.4 The structure of MRSC

Most existing supercompilers have common parts, which do not depend on the
object language of a supercompiler, or on the domain of a supercompiler. For
example, the overall structure of the graph of configurations and the implemen-
tation of operations to work with this graph do not depend on the representation
of configurations. Or, for example, different types of whistles and algorithms of
generalization can be formulated in abstract form, without the use of information
about the details of the language of configurations.

One of the goals of MRSC is to provide some generic data structures and oper-
ations that can be used as ready-to-use building blocks for rapid development and
prototyping of supercompilers: that is, to provide some basic set of components.

7

On the other hand, a client should have some possibilities of creating additional
components and modifying the logic of prefabricated components.

To meet these requirements, we chose Scala [26] as an implementation language
of MRSC (although it would be interesting to try to implement a similar toolkit
using other programming languages).

Technically, the building blocks provided by MRSC are structured as traits.
So a class implementing the main logic of a supercompiler – the construction of
graphs of configurations – is assembled from a number of traits.

The MRSC source code is available at https://github.com/ilya-klyuchnikov/
mrsc. This preprint describes MRSC 1.0.

1.5 What is in this preprint

Due to size limitations we are not able to include all the stuff we would like to
present: this preprint is only a start of a series of papers on MRSC and multi-
result supercompilation.

It should be noted that the work on a toolkit implementing the principles
of multi-result supercompilation resulted in a revision of some traditional design
decisions related to the most low-level part of a supercompiler – the representation
of graphs of configurations and the implementation of some operations over them.
It has affected the low-level components of MRSC.

This preprint considers in detail only the core components of MRSC and the
“theoretical foundations” of MRSC. In particular:

∙ Formal definitions of several kinds of supercompilation in terms of rewrit-
ing rules for graphs of configurations. Namely, traditional (single-result,
deterministic) supercompilation, non-deterministic supercompilation (as a
transformation relation) and multi-result supercompilation.

∙ Sufficient conditions ensuring the finiteness of any set of completed graphs.

∙ Internal representation of graphs of configurations based on spaghetti-stacks.

∙ A method of generating (possibly huge, yet finite) sets of completed graphs
of configurations.

Other components of MRSC will be discussed in detail in upcoming papers.

1.6 The structure of the preprint

The paper is structured as follows:

∙ Section 2 introduces a formalism for presenting supercompilation in terms
of rewriting rules for graphs of configurations. There are then given two
sets of rewriting rules that provide generic specifications for a traditional
supercompilation algorithm (corresponding to deterministic supercompila-
tion) and for a transformation relation (corresponding to non-deterministic

https://github.com/ilya-klyuchnikov/mrsc
https://github.com/ilya-klyuchnikov/mrsc

8

supercompilation). By comparing these sets of rules one may get some in-
sights about the key differences between the two kinds of supercompilation.
In the case of traditional supercompilation, the rewriting rules ensure the
generation of a single completed graph of configurations, while the rewriting
rules specifying a transformation relation allow the generation of a (possibly
infinite) set of completed graphs of configurations.

∙ Section 3 gives a set of rewriting rules that provide a generic specification
for multi-result supercompilation. These rules ensure the generation of a
finite set of completed graphs of configurations. By inspecting the sets of
rules, one can see that multi-result supercompilation can be regarded as a
crossbreed between deterministic (traditional) supercompilation and non-
deterministic supercompilation (specified by a transformation relation).

∙ Section 4 describes the core of MRSC. The base level of MRSC implements a
few low-level operations over graphs of configurations. MRSC provides two
data-structures meant for representing graphs of configurations: TGraph
(based on trees) and SGraph (based on spaghetti-stacks). An explanation
is given as to why SGraph is more appropriate in the case of multi-result
supercompilation. MRSC provides a very simple set of 5 basic “rewrit-
ing steps” for transforming graphs of configurations and an abstraction
GraphRewriteRules for encoding the logic of supercompilation in terms
of rewriting rules. The component GraphGenerator, when given a set of
rewrite rules, incrementally produces all possible graphs of configurations.

∙ Section 5 gives an overview of related works and concludes the preprint.

We assume that the reader is familiar with the basics of supercompilation –
driving, whistle, generalization and residuation (the paper [32] provides a good
introduction into supercompilation).

2 Schemes of traditional supercompilation

In the supercompilation community, there are two well-established approaches to
describing and implementing supercompilers.

The first approach formulates supercompilation in terms of the construction
of a graph of configurations that is then transformed (residuated) into an output
(residual) program [34, 28, 32, 18, 13, 5]. The origin of this approach goes back
to V. Turchin [36].

The second approach [24, 23, 2, 7] considers a supercompiler as an expression
transformer that produces output programs “directly”, avoiding the construction
of intermediate data structures (graphs of configurations)1. This “direct-style”
approach works especially well if a supercompiler is written in a lazy language (like

1At least in an explicit way.

9

Haskell) and is required to meet strong performance requirements. A drawback
of this approach, however, is that the components of the supercompiler tend to
become more strongly coupled: an effect that is hardly desirable in the case of
MRSC.

For this reason, our presentation of supercompilation, as well as the design of
MRSC, follow the first tradition (based on the explicit construction of graphs of
configurations2).

The following sections give (generic) specifications of 3 kinds of supercompila-
tion. Namely: traditional (deterministic, single-result) supercompilation, super-
compilation transformation relation (or, in other words, non-deterministic super-
compilation) and multi-result supercompilation.

