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Monte Carlo Path Tracing is a core light transport technique which is used for modern methods (like
BDPT, MLT, VCM and others). One of the main challenge of efficient GPU Path Tracing implementation
is inefficient workload caused by paths of different lengths; few threads process the long paths, while other

threads are idle. A work distribution technique called “Path Regeneration” is commonly used to solve

this problem. We introduce a novel GPU implementation of path regeneration technique called “in place

block based path regeneration”. In comparison to previous approaches our algorithm possesses two main

advantages: it has lower self-cost and it does not move any per-ray data along threads in memory, thus,

our algorithm can be easily integrated to any advanced path tracing technique (like BDPT, MLT and

other) or photon mapping. We tested our solution with path tracing using both CUDA and OpenCL.

1. Introduction

Path tracing (PT) generates Monte Carlo
samples by simulating light transport via random
path walk in the scene. A path starts with a
primary ray at camera, traces in to the scene,
randomly reflects several times and finishes at
light, some Lambertian surface or an environment.
The other light transport methods start a path at
the light (Light Tracing, Photon Mapping) or both
at the eye and light (IBPT [2], BDPT [3], MMLT
[4]). Due to the stochastic nature of all modern
light transport algorithms, an effective GPU
implementation with high trace depth becomes a
challenge: deep reflection levels have only several
active paths while GPU has to execute mostly all
of them.

Due to SIMD nature even inactive threads
(i.e. terminated paths) have to be executed, as
long as there is at least one active thread in
their warp. Moreover, a completely dead warp
could still waste multiprocessor resources reading
“inactive” flag from intermediate data in DRAM
(see “multiple-kernel” further) or due to inefficient
work distribution implementation in driver when
the whole block is still occupies multiprocessor
resources until all of its warps become inactive

(one possible solution refers to “persistent threads”
[1]). This technique, however, became complecated
when shared memory is used (compaction, per
warp russian roulette, effective append of photons
in DRAM and other).

Single and multiple kernel There are two
main software architectures for GPU path tracing

implementation. They are “single kernel” and
“multiple kernel”. The naive “single kernel”
implementation generally holds the whole

algorithm in a single large kernel, essentially
the same as a standard CPU path tracer
implementation. Such implementation is inefficient
due to the limited number of registers on GPUs
and register spilling via local memory [5]. The
“Uber-kernel” is modification of naive “single
kernel” implementation that saves GPU registers
converting traditional CPU-based code to a state-
machine where huge and complex code splits to
some simpler parts — each part per one state.
NVIDIA OptiX [6] uses this way. The multiple-
kernel moves these parts to different kernels,
which leads to more efficient register usage and
significant performance gain for critical code such
as BVH traversal [5]. However, “multiple-kernel”
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implementation has to store explicitly intermediate
per-ray data (position, direction, hit normal,
material reference, some flags etc.) to DRAM.
Despite very simple scenes, it does not affect the
performance but can significantly limit flexibility
of light transport algorithm implementation. For
example, simulating recursion via stack is easy
in “single kernel” implementation but is very
difficult in “multiple kernel”. Since in “multiple
kernel” implementation per-ray data addresses are
usually strictly bound to thread index, the other
good examples where “multiple kernel” complicate
things are rays compaction, rays sorting, path
regeneration. During our research, we additionally
found out that OpenCL kernel compiler on some
devices (HD 5770, Intel and AMD CPUs) failed
to compile huge single-kernel path tracing or
even multiple-kernel path tracing with complex
materials. Thus, “multiple-kernel” path tracing is
the natural way of splitting code complexity to
prevent “fresh” OpenCL compilers from unexpected
faults.

