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Abstract We present an efficient algorithm for building an
adaptive bounding volume hierarchy (BVH) in linear time
on commodity graphics hardware using CUDA. BVHs are
widely used as an acceleration data structure to quickly ray
trace animated polygonal scenes. We accelerate the con-
struction process with auxiliary grids that help us build high
quality BVHs with SAH in O(k ∗ n). We partition scene tri-
angles and build a temporary grid structure only once. We
also handle non-uniformly tessellated and long/thin trian-
gles that we split into several triangle references with tight
bounding box approximations. We make no assumptions
on the type of geometry or animation motion. However,
our algorithm takes advantage of coherent geometry lay-
out and coherent frame-by-frame motion. We demonstrate
the performance and quality of resulting BVHs that are built
quickly with good spatial partitioning.
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1 Introduction

Ray tracing has become ubiquitous for providing global illu-
mination, soft shadows, glossy reflections, motion blur and
depth of field. Efficient ray tracing makes use of spatial in-
dexing data structures such as grids, KD-trees and bound-
ing volume hierarchies (BVHs) to accelerate intersection
between rays and scene geometry. Many other applications
such as collision detection and visibility culling also benefit
from efficient spatial partitioning. An efficient acceleration
structure is fast to build, requires little extra memory and
allows fast searching and traversal. While there is no con-
sensus which acceleration method is the best, we focus on
a Bounding Volume Hierarchy (BVH) as it provides a good
balance between building time, traversal efficiency and abil-
ity to handle dynamic geometry. One advantage of the BVH
is predictable memory consumption as each scene primitive
is referenced only once in the tree.

As modern computer architectures become massively
parallel, building and traversal of spatial acceleration data
structures must also be done in parallel if they are to scale
with the number of available processors. Until recently, most
of the research work has been done on serial or only mod-
erately parallel building algorithms and architectures. Our
goal is to explore massively parallel real-time construction
algorithms for fully dynamic geometry while making few or
no assumptions about underlying geometry or motion. Re-
cent groundbreaking work by Lauterbach et al. [10] made
fast BVH building entirely on GPUs possible. Pantaleoni
and Luebke [12] made many improvements to this algorithm
by exploiting coarse-grain coherency in the input geometry.
Their work inspired us to improve building of high quality
BVHs for interactive applications and further reduce build-
ing times while maintaining bounded memory usage.

BVHs adapt very poorly to non-uniformly tessellated
scenes. Many scenes fall into this category as architectural

mailto:kirill@garanzha.com
mailto:vlgal@gin.keldysh.ru
mailto:simon.premoze@gmail.com
mailto:a.bely@capital-research.ru


K. Garanzha et al.

scenes modeled by various Computer-Aided Design (CAD)
packages contain many long and wide (or thin) triangles.
The choice of partitioning method significantly influences
the quality of the tree. Surface Area Heuristic (SAH) consid-
ers the density of geometry in 3D space and efficiently culls
empty regions. Unfortunately, building a high quality tree
is expensive. This becomes even more obvious for dynamic
and animated scenes where BVH trees have to be rebuilt for
every frame.

Our BVH building algorithm splits long and wide trian-
gles into several triangle references with a tight AABB ap-
proximation. We compute a 3D density grid and its mip-map
for triangle references. The grid helps computing the SAH
cost of each node split. The cost of computing SAH split is
bounded for all BVH nodes. We make several contributions.
First, we utilize spatial splitting that produces high qual-
ity BVHs even for non-uniformly tessellated scenes without
memory overflow problems. Second, we describe a fast Sur-
face Area Heuristic (SAH)-based builder that exhibits linear
asymptotic behavior. We explicitly bound the computational
(and memory fetch) work to produce a single node split.
The cost of building a single top level node and a bottom
level (leaf) node is the same. Third, we reduce the amount
of sorting needed. Fourth, the BVH building algorithm and
described concepts are well suited for massively parallel ar-
chitectures and are relatively simple to implement.

We implement our algorithm in CUDA [11] and bench-
mark it on NVIDIA GeForce 480 GTX (Fermi) GPUs. The
implementation of the algorithm can handle fully dynamic
geometry. We compare our algorithm with the results from
some recent papers in Sect. 4.