These generic specifications describe the construction of graphs of configura-
tions in a language-agnostic way, being parameterized with respect to a set of
abstract basic operations: driving, folding, rebuilding and whistle (close to that
used by Sørensen [30, 31, 29]).

2.1 Rewrite rules for graphs of configurations

In the following, it will be assumed that the main result produced by a supercom-
piler is a completed graph of configurations, which is constructed with respect to
a program 𝑝 and an initial configuration 𝑐. The process starts by constructing a
graph whose single node contains the initial configuration 𝑐.

Then the construction of the graph proceeds, step-by-step, by applying graph
rewrite rules written in the following form:

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝑔 → 𝑔′

Let 𝑔 denote a current graph and 𝑔′ a graph produced by a single step of
rewriting. The rewriting step 𝑔 → 𝑔′ is written under the horizontal bar. Above
the horizontal bar there is a 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 that should be satisfied in order for
this step to be applicable. We assume that there is a predicate 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑔) for
checking whether a graph 𝑔 is completed.

Some rules in a set may be overlapping. It means that, given a graph, there
may be zero, one or more rules that are applicable. For this reason, the ini-
tial graph of configurations may, in principle, be rewritten into any number of
completed graphs: from zero to infinity.

It turns out that traditional, non-deterministic and multi-result supercompi-
lation can be specified by means of a set consisting of 3 (generic) rules: 𝐹𝑜𝑙𝑑,
𝐷𝑟𝑖𝑣𝑒 and 𝑅𝑒𝑏𝑢𝑖𝑙𝑑. Note that the rules corresponding to different kinds of su-
percompilation are similar, but differ in some important details, which facilitates
the comparison of the 3 kinds of supercompilation.

2Creating a toolkit similar to MRSC on the basis of the “direct-style” approach is an inter-
esting, yet open problem for further research.

10

Transforming operations
𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼) : 𝐺𝑟𝑎𝑝ℎ Folding: looping back from the current node

𝛽 to a node 𝛼 in a graph of configurations.
𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠) : 𝐺𝑟𝑎𝑝ℎ Adding new nodes: a node is created for

each configuration from the list 𝑐𝑠, created
nodes become children of the current node
𝛽.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′) : 𝐺𝑟𝑎𝑝ℎ Rebuilding of a graph: a configuration in an
active node 𝛽 is replaced with a configura-
tion 𝑐′.

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘(𝑔, 𝛼, 𝑐′) : 𝐺𝑟𝑎𝑝ℎ Another type of rebuilding of a graph: a
configuration in a node 𝛼 (which is not a
current node) is replaced with a configura-
tion 𝑐′, the whole subgraph for which 𝛼 is a
root node is deleted.

Inspecting operations
𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) : 𝐵𝑜𝑜𝑙 Predicate, recognizing the possibility for

folding of a node 𝛽 to a node 𝛼.
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) : 𝐵𝑜𝑜𝑙 (Whistle) Predicate, recognizing a poten-

tially dangerous situation (potentially infi-
nite branch in a graph of configurations).

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝑔) : 𝐵𝑜𝑜𝑙 Predicate, determining whether a graph of
configurations 𝑔 is completed or not.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) : 𝐶 Rebuilding of a configuration 𝑐 (that is in
the current node 𝛽) with respect to the
whole graph 𝑔.

𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐) : 𝐿𝑖𝑠𝑡[𝐶] Driving step. Next configurations for a
given configuration 𝑐.

𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) : 𝐿𝑖𝑠𝑡[𝐶] The set of rebuildings of a configuration 𝑐.

Figure 1: Operations on graphs of configurations

2.2 Basic operations

Figure 1 presents a set of basic operations that allow supercompilers to be specified
in a generic way. The concrete definitions of the operations may vary for different
supercompilers. (As an example, see the description of the internals of the super-
compiler HOSC [13].) These operations can be naturally divided into two groups:
operations that transform a graph of configurations (𝑓𝑜𝑙𝑑, 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑)
and operations that only inspect a graph of configurations (𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒, 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠,
𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠).

In fact, generic formulations of supercompilation do not depend on the exact
meaning of “inspecting” operations: it is enough to know the types of their results
and how the results are used. Also note that the names of some operations we

11

use in the paper differ from those used by Sørensen: 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 corresponds to
𝑑𝑟𝑖𝑣𝑒 and 𝑟𝑒𝑏𝑢𝑖𝑙𝑑 corresponds to 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 [30, 31, 29].

The operations 𝑟𝑒𝑏𝑢𝑖𝑙𝑑, 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 deserve a special com-
ment. Unfortunately, in supercompilation the term generalization is “overloaded”,
which can be illustrated by the following two quotations.

From [31]:

Note that we now use the term generalization in two distinct senses:
to denote certain operations on trees performed by supercompilation,
and to denote the above operation on expressions. The two senses are
related: generalization in the former sense will make use of general-
ization in the latter sense.

From [37]:

A reduction from node 𝑁1 to 𝑁2 is an assignment of such values to
𝑣𝑎𝑟(𝑁2) in terms of 𝑣𝑎𝑟(𝑁1) that after their substitution the config-
uration in 𝑁2 becomes identical to that in 𝑁1. The node 𝑁2 may
be either (1) a generalization of 𝑁1 [. . .]. Transition by a reduction
edge includes no computational steps of the machine: the exact state
of the computing machine remains the same; only its representation
gets changed.

