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ABSTRACT

We describe an algorithm of tracing a backward (from camera) ray in a scene which contains birefrigent (uniaxial)
media.

The physics of scattering of an electromagnetic wave by a boundary between two media is well known and is
a base for ray tracing algorithms; but processing of a backward ray differs from scattering of a “natural” forward
ray. Say, when a backward ray refracts by a boundary, besides the energy transfer coefficient like for a forward
ray one must account for the luminance change due to beam divergence. We calculate this factor and prove
it must be evaluated only for the first and the last media along the ray path while the contributions from the
intermediate media mutually cancel.

In this paper we present a closed numerical method that allows to perform transformation of a backward ray
on a boundary between two media either of which can be birefrigent. We hope it is more convenient and ready
for usage in ray tracing engines that known publications.

Calculation utilizes Helmholtz reciprocity to calculate directions of scattered rays and their polarization (i.e.
Mueller matrices) which is advantageous over a straightforward “reverse” of forward ray transformation.

The algorithm was integrated in the lighting simulation system Lumicept and allowed for an efficient calcu-
lation of images of scenes with crystal elements.

Keywords: Uniaxial crystal, backward ray tracing, polarization, reciprocity.

NOTATIONS

n is the local normal (to a boundary between two media etc).

a is the optical axis; in case the medium is isotropic, any unit vector can be used.

ηo, ηe ordinary and extraordinary refraction index

ρ ≡ ηo/ηe

λ wavelength

ko ordinary wave number (unlike that of an extraordinary wave, it is independent of direction so is used as a
property of the medium).

s is direction of the ray

BRT backward ray tracing, when the ray is emitted from a camera and then traverses scene, gathering luminance
in the hit points; can be deterministic or stochastic (usually Monte-Carlo)
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FRT forward ray tracing, when the ray is emitted from a light source and then traverses scene, bringing
illumination to the hit points; can be deterministic (very exotic, though) or stochastic (usually Monte-
Carlo)

Subscripts “o” and “e” relate to the ordinary and extraordinary waves/rays.

1. INTRODUCTION

A powerful tool in computer graphics or optics simulation is ray tracing which is in fact a variety of rather
different methods. There is a stochastic ray tracing (a Monte-Carlo or Metropolis-based etc) and there is a
deterministic ray tracing. Also there is a backward ray tracing, when a ray emits from the camera, a forward
ray tracing, when it is emitted from a light source. In principle, all the four combinations are possible, though
a deterministic forward ray tracing is too exotic. The rest three are used rather widely; also there are various
combinations of them.

Although in nature the eye does not really emit rays to sense environment, it does not mean that only forward
ray tracing is physically correct. In fact all kinds of ray tracing are only mathematical means to solution of a self-
consistent “global illumination problem”, which are in a sense similar to solution of PDEs or integral equations
with “stochastic trajectories”. One can then find a solution in a single desired space-time point, emitting from
it an ensemble of “trajectories” which go to the past until reach the “initial manifold” where they take (and
“transfer” to the target point) the initial conditions. Or one can start those paths from the initial manifold to
the “future”, and when they reach the target time slice, they contribute to the accumulated averages. And both
approaches are mathematically correct.

More or less the same is true for ray tracing. In the forward ray tracing, when rays are fired from the light
source, they very rarely reach the “virtual eye” (or camera), and thus a “virtual photography” is badly inefficient.
But if one wishes to calculate illuminance of a room walls by collecting all rays that hit it, that works well. The
backward ray tracing, meanwhile, is good just for the virtual imaging. Since all paths “reach” the camera, the
process is highly efficient. Deterministic backward ray tracing provides absolutely noise-free extremely detailed
images.

Surely, the backward ray tracing is not an ideal tool; it has problems “on the opposite end” of the path. If
they are stochastic, they hit small lights badly rarely. If they are deterministic, they do not provide an efficient
convolution with a diffuse BDF.

Therefore, usually clean high-definition noise free images are calculated with a hybrid technique. First a
stochastic forward ray tracing is performed which provides secondary illumination of the diffuse surfaces. Usually
it is rather smooth and admits some kind of filtering which eliminates most of the noise. Then the backward pass
is performed; now the rays are fired from the camera until they hit a diffuse surface (for the first time); there
they take its luminance for both direct and indirect (secondary) illumination and “transfer” it to the camera
image.

Before that first diffuse surface the camera ray may, however, face specular surfaces, e.g. window glasses,
water surface etc. It is therefore necessary to simulate how a backward ray interacts with specular surface: how
its direction changes and how the diffuse surface luminance changes when observed through a specular surface.