2 Background

Spatial acceleration data structures have been used in ray
tracing and collision detection for many years. With the ad-
vent of GPUs and multicore architectures, research commu-
nity has renewed interest in building fast and efficient accel-
eration structures. We only mention some recent develop-
ments in the field. We direct reader to Havran’s dissertation
[6] for an excellent and comprehensive overview accelera-
tion structures and in-depth discussion of problems.

Until recently, most of the research has focused on se-
rial algorithms and memory optimizations and improve-
ments [17]. With the paradigm shift in computer architec-
ture from a single high performing processor towards mul-
ticore and highly parallel architectures, there have been
many new innovative algorithms. Foley and Sugerman [3]
looked into building and traversing KD-trees on modern
GPUs. There have been numerous other improvements,
most notably described in the works of Popov et al. [13],
Shevtsov et al. [15], Zhou et al. [20]. An efficient imple-
mentation of KD-tree builder on multicore platforms was

presented by Choi et al. [2]. Wald gives a great recipe for
building fast BVHs with Surface Area Heuristic [18]. Some
acceleration structures such as KD-trees produce high qual-
ity trees, but they are not applicable for dynamic geometry or
animated scenes due to long building times. Wald et al. [19]
have extended BVHs building to be more amenable for de-
forming and animated geometry. Ize et al. [7] give yet an-
other extension of building BVH on moderately parallel sys-
tems. On the other hand, Kalojanov and Slusallek [8] tackle
the problem of efficient acceleration using grids and hierar-
chical grids that can be build entirely on a GPU. Kalojanov
and Slusallek [9] further improved grid traversal efficiency
using a hierarchical grid. In our work, we use grid only to
help with efficient BVH building.

We have also already mentioned the problem of building
structures suitable for non-uniform tessellation of geometry.
Stich et al. [16] present an easily directable BVH algorithm
for such geometric configurations utilizing SAH for prim-
itive splitting. Unfortunately, the algorithm is not directly
amenable to efficient GPU implementation.

2.1 LBVH and HLBVH

Lauterbach et al. [10] described a BVH construction algo-
rithm based on space-filling Morton curve and sorting prim-
itives in the scene along the curve. Each point in space can
be discretized to n bits. By interleaving the coordinates of
a 3D point, we get a 3n-bit index, called Morton code, that
enumerates where this discretized point lies on the Morton
curve of order n. If all geometric primitives are enumerated
with Morton codes and then sorted, a Linear Bounding Vol-
ume Hierarchy (LBVH) [10] is constructed. LBVH building
is extremely fast, however, it produces trees that are less than
optimal for fast traversal and it does not exploit any existing
coherency in the scene geometry.

Pantaleoni and Luebke [12] introduced Hierarchical Lin-
ear Bounding Volume Hierachy (HLBVH) that significantly
reduces memory traffic and the amount of sorting work
done. HLBVH takes advantage of any spatial coherency in
the input mesh by doing hierarchical grid decomposition.
Surface Area Heuristic (SAH) is used to construct top levels
of the BVH and Morton curve-based partitioning for bottom
levels. The resulting algorithm produces high quality trees
that are still very efficient for traversals while having im-
pressive building times.

2.2 Massively parallel computing model

Modern desktop GPU is a powerful device that is best suited
for streaming data-parallel algorithms with a coherent exe-
cution and memory access pattern. The GPUs are composed
of several independent cores [11]. A host (CPU) initiates
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parallel kernels on a device (GPU). A kernel executes a pro-
gram across many (thousands) threads. GPU threads are or-
ganized into blocks (each block is executed on the single
GPU core). Each block of threads is organized into several
warps (bundles of 32 threads) which execute a single kernel
instruction for the entire warp of threads. An algorithm that
can be efficiently implemented on massively-parallel plat-
forms like GPUs must: (a) decompose work into suitably
sized chunks that will be mapped onto thread blocks, (b)
have enough fine grained parallelism and (c) be conscious
of memory access and memory utilization.