Regeneration overhead Thus, both single and
multiple-kernel PT have their advantages and
disadvantages. Wanting to have a stable multi-
platform implementation, we prefer “multiple-
kernel” approach rather than a “single kernel”.
Then we found that with “multiple-kernel”
PT implementation existing path regeneration
approaches were not stable in the sense of
performance gain: while several heavy and complex
scenes benefit from path regeneration, the majority
of them are not. The reason was that the PT
regeneration wins less performance for tracing
rays than its self-cost. In some cases (fig. 3,4)
total performance went down. Thus, the primary
motivation for our research was to propose lite-
weight path regeneration algorithm we can use
without fear for degrading performance. The second
motivation was flexibility and simplicity. Having
big plans for advanced Monte Carlo techniques we
would like to have simple and flexible PT core. The
existing path regeneration approaches lack of these
properties.

2. Related work

Path regeneration Novak et al. [7] introduce
path regeneration technique restarting the
terminated paths and tracing additional ones.
The newly generated paths for same thread come
always from the same pixel when anti-aliasing or
DOF enabled. Major disadvantage of this approach
is branch divergence growth: regenerated rays
(which may be coherent for several bounces) mixed
with incoherent rays in the same warp. This leads
to significant performance penalty (2.x-3.x) for
coherent rays and eliminates performance gain of
regeneration.

The Streaming PT regeneration approach [§]
uses compaction to move all active threads in
the beginning and fills inactive threads with new
rays/paths. The coherent primary rays of the
new paths in this approach assigned to threads
that executed together. However, this approach
has other disadvantages. They are self-cost and
complexity:

1. While the self-cost of regeneration approach
from [7] is near zero, compaction from [8] could
simply eat 10-20% of ray tracing performance.
Thus, the typical regeneration gain of 20-30% is
suppressed by algorithm self-cost. This is mostly
because of the forced necessity to move per-ray
local data in memory or to use indices. When
“multiple-kernel” PT implementation considered,
each per-ray data (like ray position, path color,
path throughput and etc.) location is bound to
thread index. For example, we can read path color
in analogue to (a). The compaction changes actual
thread index for active paths, so data must be
moved or indices should be used like (b). Beside
additional indirection level indices in this way
break memory coalescing.

(a) color = in__color[threadld];
(b) color = in__color|original _threadlId[threadld]];

2. An attempt to use indices for only several
attributes (many of per ray data live only one
bounce) forces us to remember which data are
affected and which are not. Each time we read
attribute we must recall what to use: (a) or (b).

3. More complex light transport algorithms (like
BDPT/VCM or MLT) make compaction even
trickier and slower. The necessity of storing per-
path vertex data replaces simple indices with lists
(because single path may change its thread index
several times) and makes “moving alternative”
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more expensive due to larger per-ray data.

To address issue of inefficient global loads and
stores when path regeneration used with “multiple
kernel” Davidovic et al. “single-kernel”
path tracing [9]. We discussed “single kernel”
disadvantages earlier. Moreover, implementation
from [9] has approximately the same performance
as [8].

Wald [10] concluded that terminated threads
in a warp incur no major performance penalties
due to the remaining threads executed faster.
According to [10] “certain limitations of today’s
hardware lead to of overhead that
significantly affect the final outcome, eventually
leading to disappointingly small speed-ups of
only 12-16% for even the best performing of
our kernels”. This slightly differs from [7, 8, 9]
results, but it is consistent with our experiments
— existing approaches do have too much overhead.
We should notice that there could be at least two
reasons for low path regeneration efficiency in [10];
they are simple materials and low path length
(maximum 8).

Laine et al. [11] further noticed the first reason
and introduced “wavefront path tracing” aiming
efficient evaluating extremely complex BSDFs with
“multiple kernel” implementation. However, only
“small performance benefit” from path regeneration
is still marked in their work.

use

sources

Proposed method relations Before
considering proposed algorithm we should mention
two techniques that are not directly related to path
regeneration, but, in general, related to efficient
path tracing implementation on GPU. They are
tile-based work distribution for path tracing [5]
and “per-warp Russian Roulette” [12].

The tile-based work distribution [5] splits an
entire screen to 16x16 tiles and use them as
an atomic unit of work distribution. Tiles are
important because they reduce work-distribution
algorithm self-cost by dividing actual operations
number by 256 (16x16).