For isotropic media, such as glass, air, water etc. and in absence of polarization the solution is quite simple
and more or less intuitively obvious. If polarization of light is taken into account, the more so in presence of
anisotropic media, it sophisticates. One must realize that a backward ray must be treated differently than a
forward one, because it is not simple a reversed direction but a different object. Suffice to say that for a forward
ray we know its polarization parameters (Stokes vector) after emission; but a backward ray emitted from camera
may not have it!

Such specular surface may also include anisotropic media e.g. uniaxial crystals. Such are gems, and here
the “virtual imaging” is widely used for the, first, estimation of the raw stones, i.e. “looking inside” of them to
detect inner defects and find the optimal cutting directions.12 Second, to find the best-looking faceting for the
given environment. Third, just for virtual presentation of the gems.6
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Figure 1. Backward deterministic ray tracing through specular surfaces. Shown are two glass plates and 4 first scattering
order in them.

Besides these nice-looking expensive gems, there are also liquid crystals and polarization filters. The modern
luminaires for e.g. flat display are sometimes sensitive to some subtle polarization effects, either utilizing them
or suffering from them.14

In this paper we describe the algorithms used for calculation of interaction of a backward ray with a boundary
between two media, one or both of which can be birefrigent. Although the physics4,5, 7 they are based upon is
known for a long while, it can result in different numerical methods, which differ in both efficiency and so to say
“readability”. We make stress on the specifics of the backward ray and the possibility to “re-use” or extend the
methods for forward rays. At last we attempted to provide a method that requires as little changes as possible
for the extension the existing ray tracing simulator Lumicept as easily as possible. All what we needed was, first,
replacement of the scalar ray color with a Mueller matrix for the backward ray and Stokes vector for the forward
ray, and, second, some new mathematics under the same interface for birefrigent media.

The forward ray tracing method are used in the form described in Ref. 2,3; this approach is most similar to
Ref. 13 and Ref. 11, differing from8,9 in that no iterative calculations are used. Unlike Ref. 13, we include light
incidence from anisotropic material thus being close to Ref. 11, but still operate Stokes formalism. As to the
backward ray tracing, we are close to Ref. 11, but differ in the treatment of the “luminance correction factors”
(change of a beam luminance after transmitting a specular surface), and also the algorithm details.

2. COMMON BACKWARD DETERMINISTIC RAY TRACING

Some scene surfaces can be seen (by camera) not directly, but only “through” specular surfaces. The simplest
example is window glass, but also it can be a mirror, a prism, or even a lens. In these cases the camera ray has
a specular path.

Most of specular surfaces can both reflect and refract ray. In case of probabilistic ray tracing, we always
choose one event, but this is impossible for a deterministic ray tracing which must explore all possible ray paths
one by one. In the simplest case of e.g. a glass surface there are two such transformed rays: one reflected and
one transmitted. But if there is a dispersion, there are several refracted rays (one per wavelength channel).

The observed luminance in this case is a sum of luminance seen along these transformed rays; e.g. when we
look from inside a room through a window glass, we see a sum of reflection of the room interior and transmission
of the outdoor scene.

The specularly transformed ray (e.g. transmitted through window glass) may then hit another specular
surface (e.g. the next window glass sheet), and “split” there further, as shown in Figure 1.

The usual technique of calculation of the luminance observed through this “tree of rays” is recursion. We
start from the “tree root” i.e. the camera, and calculate luminance as a sum over all specular paths in the first
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specular hit point. The luminance for that paths is in turn calculated as a sum over the ray they split in in the
next hit point, and so on.

That is, in each hit point we call the recursive function like explained in Algorithm 1.

Algorithm 1 Simplified pseudocode of calculation of luminance in the hit point

Color3d CalcRayLum( const Ray3d &ray )
{

h i t = TraceToSurface ( ray ) ;
Color3d lum = h i t . bdf ∗ i l l u m i n a t i o n ;
i f ( h i t i s sp e cu l a r )
{

TArray<Ray3d> newray ;
TArray<Mueller> newmueller ;
CalcOutRays ( ray , newray , newmueller ) ;
for ( i = 0 ; . . . )

lum += muel l e r [ i ] ∗ CalcRayLum( newray [ i ] ) ;
}
return lum ;

}

This algorithm originated when there were no polarization and specular surfaces were either ideal mirrors or
Fresnel boundaries of isotropic dielectrics. What, if any, must be changed when there is polarization and also
anisotropic refraction?