On the one hand, a configuration 𝑐′ is said to be a generalization of a config-
uration 𝑐 if 𝑐 ⊂ 𝑐′ (which means that the set represented by 𝑐′ contains the set
represented by 𝑐). On the other hand, let us consider three configurations in the
language SLL [18]:

𝑓(𝑁𝑖𝑙, 𝑔(𝑦)) (𝑐1)
𝑓(𝑥, 𝑔(𝑦)) (𝑐2)
𝑙𝑒𝑡 𝑥 = 𝑁𝑖𝑙 𝑖𝑛 𝑓(𝑥, 𝑔(𝑦)) (𝑐3)

Here 𝑐1 ⊂ 𝑐2, i.e. 𝑐2 is a generalization of 𝑐1. Note that 𝑐2 does not contain
enough information for the initial configuration 𝑐1 to be restored. Now suppose
that 𝑐1 and 𝑐2 appear in a graph of configurations, and 𝑐1 is the current node.
Then we cannot perform generalization just by replacing 𝑐1 with 𝑐2! Actually,
during supercompilation, 𝑐1 is replaced with 𝑐3 (which contains 𝑐2 as a subex-
pression). For this reason it is 𝑐3, rather than 𝑐2 that is sometimes referred to as
a generalization of 𝑐1.

This ambiguity in terminology is no good, as it may be a source of confusion.
For this reason, we will use a more technical term rebuilding (quite popular in
supercompilation folklore), giving it a precise meaning.

A rebuilding of a configuration is an alternative representation of the con-
figuration (in accordance with the above quotation from Turchin). The original
configuration can be uniquely restored from a rebuilding. For example, 𝑐3 is a
rebuilding of 𝑐1. For a given language of configurations, the set of all possible
rebuildings of a given configuration is usually finite.

12

A lower rebuilding of a graph of configurations is the replacement of a config-
uration 𝑐 in the current node with a configuration 𝑐′.

The upper rebuilding of a graph of configurations (a rollback to 𝛼) is the dele-
tion of all successors of the node 𝛼, followed by the replacement of a configuration
𝑐 in 𝛼 with a configuration 𝑐′.

It will be assumed that 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐).

2.3 Scheme of supercompilation algorithm

The generic scheme of traditional supercompilation is specified by the SC-rules
shown in Figure 2a. The determinacy follows from the fact that, given a graph that
is not completed, there is exactly one rule that can be applied (in an unambiguous
way).

These rules can be interpreted as a step-by-step algorithm:

∙ While a graph of configurations is not completed:

– If there is a node for looping back, then make the corresponding folding
(𝐹𝑜𝑙𝑑),

– else if the current state of the graph is considered to be dangerous (“the
whistle blows”), then deterministically find a rebuilding of the current
configuration with respect to the current graph and then perform the
lower rebuilding of the graph (𝑅𝑒𝑏𝑢𝑖𝑙𝑑),

– otherwise, make a step of driving (𝐷𝑟𝑖𝑣𝑒).

2.4 Scheme of transformation relation

A supercompilation transformation relation does not use whistle and allows any
possible rebuilding to be performed, provided that the 𝐹𝑜𝑙𝑑 rule is not applicable.

The generic scheme of non-deterministic supercompilation is specified as a
transformation relation by the NDSC-rules shown in Figure 2b. Technically, there
are two differences from the case of traditional (deterministic) supercompilation:

1. If there is no possibility for folding, then both a driving step and a rebuilding
are allowed.

2. A rebuilding of the current configuration can be done non-deterministically,
by using any configuration from 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐).

Since we assume that 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐) ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐), it can be easily seen
that, given a set of operations over graphs of configurations, the transformation
supercompilation relation is an extension with respect to traditional supercom-
pilation. In other words, if the deterministic supercompiler produces a residual
program for a given input program, then the non-deterministic supercompiler is
also able to produce this residual program.

13

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) ¬𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐′ = 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝑔, 𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(a) SC: Deterministic (traditional) supercompilation

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(b) NDSC: Non-deterministic supercompilation (transformation relation)

(Fold)
∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼)

𝑔 → 𝑓𝑜𝑙𝑑(𝑔, 𝛽, 𝛼)

(Drive)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) ¬𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠(𝑔, 𝛽) 𝑐𝑠 = 𝑑𝑟𝑖𝑣𝑒𝑆𝑡𝑒𝑝(𝑐)

𝑔 → 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑔, 𝛽, 𝑐𝑠)

(Rebuild)
̸ ∃𝛼 : 𝑓𝑜𝑙𝑑𝑎𝑏𝑙𝑒(𝑔, 𝛽, 𝛼) 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐)

𝑔 → 𝑟𝑒𝑏𝑢𝑖𝑙𝑑(𝑔, 𝛽, 𝑐′)

(c) MRSC: Multi-result supercompilation

Notation:
𝑔 – a current graph of configurations
𝛽 – a current node in a graph of configurations
𝑐 – a configuration in a current node 𝛽

Figure 2: Schemes of different types of supercompilation

In general, for a given input program, a transformation relation defines a (pos-
sibly) infinite set of completed graphs of configurations and a (possibly) infinite
set of incomplete graphs of configurations.