Per-warp Russian roulette introduced in [12]. The
original Russian roulette randomly terminates a
path to restrict its depth — trace fewer paths on
high depth but takes them into account with greater
weight. For GPU this additionally increases amount
of “sparse warps” |7] with dead threads. Per-warp
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Russian roulette decides to terminate (or not to
terminate) the whole warp by slightly changing
weights computation scheme.

By combining tiles idea from [5] and “per-warp
Russian roulette” from [12] we introduce a new path
regeneration method that is as simple and flexible
as approach from [7], as efficient as [8] in the sense
of ray tracing performance gain, and cheap in the
sense of self-cost.

3. Suggested approach

The proposed algorithm is designed under the
assumption that to achieve high actual occupancy
we don’t need completely dense thread pool.
There is no significant performance penalty if some
continues gaps (25-50% of total tiles number in
thread pool) with dead threads exist in it. Our
algorithm combines several ideas:

1. Similar to [5] we subdivide screen to tiles
of 16x16 pixels. Thus, pixels are separated
from threads. Each screen tile is mapped to
continuous sequence of 256 rays in thread pool.

2. Similar to [7] we perform “in place” path
regeneration, assigning new paths to dead
threads. In contrast to [7| we never regenerate
single thread but always regenerate the
whole 16x16 tile simultaneously, i.e. all 256
continuous threads. A thread block always
processes other screen tile when it has been
regenerated.

3. To terminate the whole block we extend
“per-warp” Russian roulette to a “per-block”
Russian roulette. This efficiently terminates a
block of threads allowing a new tile to come
in the same place (replacing dead tile) when
low actual occupancy met for an old tile.

4. During path tracing we store for each tile
its maximum trace depth and sort all tiles
according to that value before starting next
pass. Thus, tiles with high trace depth always
come to thread pool first and hang there
as long as they are needed. In contrast to
that, tiles with low depth come much later
and usually process several bounces only.
Such strategy reduces total number of kernel
launches in range of 30 - 60% depending on
scene and maximum trace depth.
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5. We don’t regenerate each bounce. For each
second bounce we check a number of tiles we
want to regenerate. If this number is greater
than a threshold (half of a current active tiles
number), we invoke regenerate kernel. We call
this “threshold based regeneration”.

6. Particularly, for ray-tracing kernels we use
local thread compaction via shared memory
inside the 256-thread block. Because these
kernels are very light-weight in the sense
of reading and writing per-ray data, local
thread compaction has no valuable overhead.
However, due to compaction reduces sparse
warps number it speeds up ray tracing
performance in average by 8-15%. Such local
thread permutations inside block do not lead
to per-ray data movements because it changes
thread indices only inside trace kernel.

Thus, when too many tiles are dead, according
to point (5) we regenerate (fig. 1). Threshold
based regeneration (5) decreases regeneration
code cost and increases actual occupancy due
to when regeneration kernel launched, we know
that significant number of continues sequences of
threads does regenerate, thus, we prevent empty
kernel calls when a kernel is launched but no
threads are doing actual work.

FEAB6795D321048¢C
XXXXXXXX|FEABG67T.
FEAB6795|D3218C¢C
FEAB6795|D3218¢C
FEAB6795|D3218C¢C (9,5)->(D,3)
FEAB67D3 | 2104 ..(A,6,7)->(2,1,0)
FE2B10D3 ]| 48¢C

FE2B10D21| 48¢C (1,0)->(4,8)
FE2B48D2 ]| C (4,8)->(C,X)
FE2BCXD?2 | (C)->(X)
FE2BXXD2 | (D,2)->(X,X)
FE2BXXXX|

XXXXXXXX|

Listing 1. Simplified algorithm walkthrough (without
“threshold-based regeneration”). A thread buffer holds
8 tiles (8x256 rays). The total number of tiles is 16.
The left part represents active tiles in thread buffer.
The right part after the slash is a queue of tiles that