3. BACKWARD RAY TRACING IN PRESENCE OF ANISOTROPIC MEDIA (AND
POLARIZATION)

3.1 Transformation of backward ray

Let us begin with directions of rays and then come to their “amplitudes”.

The usual approach in physics is that we consider a wave incident onto the surface and calculate directions
and fields in the outgoing waves. In case of anisotropic refraction index, even their directions can depend on
the direction of field in the incident wave.4,7 Obviously, there is no field in a backward ray (suffice it to imagine
which field it has just after emission from camera?!).

Therefore, while the transformation of a forward wave (or ray) is calculated straightforwardly from the basic
physics, it can not be so for a backward ray. For the latter we must solve another problem: find such a forward
ray that the refracted ray for it coincides with the (negated) backward ray. This would give us direction of the
“refracted camera ray” (although one must realize it is merely a metaphor). The same is done for reflection.

For isotropic dielectrics, i.e. the Snell law, finding “direction that refracts into the camera ray” is very simple:
the inverse Snell law is just the same function just for reversed refraction index. The (mirror) reflection direction
is even simpler.

For a boundary between two anisotropic media the situation is rather similar. In that medium the
forward ray (we search for) can be either ordinary, or extraordinary, or a mixture of both (when it is a sum of
an ordinary and extraordinary waves with the same ray direction). Generally, the ordinary and extraordinary
components refract (or reflect) into different directions, one for an ordinary and one for an extraordinary ray, so
only one of them can match the backward ray, see Appendix A.

There are therefore 2× 2 = 4 combinations, as shown in Table 1:

where, say, “o→ e” means that the forward ray is ordinary and the camera ray direction is matched by the
extraordinary ray. The direction of the backward ray can thus be matched by four forward directions.
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rays from real "e"

41Ik

imaginary "o"
parallel to real "e"

rays from "o"
parallel to real "e"

Table 1. Possible combinations of polarization states for the initial and transformed forward ray.

o→ o e→ o
o→ e e→ e

Figure 2. Reduction of ray splitting when camera is in air; two birefrigent media are shaded grey. Left: camera inside
birefrigent medium; its ray initially does not have polarization type (=both) and thus refracts into four rays. Right:
camera is in air; after entering a birefrigent medium its ray has a definite polarization type. So it refracts into two rays;
two rays from another polarization type parallel to the camera ray are discarded because if traced back they would not
return to camera.

A mixture forward ray splits into 4 generally different directions after refraction, so only one of them matches
the backward ray. We then have the same four combinations as listed in Table 1, i.e. again there are the same
four possible direction of the forward ray.

Notice that anyway the forward ray splits into several refracted rays, only one of which matches the backward
ray direction. That is, when the found “real” i.e. forward ray hits the boundary, it splits into several ones of
which all but one do not go towards camera. Therefore they are not used in this calculation (i.e. in this hit
point).

We conclude that on a boundary between two anisotropic media there are 8 (four refracted and four reflected)
forward rays that scatter into the (reversed) backward ray direction. The “ray tree” therefore grows very quickly
as compared to the isotropic case, when the backward ray splits into only two. With just 3 crystal plates i.e.
6 boundaries we would need to explore 86 = 262144 paths for each camera ray i.e. each pixel. This is very
expensive, but happily this number can be usually much reduced.

Indeed, usually the camera in an isotropic medium (air or alike), see Figure 2(right). Then camera ray hits a
crystal boundary for the first time in the point A, and here we have only 2 (not 4) forward ray (from the crystal)
which would refract into it. This is because in air the variants “o → o” and “o → e ” , “e → e” and “e → o”
coincide. According to Algorithm 1, we explore both starting e.g. with the “ordinary” forward ray. We trace
it to the next boundary i.e. point B, and there we would apply the splitting procedure which yields 4 forward
rays that would refract into the it (and 4 which would reflect). But of these 4 variants two are such that the
forward ray after refraction becomes extraordinary. They have proper direction, but after reaching the point A
they would refract into direction different from camera ray, see Figure 2(right):

Therefore, in the point B we must retain only two (of 4) forward ray directions: those which refract into the
ray whose polarization type (ordinary or extraordinary) matches that of the backward ray. The same is true for
reflection; so the backward ray actually splits then into “only” four, not eight, “predecessors” and the ray tree
grows slower.

