
Interactive Camera Distortion Correction

B. Kh. Barladyan, L.Z. Shapiro, I.V. Valiev, A.G. Voloboy

Keldysh Institute of Applied Mathematics RAS, Moscow

Abstract

Here interactive software and algorithm of camera distortion

correction is considered. Elaboration of the camera distortion

correction is needed during car parking system design. Specific

algorithm representation as the set of six scale coefficients tables

is introduced. This representation takes into account specific of

cameras used in automobile industry and possibility of hardware

implementation of given interactively created algorithms. The
goal of the interactive software is to provide to car parking system

designer a tool for elaboration of camera with desirable

(reasonable) distortion. The scale coefficient tables are transferred
to camera manufacturer for designed camera creation.

Keywords: parking camera design, camera distortion, distortion
correction, lens design

1. INTRODUCTION

Using different cameras especially reversing cameras in the car

parking system becomes almost standard in modern cars. There

are a large number of manufacturers offering such system on the
market [1, 2 and 3]. These cameras have wide-angle objective

about 180 degree or even more to provide maximal visible area.

Typically only horizontal extra wide angle is needed in parking

systems. Moreover requirements to the visibility of the lower and

upper hemispheres are different. Typically the visibility of the

lower part of hemisphere is the most essential in parking systems

from the driver point of view. So camera makers design cameras

with asymmetrical view field. In common case view field may be

asymmetrical in horizontal direction also. It is reasonable

approach for cameras placed on the left and right bumper sides or
on side rearview mirror. The cameras with such extra wide angles

and asymmetrical view field unavoidable have large distortions, in

common case asymmetrical ones, which should be corrected to
better environment understanding by car driver. There are a

number of algorithms about distortion correction [4-9]. Some of

them are implemented in commercial software [10-12].

During design of parking system developers tune the camera

position and orientation, taking into account the given car
specific, select cameras with appropriate optical and electric

specification. To provide maximally useful and effective overview

of critical areas around the car the parking system designers

would like to have custom distortion correction for used cameras.
In general cases this correction can have own specific for each

camera depending on the camera position. Some areas in the
image should be magnified and other ones should be reduced.

The parking systems become currently a mass product, so the

most reasonable and effective solution becomes embedding of
distortion correction algorithm directly in the camera electronics.

Camera makers can now implement almost any distortion

correction algorithm in camera image processing but the

algorithm for given specific camera should be elaborated by

parking system designer and passed to the camera maker company

in acceptable form. It should be pointed that in some practical

cases camera distortions cannot be completely corrected in

principle. Typical example is the camera with the view angle

more than 180 degree. So the task of parking system designer is

elaboration of camera image in form optimized to control the car

vicinity by car driver but not distortion correction itself. It is the

main purpose of utility where suggested algorithm was
implemented.

2. SCALE ALGORITHM REPRESENTATION

Taking into account possible asymmetric of camera distortions,
the default image produced by camera is split from correction

point of view on four parts by vertical and horizontal axes. The

axes intersection point is the fixed point of distortion correction –
the position of this pixel is not changed during correction. For rest

pixels two type of scaling coefficients are defined. For vertical

distortion the scale in given image point is defined as the function

of X coordinate – ScaleY(x). These functions are defined
separately for upper and lower sides (relatively to horizontal

splitting axis). Addition scale function ScaleY(y) defines the scale

coefficients as the function of coordinate y independently of x
coordinate. Applying the scaling of the all these three functions

does not move the pixels along horizontal splitting axis. The same

three functions are defined for horizontal image scaling –
ScaleX(y) for left and right image sides and ScaleX(x). Example

of User Interface implemented in our software where these three

functions in the table form can be set for image with resolution
800x600 is shown on Fig.1.

Fig.1. Example of six scale tables.

Scale coefficients are defined for some set of pixels and are

interpolated between them. By default linear interpolation is used.
Apart linear interpolation the spline interpolation can be applied

as well. Scale functions are displayed in the graphical form as it is

showed on Fig. 2. Also it is possible to use the same scale
function for both image sides (horizontal or vertical).

Interface, presented on Fig. 1, provides edition of all six scale

functions. So, practically arbitrary distortion correction can be
created in this way.

Fig.2. Scale function graphs.

