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ABSTRACT 

In this paper we present our experience with development of a content creation pipeline targeted at generation of realistic 

image sequences with highly variable content. Our technique allows rendering of a single 3D object or a 3D scene in 

variety of appearances which includes changing of geometry, materials and lighting. In our work we were able to 

generate datasets for individual 3D objects and create procedural generator of interior scenes. Our solution is highly 

controllable and allows generating datasets with desired distribution of features in a reproducible manner. Using synthetic 

data in training, we have got increase of accuracy in CNN-based models comparing to usage of real-life data only. During 

our work we had to significantly improve the content creation pipeline for the existing open source GPU rendering 

system adapting it for our tasks. In this paper we suggest new approach for content creation which we call “sampling 

scenes from a distribution”.  

 

  
 

Figure 1. Examples of our applications. Road signs and cars were rendered as individual objects and then augmented to 

KITTI dataset for further CNN test; realistic rendering of the interior created as a consistent 3D scene randomizing of 

objects layout, material and lighting 

KEYWORDS 

Realistic Rendering, Procedural Pipeline, 3D Scene Generator, GPU Rendering, CNN Training Datasets 

1. INTRODUCTION 

Training of the modern artificial intelligence models faces two fundamental problems in practice: data 

quantity and data quality. Data quantity concerns availability of sufficient amounts of training and testing 

data. Data quality means how balanced is the data – are all the different classes, which the model must 

recognize, represented enough, do we have precise marking for it or not, how much noise (of any nature) is 

present in our dataset. Real-life data sets collected by people usually suffer from both insufficient quality and 

quantity. The real situation is even worse because during their research Compute Vision (CV) engineers need 

to change input datasets for testing of certain hypotheses. Due to inability to quickly obtain a new dataset the 

CV engineers have to consider subsets of the existing dataset which significantly limits their study.  

                                                                                                               DOI: 10.33965/cgv2020_202011L014 
International Conferences Computer Graphics, Visualization, Computer Vision and Image Processing 2020; 
                                                          Big Data Analytics, Data Mining and Computational Intelligence 2020; 
                                                                                       and Theory and Practice in Modern Computing 2020

1



Thus, synthetic (i.e. rendered with realistic image synthesis methods) datasets can be an option. The 

solution to data quantity problem can be achieved by using algorithms for procedurally setting of the optical 

properties of materials and surfaces. This way it is possible to quickly generate almost unlimited number of 

training examples with any distribution of objects (and therefore classes) present in generated images. The 

quality problem is in fact more interesting. On the one hand it is solved automatically: renderer produces 

precise per-pixel masks generating ground truth marking. On the other hand, it is actually not quite clear 

what a quality does actually mean for CV engineers. Some research papers on this topic (that we will 

describe in related work section) assume that quality is subjective realism for human eye. This is important to 

some extent but wrong in general. Realistic rendering in comparison to simple or real-time techniques could 

improve CNN performance (for example, classification precision). But in our opinion the main problem is 

different: in practice the CV engineers measure CNN performance on specific data sets and in such 

formulation of the problem a quality means to look like other examples of target dataset. This in itself 

significantly shifts priorities for the developed software.  

2. RELATED WORK 

There are a huge number of successful applications of realistic rendering for AI training. For us, first of all, it 

is interesting how 3D content was obtained in these works, how the full pipeline was built and what was the 

advantages and disadvantages of the selected ways. 

2.1 Using Existing 3D Content 

Firstly [Movshovitz et al] demonstrated importance of the realistic rendering usage in a problem of view 

point estimation. In their work authors took a database of the 91 3D CAD models obtained from 

doschdesign.com and turbosquid.com. These models were rendered with randomized direct lighting and 

random real photos as background image. We believe this work measured the influence of not realism itself, 

but rather the effect of increasing dataset variability, which to some extent has an effect with even simple 

lighting models. The reason is obvious: 3D models downloaded from the Internet resources in most cases are 

not ready for photorealistic rendering due to missing textures, unknown materials models (which were simply 

incorrectly exported to the current format or not supported by current rendering system) and, finally, just 

human errors that were made when preparing the 3D model for the aggregator site.  

[Zhang et al] report about using 500K images from 45K scenes for training of semantic segmentation and 

normal/depth estimation problems. The 3D content was obtained from the SUNCG dataset [Song et al]. 