Should we follow Algorithm 1 formally, we would have 4 refracted rays but their Mueller matrices, when
multiplied by current one, give 0 (because of the wrong polarization state). So this is merely an optimization,
not a principal change of the method.
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Similarly, if a (camera) ray goes from an anisotropic medium into an isotropic one, there are twice less
refracted rays. If we know polarization state of the initial ray, there is a single refracted ray (in the isotropic
medium). If polarization state of the initial ray is unknown (or is a mixture), then there are two refracted rays.

3.2 Transfer factors

These are the values the ray energy (or its “polarized” form = Stokes vector) “before” the surface must be
multiplied by to get the one beyond it. In the depolarized isotropic case this is the simple scalar of reflection or
refraction coefficient. In a polarized case it becomes a Mueller matrix.

These factors are calculated from the Fresnel coefficients, which in turn are the amplitudes of the field in the
reflection (or refraction) of the forward wave with unit field.3 So, formally, we should need to compute them
for the “forward problem” for the four transformed rays and the calculation becomes fourfold longer than in
the forward ray tracing. Naturally, we retain only the coefficients which relate to the refraction (or reflection)
directions that match the backward ray; the rest are discarded (the same process as with the ray directions).

Happily, this “brute force” approach is not needed and we can reduce calculations amount utilizing Helmholtz
reciprocity.10 This is like when calculating directions of the transformed backward ray where we apply the forward
ray transform law to the backward ray direction.

Here we also calculate the transfer factors, i.e. the four Mueller matrices, using the forward formulae.3 Unlike
the depolarized case, here the transfer factors for the backward ray are not just the same; they relate as

M
(B)
i,j = M

(F )
j,i × ξiξj (1)

ξk ≡
{

1, k 6= 3
−1, k = 3

(we number Stokes vector components 0 thru 3). That is, the matrix is transposed and then some its elements
are negated. This relation originated from another light scattering problem1 but apparently it also is valid for
a Fresnel boundary. One must be anyway cautious with reciprocity in polarized case: it is not trivial, not even
not all cases were proven, see e.g. a comprehensive study in.10

Therefore, we actually can calculate all the four transfer factors at once, applying the forward law to the
(reversed) backward ray.

The Algorithm 1 just follows this way and it calculates them together with the ray directions. Meanwhile,
they can be separated, i.e. we can calculate the ray directions first and transfer factors after that (with no
overhead). Which is more advantageous?

3.2.1 Transfer coefficients before tracing

Here we utilize reciprocity and thus calculate transfer factors for all the four reflected and refracted rays at once.

3.2.2 Transfer coefficients after tracing

Here we trace the transformed rays and get their luminance and only after that calculate transfer factors for
those directions which did bring luminance. Indeed, some rays may be absorbed or go away, so actually we do
not need transfer factor for them.

The benefit is therefore achieved if we calculate transfer factors for some of the transformed (forward) rays
only. This is really possible; but one can calculate the Fresnel coefficients only for all the rays this forward ray
refracts and reflects into. In our case there are 4 of them, while only one of them (which corresponds to the
backward ray direction) is used.

So if only one of the transformed rays brings luminance (the rest being “lost”), we calculate four transfer
factors. This, however, is exactly the same amount of calculations as when we use reciprocity and get all the
four transfer coefficients before tracing the rays. If two transformed rays bring luminance, we calculate transfer
factors for both of them, and this is already twice more expensive than in the previous method with reciprocity.

Therefore, it is advantageous to calculate the Mueller matrices for the four outgoing rays before tracing them
through the scene. We can combine it with calculation of the directions of rays in one call (of a routine for the
forward ray transform!), as shown in Algorithm 1.
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3.3 Selection of outgoing rays using Mueller matrices

As said above, frequently (it is always when the camera is in air) the backward ray transforms into four, not
eight rays. This is because we need only those of them which reflect (or refract) into a ray with polarization type
matching that of the backward ray. In other words, when calculating transform of the backward ray we take one
row of the Table 1.

To do so we need to know polarization type of the ray (ordinary, extraordinary or mixed — in the latter case
both rows are processed). In principle the ray data structure may hold this flag, but happily even that is not
needed and the ray data used in isotropic case is enough.