3 BVH construction algorithm

Overview We assume building a binary BVH of Axis
Aligne Bounding Boxes (AABBs). Wald [18] and Lauter-
bach et al. [10] proposed CPU/GPU BVH builders that are
based on binning technique and recursive triangle list par-
titioning at each tree level. In these algorithms, a transient
grid structure is created in the process of each BVH node
creation (binning). Triangle references are distributed in the
grid and the SAH cost of the best partition split is evaluated
using the grid.

We also accelerate the BVH build process with the help
of auxiliary grids that help us build high quality SAH BVH
in O(k ∗ n). In contrast to previous methods, we partition
scene triangles and build the grid only once. We construct
several mip levels of the density grids from the input set of
triangles. Each grid cell encodes a range of primitives inside.
The root node of the BVH is constructed from the coarse
mip level (83): we evaluate 21 possible split planes (all
planes between grid cells for each axis), select the best one
and partition the input set of primitives. Then we find split
positions for resulting two subsets of primitives and recur-
sively continue. The number of primitives and approximate
bounding boxes for each partition are computed quickly
from the density grid. We can select the best split plane
with a fewer accumulation/comparison operations than the
binning approach by Wald [18] where all primitives are
processed to evaluate the best split plane. Our algorithm
takes advantage of the compression–sorting–decompression
(CSD) technique introduced by Garanzha and Loop [4].

Grid0 setup First, we build the highest resolution grid (la-
beled Grid0) for the entire scene. Scene AABB extents de-
termine the grid dimensions. We use 1024 × 1024 × 1024
resolution for Grid0 (each cell ID can be encoded with a 30-
bit key). Storing 10243 cells is impractical since most grid
cells are empty. We decompose Grid0 into a two-level hi-
erarchy of TopGrid0 and a number of bottom grids created
within each non-empty cell of TopGrid0. In practice, we use
128 × 128 × 128 resolution for TopGrid0 and 8 × 8 × 8 for
each BottomGrid0.

Fig. 1 The process of triangles distribution in a Grid0

Distribution of triangle references in Grid0 (See Fig. 1.)
Each triangle is represented by a triangle reference (triangle
ID, AABB over a triangle or a triangle part). An array of
reference IDs, refIDs, is initially filled with sequential IDs.
Using Grid0 resolution, we compute a 30-bit cell ID of each
triangle centroid. The most significant 21 bits represent a
cell ID within TopGrid0 (Fig. 1(a)–(e) sub-keys); the least
significant 9 bits represent a cell ID within BottomGrid0

(Fig. 1(t)–(w) sub-keys).
We then sort the refIDs array using cell IDs as keys in

radix sort. This step is accelerated by the CSD technique [4].
Adjacent elements of CellIDs array may be equal and can
be compressed into representative chunks (cell ID, base,
length). A shorter array of chunks is sorted faster than the
original CellIDs array. Sorted array of chunks is then de-
compressed into a final sorted CellIDs array. We then fur-
ther compact it (using the most significant 21-bits, sub-key,
of CellID) into an array of non-empty TopGrid0 cell descrip-
tors. Entries with equal sub-keys will fall into the same de-
scriptor. Each cell descriptor represents a segment of sorted
triangles in the grid cell. The most significant 21-bit CellID
of each descriptor is used as a cell address inside TopGrid0
where we write triangle segment information.

Similarly, we then compact CellIDs array (using all
30 bits) into an array of non-empty BottomGrid0 cell de-
scriptors. These descriptors are used to construct Bottom-
Grid by concatenating all 8 × 8 × 8 refinements of non-
empty cells of TopGrid0.
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Fig. 2 Mipmap-style computing of coarser-level grids (the number of
triangles per cell is highlighted). 2D-projection

More implementation details with pseudocode are given
in the Appendix and the distribution process is illustrated in
Fig. 1.

Coarse Gridi creation (See Fig. 2.) Any coarse Gridi res-
olution is twice smaller than previous Gridi−1. We create
n grids in total; the largest resolution of any dimension of
Gridn−1 is 8. For each Gridi we maintain a single array
numRefs (e.g., Gridi .numRefs that keeps the number of tri-
angle references per cell). Each element of this array is equal
to the sum of underlying 8 elements in the finer Gridi−1.