There are many problems with this approach, even apart of the well-known legal problems with the SUNCG 

dataset. Since originally the SUNCG 3D models were assembled in the Planner5D program (which is trivial 

in comparison to such content creation tools as Blender or 3ds Max) they don’t contain realistic setup for 

materials or lighting. They are limited to just textures for Lambert reflection. This content is not sufficient for 

photorealistic rendering. No wonder that the other works where the SUNCG was used [Li and Snavely, 

2018; Kirsanov et al, 2019; McCormac et al, 2017] were able to achieve basic level of realism only. 

2.2 Augmented Reality 

Preparation of 3D content is expensive and time-consuming task. Therefore, in practice it is worth to consider 

any possibility for reducing man-hours. Augmented reality is very advanced approach here. Even 

[Movshovitz et al, 2016] actually used it when randomizing backgrounds. [Alhaija et al, 2018] went further 

applying augmentation of rendered images to the KITTI dataset [Geiger et al, 2013]. Applying of the  

image-based lighting technique [Debevec, 2002] for individual car models in conjunction with augmenting 

real photos [Voloboi et al, 2006] gives cheap and quick result: both rendering computation complexity and 

content preparation is greatly simplified [Alhaija et al, 2018].  

The main problem of image-based lighting methods is that they need the real high dynamic range  

(5-6 orders of magnitude) to be present in HDR image. Often it is not so [Voloboi et al, 2006]. Lighting 

prediction methods [like Valiev et al, 2008; Song and Funkhouser, 2019; Garon et al, 2019; Sorokin et al, 

2020] can help here. They became a quite common task for mixed-reality systems. Other disadvantage of 
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augmented reality is the task of automatic, correct placing of 3D models inside some reconstructed 

representation of scene. It can be easily supported in some cases (for example, [Alhaija et al, 2018] used 

segmentation methods to reconstruct the road plane) but is quite hard in general (for example, for interior 

photographs). Thus, the approximate geometry, lighting and camera parameters including tone mapping 

should be reconstructed in some way and this reconstruction itself is a significant problem. Nevertheless, the 

main advantage of augmented reality is that it can work directly in the image domain of CV researcher 

interest expanding existing datasets with new examples. And thus, Domain Adaptation methods [Tremblay, et 

al, 2018] are not needed which seems to be mandatory in practice for achieving high quality with other 

synthetic ways.  

2.3 Procedural and Simulation Approaches  

Procedural modeling is expensive, time-consuming and usually restricted to some specific task (for example, 

dirt or fire modeling) and sometimes to specific rendering algorithm. However, once created, procedural 

models are highly variable (infinite number of examples), give great quality for rendering (often with 

infinite-resolution details) and is traditionally used in many cinema content creation pipelines. [Tsirikoglou et 

al, 2017] used procedural modeling approach to generate cities and showed improvement for neural 

networks. Buildings, roads and city plan were procedural while other models (like cars, pedestrians, 

vegetation, bicycles) were sampled randomly from prepared data base. Also, some parameters were 

randomized for cars: type, count, placement, color. 

Approaches based on the procedural modeling via machine learning look promising [Risi and Togelius, 

2019; Spick et al, 2019] but there we meet the chicken and egg problem: we need to train these models first. 

Besides, these approaches are rather new and not proven for practice of general rendering tasks yet.   

[Hodan et al, 2019] achieved high quality by using the existing cinema production content creation 

pipeline with Autodesk Maya and Arnold rendering system, high quality 3D models and physics simulation 

which was the main randomizing tool. Obviously, this approach suffers from the main disadvantage of 

current cinema production pipelines: high cost and high labor input. [Hodan et al, 2019] used only 6 scenes 

with 30 different objects. This was fundamentally different from previous approaches. Other disadvantages 

of the Hodan’s approach include the use of non-freely available tools Maya and Arnold (which limits the 

adoption of this work), and slow rendering reported by authors – 15 to 720 seconds per image (depending on 

quality) on 16-core Xeon CPUs with 112 GB of RAM. Reasonably fast dataset generation is therefore 

possible only if significant computational resources are available. It is important to note that authors reported 

that accurate modeling of the scene context was more significant (+16% for CNN precision) in comparison to 

accurate light transport simulation (+6% for CNN precision).  

Other works [Shah et al, 2017] show that modern game engines could also be used for AI training. The 

choice between a game engine or a cinema production rendering system should be done primarily basing on 

how easy to model target real-world situation.  