3. DIRECT IMAGE CORRECTION

Specification of distortion correction in numerical form is not

very convenient for parking camera system designer. It is more
desirable to provide interface directly on image, so that user can

move the image point from one position to another one, while the

scale functions will be created for this correction automatically.

This feature was provided in our software (Fig. 3).

In direct image correction mode the auxiliary grid provides
convenient visual control how current distortion functions affect

on original image. A designer can select color and step of this

grid. Green contour provides presentation of original image size.

Also it is possible to directly move selected pixel to the new

position by mouse drag and drop. Application provides
appropriate changes of scale tables and real time image correction.

Additional slider provides convenient control of scale along X or

Y axis according selected line in appropriate ScaleY(y) or
ScaleX(x) table.

Fig.3. Direct image correction.

But this feature elaboration was rather complex because automatic
creation of scale functions has various reasonable solutions. The

image scale in horizontal and vertical directions can be considered

independently due to selected correction algorithm representation,
but scale in each direction in general case depends on two

functions. In horizontal direction, for example it is ScaleX(y) and

ScaleX(x). It is hard to find reasonable and transparent for a user

proportion between these two functions of given image pixel

moving. Moreover the new X position of pixel is determined by

integral of ScaleX(x) from zero (Y axis) till its initial X

coordinate (see details of algorithm below). So the movement of

pixel can be achieved using different ScaleX(x) function. Only

corresponding integral is essential. Due to this reason the direct

image correction in our system affects on ScaleX(y) and

ScaleY(x) functions only. Even with this restriction the task is not
trivial as it is described in algorithms details below.

4. CORRECTION ALGORITHM DETAILS

4.1 Smoothing algorithm

The third order polynomial was used for smooth interpolation of
scale coefficients between points of definition. To provide really

smooth interpolation it is desirable that extreme points

(maximal/minimal scales) in linear interpolation are to be extreme

points of spline interpolation. In another words the interpolation

should be monotony between node points. This requirement is

provided in described below algorithm by special definition of
derivations in knot points.

The segment of the original polyline between all the pairs of

"knots" (xi, yi) and (xi+1, yi+1) is smoothed by the third order
polynomial qi(x), where

qi(xi+1) = qi+1(xi+1) = yi+1

q'
i(xi+1) = q'

i+1(xi+1)

The third order polynomial q(x) for which

q(x1) = y1

q(x2) = y2

q'(x1) = k1

q'(x2) = k2

can be written in symmetrical form

q = (1-t) · y1 + t · y2 + t · (1-t) · (a (1-t) + b t)

where

t = (x - x1) / (x2 - x1)

a = k1 · (x2 - x1) - (y2 - y1)

b = - k2 · (x2 - x1) + (y2 - y1)

The derivatives in the knots are defined as followed:

1. For the first knot:

k1 = (y2 - y1) / (x2 - x1) (1)

2. For the last knot:

kn = (yn - yn-1) / (xn - xn-1)

For intermediate knots:

ki = 0 if yi ≤ yi-1 and yi ≤ yi+1 (2.1)

ki = 0 if yi ≥ yi-1 and yi ≥ yi+1 (2.2)

ki = (yi+1 - yi-1) / (xi+1 - xi-1) for all other cases. (2.3)

The derivations definition 2.1 and 2.2 provides that extreme

points of linear interpolation remain extreme one for smooth
interpolation also.

4.2 Output image smoothing

The scale tables described above describe transformation of any
point from original image to the corrected one, but both images

are discretized ones, i.e. consist of pixels. So we have some

freedom how pixels of output image will be constructed from

original ones. The described below algorithm was constructed to

provide relatively smooth image and minimize moiré and aliasing
effects.

In general case the original image pixel will change its form in

output image. It will be scaled depending on its X and Y

coordinates. Scale of any pixel which don’t have its own value in

the table is calculated as a linear or smooth (see p. 4.1)
interpolation between the nearest lower and higher values.

Fig.4. Scaling a pixel

Calculated coordinates of each pixel vertex after scaling and its

bounding box drawn by red color are shown on Fig.4. We

consider this bonding box as scaled original pixel which color

should be put to the all pixels of new (output) image, which it
covers as it is shown on Fig. 5.

Fig.5. Color setting for a new image pixel.