We choose Gridn−1 resolution bound of 8 to efficiently
map the hierarchy emission algorithm to CUDA imple-
mentation. We take into account the warp width (group of
threads that execute together) and the amount of computa-
tion. The maximum resolution of 16 was also tested and
resulted in slower BVH emission but faster ray tracing af-
terwards.

Hierarchy emission At this stage, we build a hierarchy of
links between BVH nodes without computing actual bound-
ing boxes. We build an adaptive BVH using approximate
SAH heuristic guided by Gridi (i = n − 1, n − 2, . . . ,0).
We build the tree in the breadth-first order where each tree
level is generated in parallel on the GPU (see Algorithm 2).
We do not repartition triangle references.

Similar to Lauterbach et al. [10] we maintain a queue of
nodes that are subject to split operation. The maximum size
of each split queue is twice the number of triangle refer-
ences. Each node split operation may result in 0, 1 or 2 new
split queries for the next level generation. These split queries
are written into the output split queue sparsely. A hierarchy
of BVH links (linkArray) is accumulated sequentially level
by level with nodes from compacted output queue. Namely,
the BVH nodes are stored breadth-first, and we can extract
node ranges for each tree level (levelOffset array, see Algo-
rithm 2). The output queue is considered as an input split
queue for the next level generation. The work is stopped
when there are no new split queries.

Fig. 3 Warp-wise grid-based evaluation of the SAH cost function for
inner node creation. 2D-projection

The linkArray array represents relations between inner
nodes of the BVH while leaf nodes represent blocks of tri-
angle references. Using levelOffset array and the number of
tree levels produced we refit AABBs of all nodes in the
bottom-up order. At each tree level iteration, the bounding
boxes of nodes at this level are computed in parallel using
boxes from the previous level.

Approximate SAH evaluation Each element in the split
queue represents a task to evaluate a SAH cost function
and produces two new BVH nodes. For each task, we load
the address of Gridi and Integer Bounding Box (IBB) (see
Fig. 2). The integer bounding box represents the grid subset
we are working on. For initial split task (the root node) we
load the address of Gridn−1 and the IBB = (0,0,0,8,8,8).
If all extents of the current IBB are less than 5 then we ad-
vance to the finer level Gridi−1 and multiply all IBB com-
ponents by 2. Thus, we always work in a grid subset with
resolution up to 8 × 8 × 8 (see blue border in Fig. 3). Each
cell of the grid subset contains the number of triangles ref-
erences (see Fig. 3). For each axis, x, y and z, we evaluate
up to 7 SAH split candidates (see red lines in Fig. 3) using
binning approach (up to 8 bins). For each bin, we track the
number of triangle references and the integer bounding box
(bounding boxes are shown with grey cells on Fig. 3). In
practice, the task processing is assigned to 8 parallel threads
(e.g., each CUDA 32-thread warp evaluates 4 split tasks in
parallel). The split data is generated using warp-wise prefix
sums.
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The optimal best split candidate can be computed by the
SAH cost [5]:

SAH(P ) = CT + CI

(
SAL

SA
NL + SAR

SA
NR

)
, (1)

where P is the splitting plane candidate, SA is the surface
area of the current node, SAL, SAR are surface areas of the
current node to the left and to the right of P , NL and NR are
the numbers of the node’s triangles to the left and to the right
of P , and CT and CI are relative costs of plane intersection
and node traversal.

Our best split candidate is computed using the following
SAH cost metric:

SAH(P ) = SA(bboxL)NL + SA(bboxRR)NR. (2)

Using this split plane, the inner-node is produced and two
open splits are added to the working queue (the first one
is associated with the current Gridi and IBB = bboxL, the
second one is associated with Gridi and IBB = bboxR). The
leaf node is created only if the current IBB bounds only one
cell of Grid0.

Object-median split We may have multiple triangles ref-
erences in a small region even when we use 30-bit trian-
gle/grid cell mapping. In a post-process, we find BVH leaves
that contain more than 4 triangle references. We subdivide
these nodes into small subtrees using object median split un-
til each leaf contains no more than 4 triangles.