Transformation relations are useful for proving the correctness of supercompi-
lation algorithm and for formulating some abstract properties of supercompilation

14

[12, 15, 27].

3 Multi-result supercompilation

Essentially, multi-result supercompilation can be regarded as a crossbreed between
deterministic (traditional) supercompilation and non-deterministic supercompila-
tion (specified by a transformation relation)

3.1 Scheme of multi-result supercompilation

The scheme of multi-result supercompilation is specified by the MRSC-rules shown
in Fig. 2c.

It can be seen that the MRSC-rules can be regarded as a combination of the
SC-rules and the NDSC-rules. The rule 𝐹𝑜𝑙𝑑 is the same for all sets of rules. The
rule 𝐷𝑟𝑖𝑣𝑒 is taken from the SC-rules and the rule 𝑅𝑒𝑏𝑢𝑖𝑙𝑑 from the NDSC-rules.

Note that in the case of the SC-rules, the whistle and rebuilding are strongly
coupled: if the whistle blows, there has to be done a rebuilding, but if the whistle
does not blow, rebuilding is prohibited and a driving step has to be done.

However, this is not true of the MRSC-rules, because a rebuilding may be
performed even if the whistle does not blow. But the subtle point is that there may
arise a situation when the rule 𝐹𝑜𝑙𝑑 is not applicable, the whistle blows, thereby
making the 𝐷𝑟𝑖𝑣𝑒 inapplicable, and the set 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is empty, for which
reason no rebuilding is possible. It means that the process of supercompilation
has come to an impasse, and the graph of configurations is “unworkable” and has
to be discarded.

Let us recall that applying the SC-rules results in producing a single completed
graph, the NDSC-rules a (possibly) infinite set of completed graphs, and the
MRSC-rules a finite set of completed graphs.

Theorem 1 (Finiteness of sets of completed graphs). If

1. any infinite branch in a graph of configurations is detected by the predicate
𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠,

2. for any configuration 𝑐 the set 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is finite,

3. the number of successive rebuildings cannot be infinite (i.e. in the chain
𝑐1, 𝑐2, 𝑐3, . . ., where 𝑐𝑘+1 ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐𝑘) is always finite),

then the application of the MRSC-rules produces a finite set of completed graphs
of configurations.

Proof. Collapse all successive rebuildings into one rebuilding. Everything else
follows from König lemma [8] (using arguments similar to those in the Sørensen’s
proof [29]).

15

-

. . .

. . .

-

F

R

D

(a)

-

. . .

. . .

. . .

D

D

. . .

-

F

R

D

. . .

. . .

. . .

D

D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

(b)

-

. . .

!
D

. . .

-

F

R

D

. . .

!
D

R

. . .

. . .

-

F

D

. . .

-

F

R

R

(c)

Figure 3: Trees of graphs. (a) Deterministic algorithm, (b) Transformation rela-
tion, (c) Multi-result supercompilation.

In the same way one can show that the MRSC-rules always produce a finite
set of dead-end graphs (to which no rule is applicable).

The third condition in the assertion of the theorem may seem to be superfluous.
However, this is not true. Let us consider a supercompiler, such that (1) numbers
are allowed as variable values in its input language, and (2) configurations may
impose restrictions on variable values having the form 𝑥 < 𝑁 , where 𝑥 is a variable
and 𝑁 is a natural number.

Suppose that the finiteness of 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is ensured by the following re-
quirement: if all number constants in 𝑐 do not exceed 𝑁 , then all number con-
stants appearing in any 𝑐′ ∈ 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) do not exceed 𝑁+1. Then the number
of rebuildings for any configuration will be finite, but the number of successive
rebuildings can be infinite. For example:

𝑓(𝑥)|{𝑥<5} → 𝑙𝑒𝑡 𝑦 = 𝑥|{𝑥<5} 𝑖𝑛 𝑓(𝑦)|{𝑦<6} → 𝑙𝑒𝑡 𝑧 = 𝑦|{𝑦<6} 𝑖𝑛 𝑓(𝑧)|{𝑧<7} → . . .

If 𝑓(𝑥)|{𝑥<5} is the initial configuration, then an infinite number of completed
graphs of configurations can be generated.3

3.2 Tree of graphs

Suppose, we are given an initial configuration. Then the rules shown in Fig. 2
specify the process of supercompilation as a sequence of rewriting steps. A se-
quence of rewritings will be called “successful” if it leads to a completed graph of

3It may happen that this infinite number of graphs is residuated into a finite set of really
different output programs.

16

configuration, and “unsuccessful” if it leads to a dead end (i.e. to a graph such
that no rule is applicable).

Note that (1) the SC-rules define a single successful finite sequence of rewrit-
ings, (2) the NDSC-rules define an infinite tree of rewriting steps containing finite
successful branches, finite unsuccessful branches and infinite branches, and (3)
MRSC-rules define a finite tree of rewriting steps with finite successful branches
and finite unsuccessful branches (see Fig. 3).

Thus, Theorem 1 can be reformulated as follows: multi-result supercompila-
tion defines a finite tree of graph rewriting.

3.3 Decoupling whistle and generalization

Let us take a closer look at the differences between deterministic (traditional)
supercompilation and multi-result supercompilation.