It should be taken into account that scaled pixels (initial, “old”
pixels on the Fig.5) can have overlapping due to extension by

bounding box described above. Finally, the color of output is

calculated as the weighted sum of initial pixels colors with weight
of intersection area of old pixel with new one.

The result of image scaling for some test example is shown on
Fig.6.

Fig. 6. Result of image scaling.

5. DIRECT IMAGE CORRECTION ALGORITHM

The procedure assumes that the user will move any pixels from
one position (start position) to another one (end position). And the

algorithm should calculate such scale transformations so that

original pixel (correspondent pixel of non-scaled picture) will be
moved to the selected end position. This task includes two sub-
tasks:

• determination of initial pixel position by its start

position on the current scaled image;

• calculation of new scale table described in p.2. (or

correction of the current one) which moves pixel from
initial position to the end one.

5.1 Calculation of initial pixel

The new (transformed) pixel coordinates (xn, yn) are calculated
from the original (xo, yo) ones by the following formulae:

�����, ��� = �	 + ��� − �	� · ������ · � ���������
��

 (3)

�����, ��� = �	 + ��� − �	� · ������ · � ���������
��

 (4)
Here:

• xo,yo are original pixel coordinates;

• xn,yn are transformed (scaled)pixel coordinates;

• Sxy, Sxx, Syx, Syy are scale functions defined in p.2;

• xa – Y axis position

• ya – X axis position

5.1.1 Area subdivision and scales description.

The scale functions definition in table form described in p.2

subdivides the initial pixel image into rectangular cells. The

horizontal bounds of these cells will be y-lines passed throw the
pixels where scale functions Sxy(y) (left and right) and Syy(y) are

defined. The vertical bounds of these cells will be x-lines passed

throw the pixels where scale functions Syx(x) (upper and low) and

Sxx(x) are defined.

Let the bounds of i-th rectangle are xmini, xmaxi, ymini and ymaxi

Inside this rectangle we can represent integrals in (3) and (4) as:

� ���������
��

= � ������������
��

+ � ���������
�����

 (5)

� ���������
�� = � ������������

�� + � ���������
����� (6)

Taking into account that the Sxy(y0) is constant for given y0 and

the Syx(x0)) is constant for given x0 the scale transformation of

initial pixel (x0, y0) to the scaled one (xn, yn) has the two following
properties:

Property 1.

If yo = const and xo1 < xo2 then xn1 < xn2. If yo = const and xo1 > xo2
then xn1 > xn2. So in this case xn(xo) is monotone increasing
function. If follows from (3) and (5).

Property 2.

If xo = const and yo1 < yo2 then yn1 < yn2. If xo = const and yo1 > yo2
then yn1 > yn2. So in this case yn(yo) is monotone increasing
function. If follows from (4) and (6).

From properties 1 and 2 follow that the maximal and minimal

values of scaled coorfinates xn and yn will be achieved on the
scaled boundaries of original rectangular boundaries.

Moreover the maximum and minimum of xn will be achieved on

the rectangle vertices. If we set xo = xmini then from (3) and (5) we
have:

xn(xmini, yo) = xa + K1 · Sxy(yo) (7)

where

�� = ������ − �	� · � ������������
�� ,

and the Sxy(y0) is monotone function of y0 inside the given cell

(see p.4.1). So the minimum and maximum of (7) will be

achieved on the segment ends. The same statement is true for x0 =

xmaxi and finally for yn.

Taking into account all these properties of scale transformation

we implement the following algorithm for calculation initial (x0,
y0) pixel from (xn, yn) scaled one:

5.1.2 Initial pixel finding algorithm.

1. Create the list of bounding boxes of scaled rectangular cells

described above. Transformed original rectangular cells will be

curved one in general case (see Fig. 3, for example) and so
bounding boxes of scaled rectangular cells will be overlapped.

Due to this reason the given scaled pixel can belong to the several
bounding boxes simultaneously.

2. For each cell from list try to determine initial pixel by the
following way:

3. If the given bouning box does not include (xn,yn) then go to the
next one.

4. Calculate scaled (xn1,yn1) pixel for center of original cell. If the

distance from (xn1,yn1) pixel to the (xn,yn) one is lesser than 1 then
original pixel is found, (xo,yo) is center given original cell.

5. If width and height of original box is lesser than 1 then original

pixel can not be found in the given cell. Go to the next bounding
box.