BVH refitting Finally, we compute actual AABBs of BVH
nodes using bottom-up refitting (we exploit the references
generated in the hierarchy construction stage). This process
is also implemented on the GPU: we execute refitting ker-
nels for each level of the BVH starting from the lowest level.

Triangle split stage The SAH evaluation step of our
builder uses a density grid of triangle centroids. Actual
bounding boxes of triangles are not taken into account dur-
ing the SAH evaluation as it is done in the Walds binning
approach [18]. If triangles are large and their distribution
is non-uniform, there may be a significant overlap between
AABBs that bound these triangles. Bounding box overlaps
may result in inefficient raytracing. Stitch et al. [16] de-
scribed a solution to this problem for the CPU-side BVH
builder that supports spatial splits within the BVH (as in
kd-trees) if they improve the SAH cost. The spatial splits,
if applied, may split a long triangle into multiple references
that are bounded with tighter AABBs. As a result, any tri-
angle can be approximated with a number of tight AABBs
that better cull the empty space. The use of spatial splits im-
proves ray tracing performance by 20–60% for the scenes
with long and wide/thin triangles reducing the overlaps be-
tween the AABBs and increasing the number of triangle

Fig. 4 A triangle reference subdivision. Large triangles can be subdi-
vided into many new references

references. This process is relatively slow. Furthermore, it
can cause a memory overflow, especially for CAD scenes
(composed of long/wide triangles), and cannot allocate large
arrays for triangle references and BVH boxes.

We implement the triangle split stage that tries to split
all long triangles into several parts that are represented with
AABBs (see Fig. 4) prior to the BVH build stage. Each tri-
angle can be represented with several AABBs to better ap-
proximate its shape. The number of approximating AABBs
computed for all scene triangles is bounded by some fixed
number of references (e.g., no more than 10% new refer-
ences of existing triangles). We opt to have triangle refer-
ence dimensions not larger than

sceneCellWidth = sceneExt

NoOverlapResolution
, (3)

where sceneExt is the maximum scene extent and NoOver-
lapResolution is the resolution of a virtual scene grid G
where the overlaps are not allowed. The split algorithm tries
to split triangles that are longer than the cell width of this
virtual grid. This virtual grid is never constructed, only its
dimensions are used in our computation.

For each AABB of the ith triangle reference, we compute
the number of requested triangle splits:

reqSplits(refAABBi) = int

(
refMaxExti

sceneCellWidth

)
, (4)

where refMaxExti is the maximum extent of the reference
AABB. The value of reqSplits is rounded to the nearest in-
teger and represents the number of new references that we
need to satisfy the size condition. This value is scaled by
scaled_reqSplitsi :

scaled_reqSplitsi

= reqSplits(refAABBi )∑
j∈all refs reqSplits(refAABBi )

availableMemory,

where availableMemory is the number of entries that can be
used for new references storage. Each ith triangle reference
from the input queue is divided into the scaled_reqSplitsi +1
new AABBs uniformly distributed along the longest extent
of the parent AABB (see Fig. 4). Resulting triangle refer-
ences bounded with tighter AABBs are written to the refer-
ences output queue.
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Fig. 5 The screenshots from
our test scenes rendered
(Sponza, Fairy Forest,
Exploding Dragon, Conference,
Happy Buddha, and Turbine
Blade). The BVHs for these
scenes were built using our
approach (see Table 1 for
builder stats). The absolute path
tracing timings (5-bounce
diffuse inter-reflection): 55 ms
(45 Mrays/s), 46 ms
(65 Mrays/s), 35 ms
(63 Mrays/s), 36 ms
(65 Mrays/s), 16 ms
(105 Mrays/s), 19 ms
(98 Mrays/s)

We perform two passes of triangle subdivision. In the first
pass, the initial triangles are divided along their longest di-
mensions (e.g., x-dimension). In the second pass, the refer-
ences from the first pass are also divided along their longest
dimension (for a wide triangle, it is a different dimension
than in the first pass). This process is implemented in a
GPU-friendly fashion. Small triangles can be divided into
2 or 3 new references (or not divided at all). Very long trian-
gles can be divided into 1000s of new triangle references.
The overall amount of output triangle references will be
bounded by 110% of initial number of triangles. The irreg-
ularity of subdivision is controlled efficiently using explicit
work queue organization using GPU scan and segmented-
Scan procedures [14].