Comparing the SC-rules and the MRSC-rules in Fig. 2 reveals that these two
kinds of supercompilation only differ in the rule 𝑅𝑒𝑏𝑢𝑖𝑙𝑑. In the case of the
SC-rules, driving and generalization (rebuilding) are mutually exclusive, and the
decision whether to drive or generalize is taken by the whistle, while in the case
of the MRSC-rules a configuration can be rebuilt even if the whistle is silent. The
consequence is that the MRSC-rules completely decouple the whistle from the
generalization algorithm: the whistle does not have to bother about whether a
configuration declared to be “dangerous” can be rebuilt, or not?

Hence, as regards the whistle and generalization, multi-result supercompila-
tion provides a better separation of concerns, than traditional supercompilation,
and this is especially important when doing research work in the field of super-
compilation. Since a whistle does not have to take into account generalization/re-
building, it becomes easier to give a try to a variety of unusual whistles. On the
other hand, an algorithm of generalization is no longer required to guess “the
best” generalization: it is sufficient for it to produce 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐), a finite set
of rebuildings.

Certainly, even if 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) is finite for any configuration 𝑐, it may be still
too large, so that a huge number of residual programs may be produced. However,
this is acceptable if we need to understand, first of all, whether a whistle is in
principle able to produce good results, or not. After that we may proceed to the
next task: how to reduce the size of 𝑟𝑒𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠(𝑐) by only selecting “reasonable”
rebuildings.

3.4 Multi-result supercompilation as branching growth of
the penultimate level

The idea of multi-result supercompilation is quite simple. The fact that, until
recently, it has not been explicitly formulated can be due to two reasons.

First, for a long time, supercompilation has been primarily considered as a
program optimization technique, for which reason it was believed to be “natural”

17

for a supercompiler to produce a single result (the “best possible” one). However,
in the case of program analysis, it is not clear, what is the “best” residual program?
Thus we come to the idea of a supercompiler producing a set of residual programs.

Second, multi-result supercompilation reveals its true potential only in com-
bination with higher-level supercompilation (in particular, two-level supercompi-
lation). While, in the case of traditional supercompilation, the transition from
single-result supercompilation to multi-result supercompilation gives only quan-
titative change. Combining two-level supercompilation with multi-result super-
compilation produces fundamentally new results [21].

4 The core of MRSC

Now let us consider which technical issues arise when developing a multi-result
supercompiler and how these issues are addressed in MRSC.

The most sophisticated technical task of a supercompiler is the construction
of a graph of configurations. A supercompiler constructs this graph in a top-down
manner, starting from an initial configuration. In the case of traditional, single-
result supercompilation, when a single graph of configurations is to be constructed,
the internal representation of this graph is not of importance. One may choose to
use a mutable data structure for graph representation and modify it step-by-step
as it was done in [37] (imperative style). Another option is to use an immutable
data structure: if the implementation language of a supercompiler is a call-by-
value one, a new structure will be generated at each step [18]. Or we can use
a lazy implementation language, in which case graphs of configurations can be
constructed in a lazy manner [17].

In any case, as can be seen from the literature, most supercompilers based on
the explicit construction of graphs of configurations, have represented graphs by
top-down trees. This representation is convenient for the generation of residual
programs, since, traditionally, a residual program is constructed by traversing a
graph in a top-down manner4.

But, as will be shown in the next subsection, the tree-based representation of
graphs of configurations is inconvenient for multi-result supercompilation. There-
fore, MRSC uses another representation for graphs, based on spaghetti-stacks [1].

4.1 Two data structures for a graph of configurations

MRSC uses two representations for graphs of configurations: T-representation
(tree-based) and S-representation (based on spaghetti-stacks [1]). The Scala en-
coding of these representation is shown in Fig. 4.

T-representation is used when transforming a graph into a residual program.
S-representation is used during the step-by-step construction of a graph of con-

4It is interesting to find an elegant way to construct a residual program using bottom-up
traversal.

18

type TPath = List[Int]
type SPath = List[Int]

case class TNode[C, D](
conf: C, outs: List[TEdge[C, D]],

base: Option[TPath], tPath: TPath)

case class TEdge[C, D](
node: TNode[C, D], driveInfo: D)

case class TGraph[C, D](
root: TNode[C, D], leaves: List[TNode[C, D]])

case class SNode[C, D](
conf: C, in: SEdge[C, D],

base: Option[SPath], sPath: SPath)

case class SEdge[C, D](
node: SNode[C, D], driveInfo: D)

case class SGraph[C, D](
incompleteLeaves: List[SNode[C, D]],

completeLeaves: List[SNode[C, D]],

completeNodes: List[SNode[C, D]]) {

val isComplete = incompleteLeaves.isEmpty
val current = if (isComplete) null else incompleteLeaves.head

}

Figure 4: Graphs

figurations. When a graph is completed, it can be either used as it is (in S-
representation), or it may be transformed from S-representation into T-represen-
tation (to be then residuated).

Graphs in T-representations are objects of the class TGraph[C, D] holding
information of the following kinds:

1. C (configuration) – configurations labeling nodes of a graph.

2. D (driving info) – information labeling graph edges. This information de-
scribes the “evolution” of configurations (a transient step of driving, a
branching, a decomposition, etc). This information is useful for produc-
ing residual programs.