6. Divide given original box on two ones by division of width or

height in half. For each half calculate box of scaled cell. For each
half cells execute pp. 3-6.

In the result we have calculated the initial pixel position.

5.2 Scale table correction

As it was pointed above the correction will not touch the Sxx(x)

and Syy(y) functions and so the correction will be done for Sxy(y)
and Syx(x) only. Corrections for Sxy(y) and Syx(x) can be applied

independently. So consider the Syx(x) only. Firstly consider only

the linear interpolation between node points. One scale segment
for Syx(x) is represented on the Fig. 7.

Fig. 7. Segment of scale function.

Here the movement pixel along x = a coordinate is considered.

The point a belongs to the (x0,x1) segment. Let us denote the

scale values and its variation at the ends of the segment as s0, s1,

ds0 and ds1 correspondingly. The scale and scale variation in the

point a denote as s and ds. We want to determine correspondent

changes ds0 and ds1 which provide ds changing in the point a in

the linear interpolation case.

For simplicity, we will use the dimensionless coordinates.

Let x0 = 0 and x1 = 1, a1 = (a - x0) / (x1 - x0).

Due to the linear interpolation we have:

s0 · (1-a) + s1 · a = s

(s0+ds0) · (1-a) + (s1+ds1) · a = s+ds

So

ds0 · (1 - a) + ds1 · a = ds (8)

We should determine ds0 and ds1 via ds and a. Let us will find
solution in form:

ds0 = ds · f0(a); ds1 = ds · f1(a). (9)

From (8) and (9) we have

f0(a) · (1-a) + f1(a) · a = 1; (10)

From (9) and (10) we have the following boundary conditions:

f0(0) = 1; f1(1) = 1.

f0(1) = 0; f1(0) = 0.

We also naturally suppose functions symmetry:

f0(a) = f1(1-a) (11)

From (10) and (11) also followed that

f0(0.5) = f1(0.5) = 1

So finally we have the following conditions

����0� = 1; ���0.5� = 1; ���1� = 0;
���0� = 0; ���0.5� = 1; ���1� = 1;# (12)

There are many functions which satisfy to these conditions. For

example we can determine f0(a) on [0.5, 1.0] as any function

decreasing from 1.0 to 0.0. In this case f1(a) will be determined on

[0, 0.5] by (11). Then we can determine f0(a) on [0, 0.5] by

substituting f1(a) in equation (10) and solving it for f0(a). We
conider the following two variants of solution:

5.2.1 1st variant of solution.

Let

f0(a) = 2 · (1 - a) on [0.5, 1] (13)

and so from (11)

f1(a) = 2 · a on [0, 0.5] (14)

From (10) and (13) we have

f1(a) = (1 - 2 · (1 - a)2) / a on [0.5, 1]

and from (10) and (14) we have

f0(a) = (1 - 2 · a2) / (1 - a) on [0, 0.5]

And finally:

���$� = ��1 − 2 · $&�/�1 − $�, () [0, 0.5]
 2 · �1 − $�, () [0.5, 1]#

���$� = � 2 · $, () [0, 0.5]
 �1 − 2 · �1 − $�&�/ $, () [0.5, 1]#

Both functions has the same maximum ~1.172 in points 1 − ,0.5

and ,0.5 appropriately.

5.2.2 2nd variant of solution.

Let us will find the solution in the parabola form f0(a) = k2 · a2 +

k1 · a + k0 on [0, 1]. According (12) this parabola should pass

through the points (0, 1), (0.5, 1) and (1.0). These restrictions
completely define parabola coefficients:

f0(a) = -2 · a2 + a + 1 on [0, 1]

 From (11)

f1(a) = -2 · a2 + 3 · a on [0, 1]

 f0(a) decreases from 1.0 to 0.0 on [0.5, 1.0]

It is easy to check that f0 and f1 satisfy the (10) equation.

Both functions has the same maximum 1.125 in the points 0.25

and 0.75 appropriately.

The less the function maximum the less will be scale values

variations in the nodes and so the resulted curves will be more
smooth. So we selected parabola for f0() and f1() functions.