4 Results and comparisons

Implementation setup We implemented our BVH build-
ing algorithm using CUDA 3.0. All measurements were
done with NVIDIA GTX 480 with 1.5 GB of GPU mem-
ory and Core 2 Duo 2.13 GHz with 2 GB of main mem-
ory. We use Utah Fairy Forest, UNC Exploding Dragon,
Conference, Sponza, Stanford Dragon, Happy Buddha, Tur-
bine Blade scenes for our tests (see Fig. 5). Conference and
Sponza scenes contain long and wide/thin triangles and pro-
vide a good test case for our split triangles approach. Other
scenes are finely tessellated, and Fairy Forest and Exploding
Dragon are animated scenes that demonstrate dynamic BVH
building.

For all scenes, we split triangles using 1283 virtual grid
resolution. We limit the number of new split triangle refer-
ences to be no more than twice the original number of trian-
gles. We build BVHs using a 30-bit cell id (21 bits encode
the TopGrid cell ID, 9 bits encode the BottomGrid cell ID).
For each node the SAH is evaluated using up to 8 × 8 × 8
sub-grid range. We continue hierarchy emission until each

tree node contains no more than 4 triangles. We analyze ray
tracing performance BVHs using a path tracing test with 5
diffuse ray bounces at 1024×768 resolution. The path tracer
is implemented using the depth-first ray traversal kernel im-
proved by persistent threads where each ray is mapped to
one thread [1]. The path tracer is additionally accelerated
using a fast ray sorting stage [4]. The path tracing kernel
takes the stream of sorted rays for the coherent execution on
the GPU.

Build stats In Table 1, we show absolute building times
for our BVH construction algorithm. The absolute build-
ing times include all stages from “Split triangles” stage to
“AABB refit” stage. For larger scenes, the building time in-
creases relatively slowly. The reason is the bounded compu-
tational work for SAH evaluation of each node. While we
use the same resolution of TopGrid in all scenes, the num-
ber of non-empty TopGrid cells varies from scene to scene.
This determines the number of bottom grids and influences
building times. The number of non-empty cells within Top-
Grid varies from 0.1% to 2%.

Tree quality We evaluate tree quality using path tracing
performance and the SAH cost [5] of produced hierarchies.
This SAH metric represents the probabilistic estimate of the
number of operations required to traverse a tree with a ran-
dom ray. The metric is computed recursively starting at the
root node:

C(N) = 2 + C(NL)
area(NL)

area(N)
+ C(NR)

area(NL)

area(N)
,

C(leaf) = numTriangles(leaf),

where NL and NR are the children of the node N , area is the
surface area of the bounding box of the node. Each leaf node
returns the number of triangles. This traversal cost metric is
independent of traversal algorithm used.
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Table 1 Build stats for our grid-assisted BVH builder. These build
stats use parameters described in Implementation Setup section. The
second column is the number of triangles in each scene. The third col-
umn is the number of AABBs that approximate triangles relative to
the number of triangles. The forth column is the total memory con-

sumption of the TopGrid, the number of BottomGrids, triangle ranges
for all the cells and grid mip-map levels. The fifth column represents
the number of BVH nodes produced by our build. The sixth column is
the absolute building time, including triangles split, grid construction,
hierarchy emission and AABB-tree refitting

Table 2 Performance
evaluation of our BVH builder
algorithm (GridBvh with and
without triangle split stage)
compared to our implementation
of some recent algorithms
(SplitBvh by Stitch et al. [16]
and Wald [18]) for the four
scenes. The left column shows
theoretical BVH performance
estimate that is computed using
SAH cost metric over the tree.
The right column shows
practical performance of
resulting BVHs with measured
timings of a 5-bounce path
tracing (see Fig. 5). All values
in the chart are normalized to
100% where 100% is
performance of SplitBvh by
Stitch et al. [16]. Smaller values
mean better performance.
SplitBvh approach results in the
fastest ray tracing; however, the
BVH construction time is
longer. In contrast,
GridBvh-split has comparable
ray tracing performance, but can
be constructed in a few
milliseconds