This latter contains the Mueller matrix (instead of the scalar “ray color” for depolarized case), and it is
enough. Our main recursive function from Algorithm 2 then receives it as an argument:

Algorithm 2 Simplified pseudocode of calculation of luminance in the hit point

Color3d CalcRayLum( const Ray3d &ray , const Muel ler &muel l e r )
{

h i t = TraceToSurface ( ray ) ;
Color3d lum = h i t . bdf ∗ i l l u m i n a t i o n ;
i f ( h i t i s sp e cu l a r )
{

TArray<Ray3d> newray ;
TArray<Mueller> newmueller ;
CalcOutRays ( ray , muel ler , newray , newmueller ) ;
for ( i = 0 ; . . . )

lum += muel l e r [ i ] ∗ CalcRayLum( newray [ i ] , newmueller [ i ] ) ;
}
return lum ;

}

The method CalcOutRays() now knows the Mueller matrix of the initial ray, and it retains only those
transformed rays whose polarization state is not “killed” by that matrix. To do so, we first check the action of
that Mueller matrix on the polarization state for the ordinary ray (in the medium the ray comes from!), then on
that for the extraordinary one. If the first result is not 0, the backward ray contained the ordinary component;
if the second is not 0, it contained the extraordinary component; and if both are not 0, it contains a mixture
of both components. Correspondingly, when calculating ray directions we then explore the top, bottom or both
rows of the Table 1, respectively.

4. LUMINANCE THROUGH A SPECULAR BOUNDARY

The Algorithm 1 (or 2) works correctly in case camera and luminance source (diffuse surfaces, SEO etc) are in
the same media. That is, the ends of ray trajectory must be in the media with the same refraction indices.

In case refraction in the ray ends is different, the luminance calculated with this method would wrong. This
effect is well known even for a depolarized isotropic case: the luminance (or radiance) if observed from a Fresnel
boundary scales by squared refraction index times. This is because a light beam changes its angular divergence
d2ω when going through a refractive boundary.

So, in depolarized isotropic case the ray luminance calculated in Algorithm 2 must have been scaled by the
squared relative refraction index. If the ray starts in medium 0 and then enters medium 1, then medium 2, ...,
and eventually takes the diffuse surface luminance when in medium N , then at the i-th boundary the luminance
must have been multiplied by (ηi/ηi+1)2 where ηi is refraction index of the i-th medium. For the full ray path
this totals to
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(
η0
η1

)2(
η1
η2

)2

× · · · ×
(
ηN−1
ηN

)2

=

(
η0
ηN

)2

Therefore, only the first and the last refraction index are included, the intermediate ones mutually cancel. In
deterministic backward ray tracing one thus can apply the own (ηi/ηi+1)2 factor for each refraction event, or use
the ratio of the first and the last only. Usually the last way is used.

Mirror reflection by a Fresnel boundary between two isotropic media does not include any luminance scale
(i.e. this factor equals 1).

This easily extends to an anisotropic media.

Let a beam with luminance Lin and direction dsin and divergence d2sin goes from a medium with refraction
(ηo,in, ηe,in) into that with refraction (ηo,out, ηe,out) where it has direction sout. The power flow incident on the
surface the incident beam is

dPin = Lin |(sin · n)| d2sin
The power flow which goes away the surface in the transmitted beam is similarly

dPout = Lout |(sout · n)| d2sout
The “transfer coefficient”t is just the fraction of the transmitted energy, so

dPout = tdPin

Combining, we have

Lout = t
|(sin · n)|
|(sout · n)|

d2sin
d2sout

× Lin

That is, the luminance (or radiance) transfer coefficient is

T = t
|(sin · n)|
|(sout · n)|

/

∣∣∣∣∂(sout)

∂(sin)

∣∣∣∣
where

∣∣∣∂(sout)∂(sin)

∣∣∣ is the Jacobian of the ray direction transform sin 7→ sout. Notice here the “in” and “out” relate

to the forward beam direction (i.e. from light to camera).

The “polarized luminance” is just the usual depolarized (scalar) luminance times normalized Stokes vector
of the beam and the “energy transfer coefficient” t is a Mueller matrix. From the above definition we see that
the “luminance correction factor” is scalar:

|(sin · n)|
|(sout · n)|

/

∣∣∣∣∂(sout)

∂(sin)

∣∣∣∣
Substituting (8) for

∣∣∣∂(sout)∂(sin)

∣∣∣ we see that the luminance correction factor for a single boundary is

(
ηo;out
ηo;in

)2(
1 + (ρ2in − 1)(sin · ain)2

1 + (ρ2out − 1)(sout · aout)2

)2

which covers all polarization state combinations if for an ordinary ray ρ := 1.