2.4 Content Creation Pipeline 

Unlike other works mentioned earlier a specialized content creation pipeline is proposed in [Denninger et al 

2019]. And, as it was stated by the authors precisely, the design of open-source and universal pipeline was 

their goal. So, it is very close to our work. Sampler modules provide randomization capabilities which are the 

most interesting part of the pipeline. Sampler modules can generate positions for object placement (cameras, 

lights, 3d models) with various distributions and constraints like a proximity check. So, for example, object 

positions can be generated on the spherical surface but the objects will not be too close (for example, cameras 

will not look straight at the wall) and/or will not collide with each other. Sampler modules are also able to 

select objects basing on user-defined conditions and manipulate their properties (for example, enable physics 

simulation for 3d models). The MaterialManipulator and MaterialRandomizer modules were implemented to 

produce variation in appearance.  

The main drawback of this work is the fact that until now it was not yet applied to any specific learning 

task unlike many previously mentioned papers. So, while it looks very good on a paper and in examples 

provided by authors, its performance in real-life applications for CNN training is not known yet. As 

mentioned before the authors intended their work to be a universal pipeline which can be adapted and used 
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by CV researchers. Therefore, real evaluation of their work can be made only when its applications will be 

published. We believe that the [Denninger et al 2019] approach is right in general. However, having 

experience of similar pipeline creation and its application to various AI training tasks, we would discuss 

several modifications that need to be done in order to apply the Denninger approach in practice.  

3. SUGGESTED APPROACH 

The first difference between our work and existing approaches is reproducibility of scene generation results 

which allows generation of the same desired features of a scene for the same input setup. In fact, this turns 

dataset generation into a sampling problem. Having an input vector (x0, x1, ... xn) of random numbers from  

0 to 1 we assign to each random variable some specific meaning during randomization script development. 

For example, if we would like to render cars inside HDR environment, like [Movshovitz et al, 2016; Alhaija 

et al, 2018] did for 3D model pose/camera parameters estimation, we could: 

1. Assign (x0, x1) pair for 3D model (car) rotation (additionally we need setting of allowable angle 

intervals, for example from 0 to 70 degrees for vertical angle and from 0 to 360 for horizontal). 

2. Assign x2 for car body color selection from palette (to restrict desired colors). 

3. Assign x3 for environment select. 

4. Assign x4 for environment rotation around vertical (Y) axis. 

5. Assign x5 for car 3D model selection. 

We call this process a scene sampling. Thus, sampling of 6D vector (x0 … x5) we obtain images for input 

samples which gives us important properties and thus powerful capabilities for further experiments: 

 Applying quasi-random sequences (we used the Sobol sequence) we kill two birds with one stone: 

(1) Starting of the Sobol sequence from the beginning for each 3D model (i.e. generate x0 … x5 with 

quasi random approach, but select 3D models one by one instead of sampling x6) allows us to 

generate same camera positions for all 3D models which is important for training of pose estimation 

algorithms. (2) The Sobol sequence gives good uniform distribution in 5D-6D space. So, the 

generated samples would be also evenly distributed among all desired parameters: car colors, 

camera rotation and lighting conditions (which are set from environment map).  

 Applying of non-uniform distribution for x5, allows us to sample more cars of desired types and 

applying of tabulated distribution for x2 we can use more cars of specified (for example, black and 

grey) colors.  

 Setting of different values and distributions for training and validation datasets we can easily check 

hypothesis of our interest. For example, we can generate training dataset with camera rotation of 

only 25, 50 and 70 degrees but then check if this is enough for rotations 10, 30 and 60 degrees in our 

test dataset. 

 When we move from the current frame to the next one, we would like to localize the scene changes. 

In such a case the rendering system does not have to perform expensive operations of loading 

content from disk to GPU memory often. And so, we efficiently apply caching technique. In our 

experiments we can automatically obtain desirable caching for rendering system by clustering the 

multidimensional input points. For example, we can group all input samples on (x3, x5) pair. In such 

a way we consequently render scenes with the same 3D model and the same environment map. 

We would like to make a special note on the last point. One may suppose that this optimization could be 

omitted or achieved in other ways. We consider the following reasons support our position in practice: 

 When a researcher writes randomization script (presumably a CV engineer) he most likely does not 

know details about the rendering system. So effective cache usage should be applied automatically 

without polluting the randomizer script logic with such optimization issues.  