Every node in a T-graph is represented by an object of class TNode[C, D]
which holds information about its configuration and its output edges. We also

19

leaves

root

(a) TGraph

leaves

root

(b) SGraph

Figure 5: MRSC data structures

𝑥 𝑦

leaves

root

(a)

𝑥 𝑦

leaves

root

(b)

Figure 6: Reuse of nodes in S-graphs

store a path from the root node to this node: it facilitates some manipulations
with the graph and can be used as a unique identifier of the node inside its graph.
The information about folding is stored as an (optional) path to the base node.
So, in a sense, TGraph is a tree with additional information about cycles (foldings)
in some leaves of this tree.

The edges of a graph are coded as TEdge[C, D], which are unidirectional, an
edge only storing the information about its destination.

The “entry point” of TGraph[C, D] is its root node. Also there is additional
information about leaves, which may be useful for residuation.

As was mentioned above, T-representation is convenient for top-down traver-
sal of graphs. However, if we need to make additions to a T-graph in two different
ways, we have to do some copying. But, in the case of multi-result supercompila-
tion, we have to do divergent additions to the current graph nearly at every step.
So, T-graphs seem to be impractical for multi-result supercompilation. It is easier
to turn T-graphs upside down, to obtain S-graphs represented by SGraph[C, D].
SGraph[C, D] is totally dual to SGraph[C, D]. The two data structures are

schematically shown in Fig. 5.
Both data structures are immutable. Let us go into details of how S-graphs

allow different additions to graphs to be made in a functional way.

20

Suppose there are two rewriting steps applicable for the graph shown in Fig. 5:
adding a child node with a configuration 𝑥 to the leftmost leaf or adding a child
node with a configuration 𝑦 to the leftmost leaf. In the case of S-graphs, it is
sufficient to create two nodes and to reuse some parts of the previous graph to
make two new graphs! This sharing of nodes is shown schematically in Fig. 6.

It should be noted that S-representation is more convenient for the imple-
mentation of whistles, than T-representation: the majority of whistles traverses
a branch of a graph in the bottom-up way starting from the current node.

Despite these differences, many supercompilers (for historical reasons?) use
T-representation when building graphs of configurations.

So a graph of configurations being constructed is represented by the class
SGraph[C, D]: the field current represent the current node, incompleteLeaves
represent leaves that are not yet processed, completeLeaves represent completed
leaves. Also there is an additional list completeNodes representing a completed
part of a graph.

4.2 Basis of operations on S-graphs

One of the main goals of MRSC is to allow a programmer to concentrate on writing
the logic of a (multi-result) supercompiler saving him the trouble of coding routine
operations. In a sense, the lowest level of a supercompiler’s logic is the definition
of rewriting rules for graphs of configurations. MRSC allows these rules to be
encoded in a semi-declarative way.

MRSC provides a basis consisting of five “build steps”, denoting rewriting
operations over graphs of configurations in S-representation. This basis is shown
schematically in Fig. 7.

Each step is represented as a Scala value of type GraphStep[C, D] and is
assumed to be executed over the current graph of configurations (Fig. 8):

1. CompleteCurrentNodeStep – marks the current leaf as a completed one.
Used in driving.

2. FoldStep – performs a folding.

3. AddChildNodesStep – adds child nodes to the current node. Used in driving.

4. RebuildStep – performs a lower rebuilding of the graph (by replacing the
configuration in the current node).

5. RollbackStep – performs an upper rebuilding of the graph (deleting the
corresponding sub-graph).

The process of constructing any graph of configurations that is producible by
supercompilation can be represented by a sequence of the above build steps. The
build steps are executed by an interpreter that is provided by MRSC as part of
the graph generator (see below). The supercompilers implemented by means of

21

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒−−−−−−→

𝐹𝑜𝑙𝑑−−−→

𝐴𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑁𝑜𝑑𝑒𝑠−−−−−−−−−−→

𝑐1

𝑅𝑒𝑏𝑢𝑖𝑙𝑑−−−−−→

𝑐2

𝑐1 𝑅𝑜𝑙𝑙𝑏𝑎𝑐𝑘−−−−−→ 𝑐2

Figure 7: Basis of operations on graphs schematically

MRSC never transform graphs of configurations directly: they instead generate
build steps that are interpreted by the graph generator. This, to some extents,
ensures the correctness of transformations over graphs of configurations.

Note that the use of S-graphs allows rollback operation to be performed in an
elegant functional way (see the MRSC source code)5.

Another useful feature of encoding build steps as first-order values is that they

5In [3] rollbacks are implemented by means of the mechanism of exceptions.

22

sealed trait GraphRewriteStep[C, D]

case class CompleteCurrentNodeStep[C, D]
extends GraphRewriteStep[C, D]

case class AddChildNodesStep[C, D](ns: List[(C, D)])
extends GraphRewriteStep[C, D]

case class FoldStep[C, D](to: SPath)
extends GraphRewriteStep[C, D]

case class RebuildStep[C, D](c: C)
extends GraphRewriteStep[C, D]

case class RollbackStep[C, D](to: SPath, c: C)
extends GraphRewriteStep[C, D]

Figure 8: Rewrite steps for S-graphs

trait GraphRewriteRules[C, D] {
type N = SNode[C, D]
type G = SGraph[C, D]
type S = GraphRewriteStep[C, D]
def steps(g: G): List[S]

}

case class GraphGenerator[C, D]
(rules: GraphRewriteRules[C, D], conf: C)

extends Iterator[SGraph[C, D]] { ... }

Figure 9: MRSC “middleware” for supercompiler construction

can be easily serialized and stored for future use. Then they can be submitted
to another software tool, such as a validator of sequences of build steps. Given
a start graph (with a single node) and a sequence of graph rewriting steps, the
validator will be asked to check whether this sequence of steps may be generated
by a certain supercompiler (or even by a transformation relation), or not.