This value has the same remarkable property as in the isotropic case: this factor depends only on the
properties of the medium (refraction and optical axis), not on the geometry of ray hit, i.e. not on the normal.
Therefore for the whole camera ray path (from medium 0 to medium N) the product of these factors:
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Crystal (BaB2O4) plate

Crystal (ZrSiO4) pla

Crystal (Ti02) plate
Crystal (CaCO3) plate

100mm

280mm

Parallel light source

Optical axis of plate

Diffusely transparent substrate with
materials names

Ba B2O4

ZrSiO4

LTIOJ

Ca CO3

600mm

E
E00

Figure 3. Example scene of four crystal plates laid on a paper sheet.

Table 2. Materials of the crystal plates.

Plate name Ordinary refraction Extraordinary refraction
BaB2O4 1.6776 1.5534

TiO2 2.616 2.903
CaCO3 1.96 2.015
ZrSiO4 1.658 1.486

N∏
i=0

(
ηo;i
ηo;i+1

)2(1 + (ρ2i+1 − 1)(si+1 · ai+1)2

1 + (ρ2i − 1)(si · ai)2

)2

=

(
ηo;0
ηo;N

)2(
1 + (ρ2N − 1)(sN · aN )2

1 + (ρ20 − 1)(s0 · a0)2

)2

the intermediate terms mutually cancel and only those for the first (camera’s) and the last (light’s) media remain.

5. SIMULATION EXAMPLE AND RESULTS

Both benchmarks below were calculated with deterministic backward ray tracing using Lumicept simulator,
extended with the support of birefrigent media.

The first scene imitates a well-known demonstration of “image doubling” when looking through a crystal
plate. There are four crystal plates of various substances laid on a textured paper sheet with the names of
the substances printed beneath each plate, illuminated from below. All plates have size 280x200x100 mm and
optical axis orthogonal to the paper sheet they lay upon. Geometry of the scene is shown in Figure 3 and
refraction indices are presented in Table 2. Camera is in the point (−722.7821, −2390.363, 2815.808) mm, the
view direction (for the image centre) being (0.18914, 0.63457, −0.74936).

The simulated image is shown in Figure 4:

The second test scene reproduces the one used as benchmark in Ref. 11. It consists of an ir-
regular hexahedron plate laid on a paper sheet with a chess-board-like texture, as shown in Figure 5.
The plate’s ordinary refraction index is 1.7 and the extraordinary one is 1.85. The optical axis is
(−0.15213, 0.37939,−0.91264) in the coordinate system of Figure 5. Coordinates of its vertices are listed in
Table 3. Camera is in the point (57.187, 67.23533, 321.254) mm, the view direction (for the image centre) being
(−0.074335, −0.088964, −0.99326).

The simulated image is shown in Figure 6.
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Figure 4. Simulated camera image of the scene from Figure 3.

Table 3. Coordinates of the plate vertices.

Vertex x y z
1 57.32966 18.31204 0
2 63.71413 46.35459 0
3 23.622 53.04367 0
4 14.82445 25.12837 0
5 47.94061 27.4328 16.91231
6 54.34407 55.74911 16.97624
7 14.22843 61.34301 14.59365
8 5.493791 33.10582 14.39393
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Top view

hexahedron

Front view

ILx 11111
Parallel light source

Chess -board like substrate
with diffusively transparent

properties

Vector of optical axis = (- 0.15213, 0.37939, -0.91264)

Figure 5. Example scene of a crystal prism laid on a paper sheet with chessboard-like texture.
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Figure 6. Simulated camera image of the scene from Figure 5.

APPENDIX A. FORWARD RAY THAT WOULD TRANSFORM INTO THE GIVEN
BACKWARD

In terms of physics (or the forward ray tracing) we are now given the outgoing ray direction and must find that
of the incident wave. If polarization type of that outgoing ray is known, we do calculations for it only ; otherwise
they are repeated for both types, see Figure 2.

The calculation is much similar to that for a forward ray tracing and it is based on the very basic law: the
tangent component of wave vector is the same for sin and sout.

In both FRT and BRT the calculation scheme is the same:

1. Calculate the tangent wave vector kτ from the “incident” (known) ray. In FRT this is the forward ray
from light source. In BRT this is the backward ray from camera. The result depends on the polarization
state of the “incident” ray.

2. Calculate the full wave vector of the “outgoing” (sought-for; unknown) ray. In FRT it is the ray from the
surface towards camera; in BRT it is the ray from the surface towards light source. Its tangent component
equals kτ found above, so we only calculate its normal component. The result depends on the polarization
state of the “outgoing” ray; if it is unknown in advance, we just do for all possible types.