 Some specific procedural approaches could be done directly on GPU (that we actually did for 

procedural textures). But it is almost impossible to avoid costly interaction with disk or CPU 

simulation tools (for example, vector displacement, physics based animation or simulation) because 

for realistic simulation/modeling often we have to rely on a variety of existing CPU based products 

that could work for minutes or even hours (although giving realistic results). 

 This optimization is critical for systems based on the real-time rendering algorithms. They directly 

feed their result to the neural network on GPU. Even in our case (we use the “offline” GPU path 
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tracing renderer) we gain acceleration from 1.5 to 3 times for considered case because the input 

HDR images have high resolution 8Kx4K (this is normal size for most of existing HDR 

environment assets). And it is simply not possible to load such texture from disk fast enough.  

3.1 Suggested Solution in Details 

We selected the 3ds Max and the Hydra Renderer [Frolov et al, 2018] due to full-fledged content creation 

pipeline, advanced GPU rendering and well-specified XML scene representation which is suitable to work 

with during randomization. The open source Natron software was used as post-processing and compositing 

tool. Post-processing is needed to produce an additional data (for example, 2d bounding boxes) or to combine 

the rendered images with photos in case of augmentation (compositing operations and screen-space effects). 

3.1.1 Material Setup 

Our material editor exploits two observations. Firstly, if we have two materials of the same nature (for 

example, wood) they actually cannot be interchanged in any arbitrary case. Let’s consider a wooden pencil 

and a wooden floor for example. Both of these objects are constructed from wood but they have different 

microstructure of the wood and (most important!) they have different scale of texture matrices for applying of 

texture coordinates. Therefore, applying the same material for floor and pencil would not just look strange 

but is completely wrong. In the best case we will be able to see small copies of, for example, parquet boards 

on the pencil when the camera approaches to it. But most likely we will get just some undefined color 

(especially from far viewpoint). Second observation is the fact that there are many materials that can be 

applied for certain types of objects only. For example, the TV screen or computer monitor image may appear 

on an advertising poster and vice versa, but it cannot appear on a cup or a fork. So, there are a lot of objects 

in the interior scene where it cannot appear and we know such a relationship. 

 

   

Figure 2. Material randomizer GUI. The “Acceptable randomization” tab is responsible for setting up universal  

(or tagged) materials. The “Special” tab is responsible for special (or targeted) materials. The middle part of GUI is 

responsible for distributions for separate material parameters. The right part is preview of object with assigned material 

The artist’s work was separated in two phases: creation of the material database and filling the database of 

objects. During the first phase artist creates final materials and indicates its tags or target. A single material 

is allowed to have several types. It can be combined with other materials or used as a part of some complex 

material model. This is why we prefer the term material tag over material type. And finally, the desired 

distribution parameters are set separately for each final material (see the right part of our GUI on Figure 2). 

The distribution is tested on some simple object (for example, sphere) during the first phase.  

During the second phase artist takes 3D objects (floor, doors, walls, furniture or any other) and assigns 

dummy materials to them indicating material tags or targets. 

3.1.2 Procedural Textures Setup 

As we mentioned before, we heavily use procedural textures in our approach. The main goal of procedural 

textures usage is to provide variety of additional details to the rendered 3d models to produce more realistic 

images.  The rendered objects usually have crisp and clear “idealistic” look. Usually real-life objects do not 
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preserve the pristine condition for long. Various scratches, dirt and dust are almost always present on them. 

So, we implemented several procedural textures, simulating effects such as dirt, rust, scratches etc. (Figure 3) 

to improve the realistic look of our generated objects. It is important to note that in some cases the procedural 

approach is the only possible way. It is so when the input 3D models have not texture coordinates and usage 

of world-position 3D procedural textures is the only available option. 

