
Simpler and Faster HLBVH with Work Queues

Kirill Garanzha∗

NVIDIA
Keldysh Institute of Applied Mathematics

Jacopo Pantaleoni∗

NVIDIA Research
David McAllister∗

NVIDIA

Figure 1: Some of our test scenes, from left to right: Conference, Fairy Forest, Turbine Blade and Power Plant.

Abstract

A recently developed algorithm called Hierachical Linear
Bounding Volume Hierarchies (HLBVH) has demonstrated
the feasibility of reconstructing the spatial index needed for
ray tracing in real-time, even in the presence of millions of
fully dynamic triangles. In this work we present a simpler
and faster variant of HLBVH, where all the complex book-
keeping of prefix sums, compaction and partial breadth-first
tree traversal needed for spatial partitioning has been re-
placed with an elegant pipeline built on top of efficient work
queues and binary search. The new algorithm is both faster
and more memory efficient, removing the need for temporary
storage of geometry data for intermediate computations. Fi-
nally, the same pipeline has been extended to parallelize
the construction of the top-level SAH optimized tree on the
GPU, eliminating round-trips to the CPU, accelerating the
overall construction speed by a factor of 5 to 10x.

CR Categories: I.3.2 [Graphics Systems C.2.1, C.2.4,
C.3)]: Stand-alone systems—; I.3.7 [Three-Dimensional
Graphics and Realism]: Color,shading,shadowing, and
texture—Raytracing;

Keywords: ray tracing, real-time, spatial index

1 Introduction

For over 20 years, ray tracing has been considered an of-
fline rendering technology. Historically, its need for a pre-
computed spatial index over the entire geometry dataset,
such as a bounding volume hierarchy (BVH) or a k-d tree
[Wald et al. 2007b], has been the highest barrier to over-
come in making it usable at interactive rates. This barrier
has started to fall down in the last decade, when a new
wave of graphics research has started exploring construction

∗e-mail:{kgaranzha,jpantaleoni,davemc}@nvidia.com

of acceleration structures at interactive rates on both serial
[Wächter and Keller 2006; Wald et al. 2007a] and parallel
architectures [Popov et al. 2006; Shevtsov et al. 2007; Wald
2007; Lauterbach et al. 2009; Zhou et al. 2008]. Finally, re-
cent developments in massively parallel computing allowed
tapping into the domain of real-time rendering, showing that
the construction of bounding volume hierarchies can be per-
formed in a few milliseconds even in the presence of millions
of fully dynamic triangles [Pantaleoni and Luebke 2010].

In this paper we extend the work of Pantaleoni and Luebke
[2010] by introducing a novel variant of their Hierarchical
Linear Bounding Volume Hierarchies (HLBVH) that is both
simpler, faster and easier to generalize. Our first result is
replacing their ad-hoc, complex mix of prefix-sums, com-
paction and partial breadth-first tree traversal primitives
used to perform the actual object partitioning step with a
single, elegant pipeline based on efficient work-queues. Be-
sides greatly simplifying the original algorithm and offering
superior speeds, the new pipeline also removes the need for
all the additional temporary storage that was previously re-
quired. Our second result is the parallelization of the Surface
Area Heuristic (SAH) optimized HLBVH hybrid. This com-
bines the added flexibility of our task-based pipeline with the
efficiency of a parallel binning scheme [Wald 2007]. Overall,
this allows us to get a speedup factor of up to 10x over state-
of-the-art. Beyond this speedup, by parallelizing the entire
pipeline, it may all be run on the GPU, thereby eliminat-
ing the costly copies between the CPU and GPU memory
spaces.

As with the original HLBVH, all our algorithms are imple-
mented in CUDA [Nickolls et al. 2008], relying on freely
available efficient sorting primitives [Merrill and Grimshaw
2010]. On an NVIDIA GTX 480 GPU, the resulting system
can build a very high quality BVH in under 10.5 ms for a
model with over 1.75 million polygons.

2 Background

LBVH and HLBVH: The basis of our work is, as for the
previous version of HLBVH, the original idea introduced by
Lauterbach et al. [2009], who provided a very novel BVH
construction algorithm. The principle is very simple: the
3D extent of the scene is discretized using n bits per dimen-
sion, and each point is assigned a linear coordinate along

a space-filling Morton curve of order n (which can can be
computed by interleaving the binary digits of the discretized
coordinates). Primitives are then sorted according to the
Morton code of their centroid. Finally, the hierarchy is built
by grouping the primitives in clusters with the same 3n bit
code, then grouping the clusters with the same 3(n−1) high
order bits, and so on, until a complete tree is built. As the
3m high order bits of a Morton code identify the parent voxel
in a coarse grid with 2m divisions per side, this process cor-
responds to splitting the primitives recursively in the spatial
middle, from top to bottom.

HLBVH has improved on the basic algorithm in two ways:
first, it provided a faster construction algorithm applying
a compress-sort-decompress strategy to exploit spatial and
temporal coherence in the input mesh. Second, it introduced
a high-quality hybrid builder, in which the top of the hierar-
chy is built using a Surface Area Heuristic (SAH) [Goldsmith
and Salmon 1987] sweep builder over the clusters defined by
the voxelization at level m.