3. From the wave vector (of the outgoing ray), found above, calculate direction of ray.

The mathematical method used was originally designed for the forward ray tracing,3 but its first step, quite
trivial in FRT, makes more sense for BRT. This is because BRT has luminance correction factor, absent in FRT,
and we calculate these factors just from the properties of “the ray to tangent wave vector” transform. So we
shall explain it here.
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A.1 Tangent wave vector from ray direction

This transformation is quite simple, but since it is done frequently here and there in simulation, one needs a
simple and efficient form of it. Also we shall use the exact form of this transformation to calculate Jacobian
later, see Appendix B.1.

For the ordinary case when the ray and wave vectors are parallel,

kτ = (s− (s · n)n) ko

For the extraordinary case, the calculation is a bit more complicated. From the well-known “wave ellipsoid”7

(1− ρ2)(ke · a)2 + ρ2(ke · ke) = k2o , (2)

it follows that the wave number is

ke =
ko√

(1− ρ2)(κ · a)2 + ρ2

where

κ ≡ ke/ |ke|

is the unit (normalized) vector of wave direction. Also, the tangent component of the wave vector can be written
as

kτ = (κ− (κ · n)n)ke =
(κ− (κ · n)n)ko√

(1− ρ2)(κ · a)2 + ρ2
(3)

On the other hand, the ray-wave transformation (see Eq. (4) from Ref. 2, 3) gives for the normalized wave
vector:

κ =
s+ (ρ2 − 1)(a · s)a
|s+ (ρ2 − 1)(a · s)a|

=
s+ (ρ2 − 1)(a · s)a√

1 + (ρ4 − 1)(a · s)2

and substituting it into the above Eq. (3) yields

kτ =
ko
ρ

√
1 + (ρ4 − 1)(a · s)2
1 + (ρ2 − 1)(a · s)2

(κ− (κ · n)n)

=
ko
ρ

s− (s · n)n+ (ρ − )(a · s)(a− (a · n)n)√
+ (ρ − )(a · s)

(4)

Notice this also covers the ordinary case if assume ρ = 1 for an ordinary ray.
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A.2 Full wave vector from its tangent component

While the tangent wave vector component was found from the known, “incident” ray, the normal component is
to be calculated. This depends on the “desired” polarization state of the scattered wave.

If the “scattered” ray is ordinary, this is trivial since the ordinary wave number is fixed:

kn = ±
√
k2o − |kτ |2

The sign is determined by the boundary side the ray goes to (notice that for the ordinary ray directions of the
wave and the ray vector coincide), i.e. whether it is refraction or transmission.

If the “scattered” ray is extraordinary, the wave vector obeys Eq. (2), and substituting in in the already
known tangent component we have the same quadratic equation as in FRT3

((1− ρ2)(n · a)2 + ρ2)k2n + 2(1− ρ2)(kτ · a)(n · a)kn = k2o − ρ2(kτ · kτ )− (1− ρ2)(kτ · a)2

This quadratic equation has two roots

kn =
(ρ2 − 1)(a · n)(a · kτ )±

√
ρ2(k2o − |kτ |2)− (ρ2 − 1)(k2o(a · n)2 + ρ2(|kτ |2(1− (a · n)2)− (a · kτ )2)

ρ2 − (ρ2 − 1)(a · n)2
(5)

and we select the one whose ray goes away from the boundary — again like in FRT, see Eq. (9) of Ref. 2,3 i.e.
“+” is for reflection and “–” is for refraction.

Notice this also covers the ordinary case if assume ρ = 1 for an ordinary ray.

The ray vector is given by Eq. (8) of Ref. 2, 3:

s =
k + (ρ−2 − 1)(a · k)a

|k + (ρ−2 − 1)(a · k)a|
;

substituting in it k = kτ + nkn with kn from Eq. (5) one has

s =
kτ + (ρ−2 − 1)(a · kτ )a+ kn(n+ (ρ−2 − 1)(a · n)a)

|kτ + (ρ−2 − 1)(a · kτ )a+ kn(n+ (ρ−2 − 1)(a · n)a)|
(6)

Again, this also covers the ordinary case if assume ρ = 1 for an ordinary ray.

APPENDIX B. JACOBIAN OF RAY DIRECTION TRANSFORMATION

This transformation is the composition of the transformation (4) with transformation (5)+(6). Instead of the
straightforward calculation of the Jacobian, we shall proceed from the obvious fact that the second transform is
just the inverse of the first one, just with another parameters of the medium.