In Table 2, we show quality measurements of BVHs pro-
duced by our builder with and without triangle split stage,
high-quality Wald’s CPU builder [18] and SplitBVH CPU
builder [16]. Wald’s builder uses binning approach to ac-
celerate building, and Stitch et al. [16] use full SAH sweep
[6] building and spatial splits that reduce the bounding box
overlap problem. We have implemented these builders (stop-
ping tree construction when the node contains no more than
4 triangles) on the CPU and transfer the generated BVHs

to the GPU where they are used in the same traversal al-
gorithm. Table 2 shows that SplitBVH [16] produces trees
that result in the fastest path tracing. However, this builder
is relatively slow (a few seconds or minutes). Our GridBVH
without triangle-split stage can result in a slower ray tracing
for scenes with non-uniformly sized triangles such as Con-
ference and Sponza. However, the introduction of a cheap
GPU-based triangle split stage makes our builder competi-
tive with other high-quality builders.
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Table 3 Comparison times for acceleration data structure builders pre-
sented in recent papers. In brackets we show hypothetical 2× faster
times assuming these algorithms would run on GTX 480 that is used for
our measurements. Preliminary evaluation of the HLBVH algorithm
[12] on GTX 480 showed 1.5–2 times faster running time compared to
GTX 280

Varying build parameters We have described build param-
eters for our BVH construction algorithm. Varying these pa-
rameters can result in different tree qualities and build times.
For example, 16 × 16 × 16 sub-grid range for SAH evalua-
tion results in ≈30% slower building time and ≈3–5% faster
ray tracing. Cell ID representations with 24- or 27-bits en-
coding triangle centroids result in significantly lower mem-
ory consumption, slightly faster BVH build time (≈2–3%)
and slightly slower ray tracing (≈5%). Lower virtual grid
resolution for triangle split stage results in extended AABBs
and slower ray tracing. On the other hand, higher virtual grid
resolution results in more triangle references across the tree
that can be tested for intersection with the same ray multiple
times.

Comparison to the other GPU builders Thus far we have
analyzed the quality of BVHs produced by our algorithm.
Here we compare our builder with recent results of other
acceleration data structure builders (see Table 3).

We use Nvidia GTX 480 for our measurements; all the
other results from Table 3 use GTX 280 hardware. In brack-
ets we show 2× shorter times (we assume that the algo-
rithms listed would run up to 2× faster on GTX 480). Build-
ing times from Pantaleoni and Luebke approach [12] with
≈120% SAH Cost trees (pure HLBVH) are equal to our
building times for trees with ≈110% SAH Cost, although
their algorithm does not address the AABB overlap issue in
BVHs for scenes with long and wide/thin triangles. This is-
sue was solved in our real-time triangle split stage (also in
Stitch et al. [16] for offline CPU builder). If we compare
our ≈110% SAH Cost trees with Pantaleoni’s ≈110% SAH
Cost trees, then our build times are 4× faster. Kalojanov

Algorithm 1 GPUBVHBuild(BVH bvh, Mesh mesh)
1: int numTriangles = mesh.numTriangles;
2: int refArraySize;
3: // TriTefernce is a (triangleID, AABB) pair that encloses
4: // a triangle or a part of a triangle
5: TriReference refArray[2*numTriangles]
6: // Split wide triangles into many approximating
7: // tight AABBs
8: refArray = SplitBVH(mesh.triangleArray);
9:

10: int CellIDs[refArraySize]
11: // 30-bit cell id where first 21 bits encode topGrid cell
12: // ID and remaining 9 bits encode bottomGrid ID.
13: CellIDs = ComputeCellIDs(refArray);
14:

15: int refIDs[refArraySize] = {0, 1, 2, 3, . . . , refArraySize-1};
16: // Reorder refIDs array with keys represented by CellIDs.
17: RadixSort(CellIDs, refIDs);
18:

19: // topGrid represents a mip-map of numRefs values.
20: // (resx, resy, resz) is the grid size.
21: // Top mip level has resolution 8 × 8 × 8.
22: Grid topGrid = AllocateGrid(resx, resy, resz, 1);
23: // Uses the most significant 21 bits of cellID. Every
24: // non-empty cell contains a range [refBegin..numRefs)
25: // of refIDs that fall into the cell.
26: int numNonEmptyTopGridCells =
27: BuildTopGrid(topGrid, CellIDs);
28:

29: Grid bottomGrid =
30: AllocateGrid(8, 8, 8, numNonEmptyTopGridCells);
31: // Uses last 9 bits of the CellID and distributes triangles,
32: // every bottom grid is referenced in non-empty cell
33: // of topGrid for transition during hierarchy emission.
34: // Every non-empty bottomGrid cell contains a range
35: // of refIDs that fall into the cell. bottomGrid can also
36: // represent the mip-map of numRefs values.
37: bottomGrid = BuildBottomGrid(topGrid, CellIDs);
38:

39: // Each linkArray[i] references two child nodes or the
40: // range of primitives. Results in a breadth-first layout.
41: EmitHierarchy(bvh.linkArray, topGrid);
42:

43: // Bottom up refit of aabbArray considering the
44: // linkArray hierarchy. The nodes from the same BVH
45: // level are updated in parallel using LevelOffset array
46: // (Algorithm 2)
47: RefitAABB(bvh.aabbArray, bvh.linkArray);

and Slusallek [8] grid construction time is fast, but provides
much slower ray tracing performance.

5 Conclusions

In this paper, we have presented an efficient algorithm
for constructing and adaptive bounding volume hierarchy
in linear time on a GPU. The constructed BVH is used
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Algorithm 2 EmitHierarchy(int2* linkArray, int* sorte-
dRefIDs, Grid topGrid, int numRefs)

1: BVHQueue qSplit[2];
2:

3: // levelOffset[] array and numLevels are
4: // used for bottom-up BVH refitting.
5: int numLevels = 0;
6: int levelOffset[60];
7:

8: int numNodesTotal = 0;
9: int numQElems = 1;

10: int qin = 0;
11:

12: levelOffset[numLevels++] = 0;
13: IAABB box = make_iaabb(0, 0, 0,
14: topGrid.resx, topGrid.resy, topGrid.resz);
15: qSplit[qin] = SplitQueueInit(numRefs, box);
16: numNodesTotal++;
17:

18: // Build the hierarchy of links
19: while numQElems > 0 do
20: LevelOffset[numLevels++] = numNodesTotal;
21:

22: // Evaluates SAH, split each node into two and write
23: // them into qSplit[1−qin] that can be 2× larger
24: // than qSplit[qin].
25: SplitQueueProcess(qSplit[qin], qSplit[1−qin],
26: numQElems);
27:

28: // Compute prefix sum over non-empty qSplit[1−qin]
29: // positions and compact them.
30: int newNumQElems =
31: CompactQueue(qSplit[1-qin], 2*numQElems);
32:

33: // for each i = [0.. newNumQElems)
34: // linkArray[numNodesTotal + i] =
35: // qSplit[1−qin].NodeInfo[i];
36: linkArray = AccumulateLinks(numNodesTotal,
37: qSplit[1−qin], newNumQElems);
38:

39: numQElems = newNumQElems;
40: numNodesTotal + = newNumQElems;
41: qin = 1 − qin;
42: end while

as an acceleration data structure for ray tracing animated
polygonal scenes. We accelerate the construction process
of BVHs using several techniques: compression–sorting–
decompression, an approximated SAH evaluation using uni-
form grids, and limited work to produce a single BVH node.
We do not make any assumptions about the type of geom-
etry or underlying motion. We also address the problem
of long and non-uniformly tessellated triangles that cause
many overlapping bounding boxes. We split long triangles
into several triangle references with tight bounding box ap-
proximations. We demonstrate the performance of resulting
BVHs using path tracing and show that high-quality BVHs

can be constructed quickly and result in fast ray triangle in-
tersections.

In the future, we plan to add support for very large models
and other geometry primitives. It would also be interesting
to test our algorithm on other platforms and adjust imple-
mentation to exploit new architectures.

Appendix

The pseudocode for the building procedure is summarized
in Algorithm 1, and the pseudocode for the actual hierarchy
emission is in Algorithm 2.
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