 

  
 

Figure 3. Examples of applying procedural textures in our pipeline during domain randomization 

3.1.3 Interior Sampling 

Our content creation pipeline for interiors was assembled from different implementations and is  

semi-automatic. We broke up “interior sampling” into three different subtasks: layout generation, furniture 

placement and object placement. For layout generation we have implemented a method based on 

combination of "dense packing" [Koenig and Knecht, 2014] and "inside-out" [Martin, 2006] methods. For 

furniture layout we have selected an artist-controlled approach which was implemented via the 3ds Max 

Scripting. Although existing advanced methods of furniture placement can be applied [Qi et al, 2016; Wang 

et al, 2018], but for us it was important to use a controlled method which in the same time fits in our 

sampling concept. Therefore, we first traverse the edges of the office perimeter and place furniture according 

to 1D pattern. Then an artist draws several binary 2D pattern images to arrange furniture inside the room. We 

assign four input random numbers to frequency and pattern number for 1D and 2D patterns. During sampling 

we randomly selected pattern and frequency.  

Finally, we also used template-based method for object placement on tables and desktops. Performing 

some experiments with physics simulation in the beginning of our projects (analogously to [Hodaň et al, 

2018]) we found that in practice it is difficult to achieve adequate and reproducible result with it: objects 

were piled in a heap, fell under a table or were in impossible configurations (like a book on the keyboard or a 

mouse on the monitor and etc.). We settled on approach when an artist prepares several templates with 

configured bounding boxes and rotation angles for each type of object on the table or on the floor surface: 

monitor, system unit, keyboard and etc. Now the objects can appear only within the allowed 2D bounding 

boxes on the floor or table planes. If a collision is happened, we apply “tabula rasa” method: clearing 

everything and regenerating it again until there are no collisions [Krauth, 2015]. The resulting generated 

content can be seen n rendered images on Figure 4 and Figure 1 (right).  
 

   
      

Figure 4. Examples of our “interior sampling” approach 
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4. VALIDATION 

We have validated our pipeline for road signs detection and segmentation and cars detection problems. For 

interiors, though, our validation is not yet ready. For cars we used KITTI-15 dataset [Geiger et al, 2013] for 

experimental evaluation. It consists of training and test parts. Each contains 200 frames. Since there is no 

labelling for the test set, we manually labelled bounding boxes for it. We used 50 different 3D models of 

cars, procedural texture for dirt and rust modeling, and random HDR environments for lighting. Car positions 

were sampled along the piecewise-linear trajectories that were drawn by artists in 3D (fig. 5, left) for all 200 

images. Road plane was reconstructed based on the fact that all images were obtained with single camera 

parameters. We augmented each image of training set 20 times with 2-5 added random cars in each frame 

(example on fig. 5, right). As a result, we had 4000 frames in augmented training set. We also made 

experiments with random horizontal flips (probability of flipping is 0.5) of input images in order to estimate 

the benefits of our approach over simple methods of increasing training data size. We trained Faster-RCNN 

[Ren et al, 2015] with ResNet-50 FPN backbone on three training sets: (real images, real + flips, augmented).  

We used mAP metric (average areas under curve for different IoU thresholds) for detector quality 

evaluation. Resulting mAPs are shown in table 1. Precision-recall curves for different IoU thresholds are 

shown on Figure 6. We clearly can see that our approach with augmentation of frames with rendered cars 

improves quality of detector. 

  

 

Figure 5. Examples of augmented KITTI-15. Left column: images with marked trajectories for placing cars, right 

column: frames augmented with rendered cars 

Table 1. mAP metric values for our experiments with cars 

Dataset Example 

Real images 38.67 % 

Real + flipped 

Augmented (ours) 

40.30 % 

43.26 % 

 

  

Figure 6. Real (left), real + flipped (middle) and augmented (ours, right) precision-recall curves 
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5. CONCLUSION 

In this work we proposed the content creation pipeline for improving AI training by rendering synthetic 

datasets and augmenting them to real images. Unlike previous works, where the generator for single problem 

or the general-purpose pipeline but out of application (like [Denninger et al, 2019]) was proposed, we tested 

our pipeline in several scenarios, and therefore we can generalize results. Our solution is highly controllable 

and allows generating datasets with desired distribution of features in a reproduceable manner. This is 

achieved by the fact, that an artist, while tuning the distributions parameters and creating content, is guided 

by the requirements of CV researcher, on the one hand, and by the formalized scene sampling process, on the 

other hand. We always get the same rendered scene sampling the same point of input parameters in 

multidimensional space. In practice, this turned out to be one of the critical features for further use in neural 

network training. Because CNN is actually approximate multidimensional distribution, the generator/render 

should also “sample the scene from distribution” and the content creation pipeline should provide ability for 

tuning desired distribution, not just generate some random data.  
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