Ingo Wald [Wald 2010] reports a parallel binned-SAH BVH
builder optimized for a prototype many core architecture
called MIC. Similarly to what we do, he builds a cus-
tom scheduler based on task-queues to essentially imple-
ment a very light-weight threading model, avoiding the over-
heads of the builtin hardware threads support. In order to
achieve maximum speed, he spends significant effort quan-
tizing bounding box extents to minimize memory traffic and
packing and accessing data in a ad-hoc Array of Structures
of Arrays format. Moreover, to perform the binning step he
uses substantial amount of local storage to keep duplicate
bin statistics per-thread and avoid frequent use of atomic
instructions on a shared set, requiring an additional paral-
lel merging stage. All this seems to be unnecessary on our
target architecture, most probably due to the much larger
number of supported concurrent hardware threads and the
consequent better latency hiding capabilities. Results are re-
ported only for rather small scenes, and the achieved speed
is significantly lower (4 to 5 times) than that offered by our
hybrid SAH builder.

Uniform Grids: Kalojanov and Slusallek [2009] introduced
real-time algorithms for the construction of uniform grids.
While relatively fast, the construction times for this method
are higher than those required by HLBVH, most notably due
to the fact that spatial partitioning requires object duplica-
tion, a data amplification step that translates into higher
bandwidth requirements. Moreover, the resulting spatial in-
dices often lead to significantly lower traversal performance
during ray tracing, as they don’t allow efficient skipping of
empty space. Hierarchical variants [Kalojanov et al. 2011]
improve both construction times and rendering performance,
but they generally remain slower.

3 Algorithm Overview

As with the original HLBVH [Pantaleoni and Luebke 2010],
our algorithms can be used to create both a standard LBVH
and a higher quality SAH hybrid. However, as the standard
LBVH involves a subset of the work needed for creating the
high quality variant, we will concentrate on the description
of the latter. Similarly to the original LBVH [Lauterbach
et al. 2009], our algorithm starts by sorting primitives along
a 30-bit Morton curve spanning the scene’s bounding box.
Unlike Pantaleoni and Luebke [2010], who used compress-

Figure 2: Efficient queuing with warp-wide reductions.
Each thread computes how many elements to insert in the
output queue independently, but the actual output slots are
computed by a warp-synchronous reduction and a single
per-warp atomic to a global counter. Different warps can
proceed independently.

sort-decompress to accelerate sorting, we perform this stage
of the algorithm relying on a brute force but more efficient
least-significant-digit radix sorting algorithm that was not
available at the time [Merrill and Grimshaw 2010]. However,
following Pantaleoni and Luebke’s observation that Morton
codes define a hierarchical grid, where each 3n bit code iden-
tifies a unique voxel in a regular grid with 2n entries per side,
and where the first 3m bits of the code identify the parent
voxel in a coarser grid with 2m subdivisions per side, we then
proceed to form coarse clusters of objects falling in each 3m
bit bin. This is again an instance of a run-length encod-
ing compression algorithm, and can be implemented with a
single compaction operation.

After the clusters are identified, we partition all primitives
inside each cluster using LBVH-style spatial middle splits,
and then create a top-level tree, partitioning the clusters
themselves with a binned SAH builder similar in spirit to the
one described by Wald et al [2007]. Both the spatial middle
split partitioning and the SAH builder rely on an efficient
task-queue system to parallelize work over the individual
nodes of the output hierarchies. The next sections describe
the main parts of this system in detail.

3.1 Task Queues

The original LBVH performed partitioning in a breadth-first
manner, creating the nodes of the final hierarchy level by
level, starting from the root. As each input node could out-
put either 0 or 2 nodes, each pass performed a prefix sum to
compute the output position of the two children. HLBVH
improved on this by performing a partial breadth first traver-
sal, where several levels were processed at the same time
outputting an entire treelet for each input node. The disad-
vantage of this approach is that processing each level or set
of levels required several separate kernel launches, which is
a relatively large latency operation.

We take an entirely different approach, relying on simple
task queues, where an individual task corresponds to pro-
cessing a single node. At run time, each warp (the physical
SIMT unit of work on NVIDIA GPUs) continues fetching
sets of tasks to process from the input queue, with each set
containing one task per thread, using a single global mem-
ory atomic add per warp to update the queue head. After
each thread in a warp has computed the number of output

Figure 3: Assignment of the morton codes to the prim-
itive centroids (a 2D projection and 4-bit morton codes
are shown). Bottom: sorted sequence of the primitives
where morton codes are used as keys (for every respective
primitive the morton code bits are shown in separate rows;
binary search partitions are shown with bold red lines).

tasks it will generate, all threads in the warp participate in
a warp-wide prefix sum to compute the offset of their output
tasks relative to the warp’s common base. Finally, the first
thread in the warp performs a single global memory atomic
add to compute the base address in the output queue. By
using a separate queue per level, we can do all the processing
inside a single kernel call, while at the same time producing
a breadth-first tree layout. The process is summarized in
Figure 2.