In other words, we note that the tangent wave vector for both the “incident” and “outgoing” rays is the
same. That is, if we write (4) as

kτ = Fn;a;η(s) (7)

(where particular form of F depends on the polarization type) then

Fnout;aout;ηout(sout) = kτ = Fnin;ain;ηin(sin)

and therefore ∣∣∣∣∂(Fnout;aout;ηout(s))

∂s

∣∣∣∣ d2sout = d2kτ =

∣∣∣∣∂(Fnin;ain;ηin(s))

∂s

∣∣∣∣ d2sin
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from what it follows that

d2sout =

∣∣∣∂(Fnin;ain;ηin
(s))

∂s

∣∣∣∣∣∣∂(Fnout;aout;ηout (s))∂s

∣∣∣d2sin
which is nothing but “derivative of an implicit function”.

Jacobian of the transformation of the ray into the tangent wave vector is derived in Appendix B.1. It can
be written in the form (14) for any polarization state, if assume ρ = 1 for an ordinary ray. Substituting that for
here we eventually arrive at

d2sout =

(
ηo;out
ηo;in

)2(
1 + (ρ2in − 1)(sin · ain)2

1 + (ρ2out − 1)(sout · aout)2

)2 |(sout · n)|
|(sin · n)|

d2sin (8)

B.1 Jacobian of the ray to the tangent wave vector transform (7)

B.1.1 The ordinary polarization state

Now the ray and wave vectors are parallel, so

kτ = (s− (s · n)n) ko

and the differential area d2kτ/ko is just the projection of the differential area on the unit sphere:

d2kτ = k2o |(s · n)|d2s (9)

B.1.2 The extraordinary polarization state

Differentiating (4) gives

dkτ =
ko
ρ

ds− (ds · n)n+ (ρ2 − 1)(a · ds)aτ√
A

− ko
ρ

sτ + (ρ2 − 1)(a · s)aτ
A3/2

(ρ2 − 1)(a · s)(a · ds) (10)

where

sτ ≡ s− (s · n)n

aτ ≡ a− (a · n)n

are the tangent components, and

A ≡ 1 + (ρ2 − 1)(a · s)2

Since a variation of a unit vector is orthogonal to that vector, ds is an effectively 2D and so can be written
as a sum

ds = δ1n
′ + δ2a

′

of two vectors orthogonal to s:

a′ ≡ a− (s · a)s

n′ ≡ n− (s · n)s
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Substituting this into (10) one obtains after some simple transformations that

dkτ =

ko
ρ

A3/2
((α1δ1 + α2δ2)aτ − (β1δ1 + β2δ2)sτ ) (11)

where

α1 = (ρ2 − 1) ((a · n)− (a · s)(s · n))

α2 = ρ2

β1 = (s · n) + (ρ2 − 1)(a · s)(a · n) (12)

β2 = ρ2(a · s)

For the effectively 2D vector ds the area element d2s is the area of a parallelogram spanned by two different
variations ds and ds′:

d2s =
√
|ds|2|ds′|2 − (ds · ds′)2

Correspondingly, d2kτ is the area of a parallelogram spanned by the responses to these two ds and ds′, respec-
tively, i.e

d2kτ =
√
|dkτ |2|dk′τ |2 − (dkτ · dk′τ )2

We can choose any not parallel ds and ds′ because all this is merely a means to calculate the determinant of
the linear operator (10), e.g.

ds = δ1n
′

ds′ = δ2a
′

For them, the parallelogram area is

d2s = |δ1δ2|
√

1− (s · a)2 − (s · n)2 + (a · n)2 + 2(s · a)(a · n)(s · n) (13)

Then, according to (11) the responses to these ds and ds′ are

dkτ =

ko
ρ

A3/2
δ1(α1aτ − β1sτ )

dk′τ =

ko
ρ

A3/2
δ2(α2aτ − β2sτ )

and for them the parallelogram area is

d2kτ =

(
ko
ρ

A3/2

)2

|δ1δ2||α1β2 − α2β1|
√

1− (s · n)2 − (a · n)2 − (s · a)2 + 2(a · n)(s · n)(s · a)

Combining with Eq. (13) we obtain
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d2kτ =

(
ko
ρ

A3/2

)2

|α1β2 − α2β1|d2s

which substituting Eq. (12) yields

d2kτ =

(
ko

1 + (ρ2 − 1)(a · s)2

)2

|(s · n)| d2s (14)

Notice this also covers the ordinary case (Eq. (9)) if assume ρ = 1 for an ordinary ray.
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