4.3 Generating graphs of configurations

Technically, a supercompiler written using MRSC is based upon two components
shown in Fig. 9: GraphRewriteRules and GraphGenerator.

The trait GraphRewriteRules describes the logic of a multi-result supercom-
piler in a form similar to that in Fig. 2c. This trait only declares the method

23

steps. A concrete supercompiler is required to provide an implementation for
this method. So the trait GraphRewriteRules only provides an interface for us-
ing the rules.

The class GraphGenerator, by contrast, is a ready-to-use component: it is a
constituent part of any supercompiler built on top of MRSC.
GraphGenerator for a given initial configuration conf and rewriting rules

rules, generates all completed graphs of configurations defined by these rules.
If rules represent the logic of a traditional single-result supercompiler, then (of
course) the generator will produce a single graph.

In general, the number of graphs may be huge. Thus, to keep memory con-
sumption within reasonable limits, the graph generator is implemented as an
iterator and produces graphs on demand.

The internals of the graph generator are extremely simple (see the source
code). It maintains a set of incomplete S-graphs and a queue of completed graphs.
If a client requests the next graph and the queue is not empty, then the first graph
from this queue is returned. Otherwise, a graph g from the set of incomplete
graphs is chosen, and steps(g) is called, to produce a set of graph build steps
(which may be empty). Then each of the steps is applied to g, to obtain a set
of new graphs. Some of the new graphs are completed and some are incomplete.
The completed graphs are added to the queue of completed graphs, while the
incomplete ones are added to the current set of incomplete graphs.

(There may be implemented other strategies, producing the completed graphs
in other orders. The current implementation is straightforward, and makes the
depth-first traversal of the “tree of graphs”.)

What should a client do with the graphs generated by GraphGenerator? In
the case of a traditional supercompiler, a client may transform them into T-
graphs and then residuate these T-graphs into output programs. However, other
variants are possible. For example, a client may filter out completed graphs in
order to find graphs with specific properties. In some cases the fact of existence
or absence of graphs with specific properties may be of a special interest (when
supercompilation is used for program analysis).

Note, that the interface to the definition of graph rewriting rules shown in
Fig. 9 is quite abstract and does not depend on the input languages of supercom-
pilers. This enables the graph generator to be completely language-agnostic.

5 Conclusion

This preprint describes only the internal structure and technical design of the
MRSC core. Next preprints will present concrete examples of rapid prototyping
of supercompilers by means of MRSC and the use of MRSC for implementing
domain-specific supercompilers.

The first work addressing the problem of developing a general “abstract”
framework for specifying and implementing supercompilers was [37], which in-

24

troduced a domain-specific language SCPL for describing graph transformations.
Unfortunately, later there has been no active development in this field.

To some extent, the core of MRSC follows the spirit of SCPL, but there are
some significant differences.

First, MRSC is focused on multi-result supercompilation, which is a superset
of traditional supercompilation. The main idea of multi-result supercompilation
is the multiplicity of possible results. This idea is extended naturally into the
thesis about the variety and multiplicity of (multi-result) supercompilers that can
be used for a variety of purposes.

The second difference is that MRSC is designed and implemented in func-
tional style: the core data-structures (S-graph) of MRSC are immutable, which
makes it possible to generate thousands of graphs, while still keeping memory
consumption within reasonable limits. In addition, it allows, in principle, to de-
velop a parallelized version of MRSC, so that the divergent versions of a graph of
configurations can be processed simultaneously.

Of course, the first version of the MRSC toolkit is far from ideal. But we hope
that further improvements in MRSC will be driven by experience gained by using
it for implementing language- and domain-specific multi-result supercompilers.

Acknoledgements

The authors express their gratitude to all participants of Refal seminar at Keldysh
Institute for useful comments and fruitful discussions of this work and to Natasha
and Lena for their love and patience.

References

[1] D. G. Bobrow and B. Wegbreit. A model and stack implementation of mul-
tiple environments. Commun. ACM, 16:591–603, October 1973.

[2] M. Bolingbroke and S. L. Peyton Jones. Supercompilation by evaluation. In
Haskell 2010 Symposium, 2010.

[3] M. Bolingbroke and S. L. Peyton Jones. Improving supercompilation: tag-
bags, rollback, speculation, normalisation, and generalisation, 2011. Rejected
by ICFP 2011.

[4] G. W. Hamilton. Distillation: extracting the essence of programs. In Pro-
ceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 61–70. ACM Press New York,
NY, USA, 2007.

[5] G. W. Hamilton. A graph-based definition of distillation. In Second Inter-
national Workshop on Metacomputation in Russia, 2010.

25

[6] N. D. Jones. The essence of program transformation by partial evaluation
and driving. In PSI ’99, volume 1755 of LNCS, pages 62–79. Springer-Verlag,
2000.

[7] P. Jonsson and J. Nordlander. Taming code explosion in supercompilation.
In PEPM’11, 2011.

[8] S. Kleene. Mathematical logic. Dover books on mathematics. Dover Publi-
cations, 2002.

[9] A. Klimov. An approach to supercompilation for object-oriented languages:
the Java supercompiler case study. In First International Workshop on Meta-
computation in Russia, 2008.