5.2.3 Spline case.

Described above in p.5.2.2 solution works in linear interpollation

case only. In spline case the task become nonlinear one and can
not be solved analitically. In this case the solution from p.5.2.2 is

used as initial approximation. Let us linear interpollation for given

ds gives (ds0, ds1) solution. Then the non linear solution (ds0n,

ds1n) we will find by using the following equation:

ds1n =K · ds0n, where K = ds1 / ds0; (15)

Let us denote the function which calculate the scale variation in

point a by using spline interpollation between scale table nodes as

Fspl(x), where x is scale variation in left segment point and the

scale variation in the right sement point is defined by (15). Then
ds0n can be found by solving the following non linear equation:

Fspl(ds0n) = ds

We solve this equation by founding the solution inside segment.

The one boundary is defined by linear interpollation

approximation and for the second one is the maximal acceptable
scale if Fspl(ds0)> ds and minimal one in oposite case.

6. RESULTS

Described interactive software was implemented as additional

application (plugin) for CATIA [13, 14] CAD/PDM system. It can

process both with images produced by real cameras and with ones
simulated in CATIA by our products [14]. The plugin provides

real time design of distortion correction algorithm in form of both

scale tables and interactive resulting image modification.
Corrected image is re-drawn during fraction of a second after
parameters changing (Intel Core 2 Q9550 2.83Ghz).

The scale tables described above contains distortion correction

information in a form acceptable for camera creation by the

camera manufacturer. And implemented algorithms take into
account parking system cameras manufacturing specific. In the

result the implemented software provides effective and convenient

tool for car park system designers to develop reasonable

correction of camera images.

7. AKNOLEDGMENTS

This work was supported by the RFBR, grant10-01-00302, and by

INTEGRA Inc. (Japan).

8. REFERENCES

[1] http://www.parkingcameras.com/store/home.php

[2] http://www.espow.com/wholesale-car-electronics-car-
review-systems-rear-view-cameras.html

[3] http://www.thecarkitcompany.com.au/index.php/products/par
king-sensors-a-reverse-cameras

[4] F. Devernay and O. Faugeras. Automatic calibration and

removal of distortion from scenes of structured environments.
SPIE Conference on investigative and trial image
processingSanDiego, CA, 1995.

[5] H. Farid and A.C. Popescu. Blind removal of Lens
Distortion. Journal of the Optical Society of America, 2001.

[6] J. Jedlička, M. Potůčková. Correction of Radial Distortion in

Digital Images. Charles University in Prague Faculty of Science,

http://dsp.vscht.cz/konference_matlab/MATLAB07/prispevky/jed
licka_potuckova/jedlicka_potuckova.pdf

[7] Janez Perˇs, Stanislav Kovaˇciˇc. Model-Based Radial Lens
Distortion Correction Using Tilted Camera Assumption. Faculty

of Electrical Engineering University of Ljubljana Nonparametric,

http://vision.fe.uni-lj.si/docs/janezp/pers-wwk2002.pdf

[8] R. Swaminatha and S.K. Nayer. Non-metric calibration of

wide angle lenses and poly-cameras. IEEE Conference on
computer Vision and pattern recognition, pp 413, 1999.

[9] G. Taubin. Camera model for triangulation. Lecture notes
EE-148, 3D Photography, Caltech, 2001.

[10] PTLens, http://epaperpress.com/ptlens/

[11] Photoshop, Correcting image distortion,

http://helpx.adobe.com/photoshop/using/correcting-image-
distortion-noise.html

[12] IRIS TUTORIAL, DSLR images distortion correction,
http://www.astrosurf.com/buil/iris/tutorial19/doc42_us.htm

[13] CATIA - Virtual Design for Product Excellence,
http://www.3ds.com/products/catia/welcome/

[14] Inspirer, Specter optical simulation system
http://www.integra.jp/en/index.html

About the authors

Boris Kh. Barladyan, PhD, senior researcher, Keldysh Institute for
Applied Mathematics RAS.

E-mail: obb@gin.keldysh.ru

Lev Z. Shapiro, PhD, senior researcher, Keldysh Institute for
Applied Mathematics RAS.

E-mail: pls@gin.keldysh.ru

Ildar V. Valiev, researcher, Keldysh Institute for Applied
Mathematics RAS.

Alexey G. Voloboy, PhD, senior researcher, Keldysh Institute for
Applied Mathematics RAS.

E-mail: voloboy@gin.keldysh.ru