Puc. 1.: An example of image subdivided to 16
tiles. Each tile is enumerated with hexadecimal
number from 0 to F. We sort all tiles basing on
their maximum trace depth. Tiles E and F have
very large maximum trace depth. They come to
the thread buffer first and finish last. Opposite to
that tiles 0,1,4,8,C have low maximum trace depth
equals to one. They come last and live just 1 bounce
in the buffer. Thus, we reduce total kernel calls
number.

waiting for process. Symbol “X” represents dead tiles.
The notation “(9,5)->(D,3)” means that tiles “9” and
“5” were died and new paths were regenerated replacing
“977 With “D?? and “577 With “377'

Implementation details We used the same kernel
set in CUDA and OpenCL. Our path-tracing pipeline
has 7 kernels in total. They are: regenerate, trace,
surfEval, lightSample, shadowTrace, shade, nextBounce.
Such fine-grained “multiple kernel” was used due to
heavy feature list. Merging kernels in this case leads to
poor performance and unexpected faults for OpenCL on
some drivers. Almost all of our kernels are heavy in the
sense of code complexity: surfEval kernel has Parallax
Occlusion Mapping for surfaces with relief; lightSample
implements huge sets of light including complex lights
with HDR environment and IES distribution; Shade
and nextBounce use material tree for flexible material
architecture with different type of BRDS in leafs and
different types of blending in non-leaf nodes. This is like
a “Mila material” in Mental Ray [13]. Thus, in our case
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not only tracing rays was a kernel that benefits from
path regeneration.

4. Results and discussion

Test setup Our test setup focuses on different cases
when performance benefit should come from different
reasons (Fig.A-D). Test # 1 has simple geometry
but infinite possible reflections. It is an ideal way to
compare different regeneration (and path tracing in
general) implementations efficiencies and overheads
with no relation to ray tracing performance. Test #
2 is simple in all senses and should not benefit of
regeneration at all. It helps us to measure minimal
regeneration overhead. Tests # 3 (specular/glossy
walls) and # 4 are typical real-word examples when
path regeneration is applied due to high maximum
trace depth.

Comparison to previous approaches We
compare our approach to Streaming PT from [8] (call it
“sm” on Fig. 2-5) and path tracing with no regeneration
at all (“no regeneration”). For both Streaming PT
and “no regeneration” PT we used per block Russian
roulette. For Streaming PT we used indices instead
of moving per-ray data and each 4-th/8-th bounce
for regeneration to have approximately the same
regeneration kernel call number on each test scene
that we got in our implementation. Otherwise, (each
bounce regeneration) Streaming PT costs much and
gives us no benefit at all. We used “thrust::copy if”
implementation of Streaming compaction in CUDA and
self-implemented compaction based on NVSDK prefix
sum sample in OpenCL.

Compared to [8] our algorithm has same performance
gain (Test 3, 4) from regeneration but it has lower
overhead (Test 1, 3, 4). Main reasons for this are
points (1-2), (4), (5). Blocks/tiles (1-2) reduce operation
cost by factor of 256. It allows in-place regeneration,
though, no per-ray data movement or indices is required.
Blocks sorting (4) decreases total kernel calls number.
Threshold base regeneration (5) additionally decreases
regeneration code self-cost. Besides performance benefit,
our algorithm is simpler for implementation because it
doesn’t change actual thread indices for rays. Once a tile
comes into the thread pool, all its rays gain fixed thread
index which will not be changed during any number
of bounces. So, per-ray data could be stored at fixed
memory locations.

5. Conclusion

Our experiments showed that path regeneration
gives essential benefit only for large trace depth values
(greater than 20). For low trace depth values our results
in general are consistent with Wald experiments [10].
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Thus we believe that reduction of thread divergence
within warps (solved via regeneration in [7], [8]) could
be successfully solved with per-warp/per-block Russian
Roulette only. Path regeneration is needed only when
active warps number became lower than the value
of warps that GPU process simultaneously with high
actual occupancy.
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Figure A. Test 1.
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