[10] A. Klimov. Multi-result supercompilation in action: Solving coverability
problem for monotonic counter systems by gradual specialization. In Inter-
national Workshop on Program Understanding (PU 2011), 2011.

[11] A. Klimov. Solving coverability problem for monotonic counter systems by
supercompilation. In PSI 11, 2011.

[12] A. V. Klimov. A program specialization relation based on supercompilation
and its properties. In First International Workshop on Metacomputation in
Russia, pages 54–77, 2008.

[13] I. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63,
Keldysh Institute of Applied Mathematics, Moscow, 2009.

[14] I. Klyuchnikov. Supercompiler HOSC 1.5: homeomorphic embedding and
generalization in a higher-order setting. Preprint 62, Keldysh Institute of
Applied Mathematics, 2010.

[15] I. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31,
Keldysh Institute of Applied Mathematics, Moscow, 2010.

[16] I. Klyuchnikov. Towards effective two-level supercompilation. Preprint 81,
Keldysh Institute of Applied Mathematics, 2010.

[17] I. Klyuchnikov. The ideas and methods of supercompilation. Practice of
Functional Programming, (7), 2011. In Russian.

[18] I. Klyuchnikov and S. Romanenko. SPSC: a simple supercompiler in Scala.
In PU’09 (International Workshop on Program Understanding), 2009.

[19] I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order
terms by means of supercompilation. In Perspectives of Systems Informatics,
volume 5947 of LNCS, pages 193–205, 2010.

26

[20] I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation.
In Second International Workshop on Metacomputation in Russia, 2010.

[21] I. Klyuchnikov and S. Romanenko. Multi-result supercompilation as branch-
ing growth of the penultimate level in metasystem transitions. In PSI 2011,
2011.

[22] A. Lisitsa and A. Nemytykh. Verification as a parameterized testing (experi-
ments with the SCP4 supercompiler). Programming and Computer Software,
33(1):14–23, 2007.

[23] N. Mitchell. Rethinking supercompilation. In ICFP 2010, 2010.

[24] N. Mitchell and C. Runciman. A supercompiler for core haskell. In Im-
plementation and Application of Functional Languages, volume 5083 of Lec-
ture Notes In Computer Science, pages 147–164, Berlin, Heidelberg, 2008.
Springer-Verlag.

[25] A. P. Nemytykh and V. A. Pinchuk. Program transformation with meta-
system transitions: Experiments with a supercompiler. In Perspectives of
System Informatics, volume 1181 of LNCS, pages 249–260. Springer, 1996.

[26] M. Odersky et al. Programming in Scala. Artima, 2nd edition, 2010.

[27] D. Sands. Proving the correctness of recursion-based automatic program
transformations. Theoretical Computer Science, 167(1-2):193–233, 1996.

[28] M. H. Sørensen. Turchin’s supercompiler revisited: an operational theory
of positive information propagation. Master’s thesis, Dept. of Computer
Science, University of Copenhagen, 1994.

[29] M. H. Sørensen. Convergence of program transformers in the metric space
of trees. In Mathematics of Program Construction, volume 1422 of LNCS,
pages 315–337, 1998.

[30] M. H. Sørensen and R. Glück. An algorithm of generalization in positive
supercompilation. In J. W. Lloyd, editor, Logic Programming: The 1995
International Symposium, pages 465–479, 1995.

[31] M. H. Sørensen and R. Glück. Introduction to supercompilation. In Partial
Evaluation. Practice and Theory, volume 1706 of LNCS, pages 246–270, 1998.

[32] M. H. Sørensen, R. Glück, and N. D. Jones. A positive supercompiler. Journal
of Functional Programming, 6(6):811–838, 1996.

[33] V. F. Turchin. The phenomenon of science. A cybernetic approach to human
evolution. Columbia University Press, New York, 1977.

27

[34] V. F. Turchin. A supercompiler system based on the language refal. SIG-
PLAN Not., 14(2):46–54, 1979.

[35] V. F. Turchin. The Language Refal: The Theory of Compilation and Meta-
system Analysis. Department of Computer Science, Courant Institute of
Mathematical Sciences, New York University, 1980.

[36] V. F. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

[37] V. F. Turchin. Supercompilation: Techniques and results. In Perspectives of
System Informatics, volume 1181 of LNCS. Springer, 1996.

[38] V. F. Turchin, R. M. Nirenberg, and D. V. Turchin. Experiments with a
supercompiler. In LFP ’82: Proceedings of the 1982 ACM symposium on
LISP and functional programming, pages 47–55, New York, NY, USA, 1982.
ACM.

	Untitled.pdf
	prep2011_77
	Introduction
	Growing variety in the field of supercompilation
	The goal of MRSC
	The approach of MRSC
	The structure of MRSC
	What is in this preprint
	The structure of the preprint

	Schemes of traditional supercompilation
	Rewrite rules for graphs of configurations
	Basic operations
	Scheme of supercompilation algorithm
	Scheme of transformation relation

	Multi-result supercompilation
	Scheme of multi-result supercompilation
	Tree of graphs
	Decoupling whistle and generalization
	Multi-result supercompilation as branching growth of the penultimate level

	The core of MRSC
	Two data structures for a graph of configurations
	Basis of operations on S-graphs
	Generating graphs of configurations

	Conclusion
	References