3.2 Middle Split Hierarchy Emission

Once again, we deviate from the previous approaches used
to perform middle splits in LBVH and HLBVH, while gen-
erating exactly the same primitive partitioning. We recall
that each node corresponded to a consecutive range of prim-
itives sorted by their Morton codes, and that splitting a
node required finding the first element in the range whose
code differed from the preceding element.

Previously, this was achieved in a backwards fashion: rather
than processing a single node per thread, with each thread
looking for such a split point, each thread processed a single
Morton code and tried to detect whether it differed from its
predecessor.

If it did, it then elected the point as a split plane for its
parent node. Unfortunately, locating the parent node first
required precomputing a mapping between the primitives
and the containing ranges, which in turn required another
prefix sum.

Figure 4: The middle-split queues corresponding to Fig-
ure 3.

We avoid this complex machinery by reverting to the stan-
dard ordering that would be used on a serial device: we map
each node to a single thread, and let each thread find its own
split plane. However, instead of simply looping through the
entire range of primitives in the node, we observe that it
is possible to reformulate the problem as a simple binary
search. In fact, if the node is located at level l, we know
that the Morton codes of its primitives will have the exact
same set of high l − 1 bits. If we find the first bit p ≥ l
by which the first and the last Morton code in the node’s
range differ, it is then sufficient to perform a binary search
to locate the first Morton code that contains a 1 at bit p.
The process is illustrated in Figure 3 and Figure 4.

The reason this process is particularly efficient is that, for
a node containing N primitives, it finds the split plane by
touching only O(log2(N)) memory cells. The original ap-
proach touched and processed the entire set of N Morton
codes.

Large Leaf Refinement: Middle splits could sometimes fail,
leading to occasional large leaves. When such a failure is
detected, it’s easy to split these leaves by the object-median.

Bounding Box Computation: After the topology of the
BVH has been computed, we run a simple bottom-up re-
fitting procedure to compute the bounding boxes of each
node in the tree. The process is made particularly simple by
the fact that our BVH is stored in breadth-first order. We
use one kernel launch per tree level and one thread per node
in the level.

3.3 Parallel Binned SAH Builder

As previously discussed, we run a SAH-optimized tree con-
struction algorithm over the coarse clusters defined by the
first 3m bits of our Morton curve, with m typically between
5 and 7. Before proceeding to the detailed description of the
algorithm, we note that our algorithms run in a bounded
memory footprint: if we process Nc clusters, we need to
preallocate space only for 2Nc − 1 nodes.

Figure 5: Pseudo-code for the SAH binning procedure.

Pseudo-code for the whole process is given in Figure 5.

In this pass we treat a cluster from the prior pass, with its
aggregate bounding box, as a primitive. Once again, we split
the computation into split-tasks organized in a single input
queue and a single output queue. Each task corresponds to
a node that needs to be split, and is described by three input
fields, the node’s bounding box, the number of clusters inside
the node, and the node id. Two more fields are computed
on-the-fly, the best split plane and the id of the first child
split-task. As shown in Figure 6 we store these in structure-
of-arrays (SOA) format, keeping five separate arrays indexed
by task id. Additionally, we keep an array cluster split id
that maps each cluster to the current node (i.e. split-task) it
belongs to, which we update with every splitting operation.

The loop starts by assigning all clusters to the root node,
forming split-task 0. Then, for each loop iteration, we per-
form the following 3 steps:

binning: a step analogous to that described by Wald et al
[2007a], where each node’s bounding box is split into M ,
typically eight, slab-shaped bins in each dimension. A bin
stores an initially empty bounding box and a count. We
accumulate each cluster’s bounding box into the bin con-
taining its centroid, and atomically increment the count of
the number of clusters falling within the bin. This procedure
is executed in parallel across the clusters: each thread looks
at a single cluster and accumulates its bounding box into the
corresponding bin within the corresponding split-task, using
atomic min/max to grow the bins’ bounding boxes.

Figure 6: Data-flow visualization of the SAH binning
procedure. First, clusters (in orange and green) contribute
to forming the bin statistics of their parent node. Finally,
nodes in the input task queue are split, generating 2 entries
into the output queue (in pink).

SAH evaluation: for each split-task in the input queue, we
evaluate the surface area metric for all the split planes in
each dimension between the uniformly distributed bins and
select the best one. If the split-task contains a single cluster,
we stop the subdivision; otherwise, we create two output
split-tasks, with bounding boxes corresponding to the left
and right subspaces determined by the SAH split.

cluster distribution: the mapping between clusters and
split-tasks is updated, mapping each cluster to one of the
two output split-tasks generated by its previous owner. In
order to determine the new split-task id, it is sufficient to
compare the i-th cluster’s bin id to the value stored in the
best split field of the corresponding split-task:

int old_id = cluster_split_id[i];
int bin_id = cluster_bin_id[i];
int split_id = queue[in].best_split[old_id];
int new_id = queue[in].new_task[old_id];
cluster_split_id[i] =

new_id + (bin_id < split_id ? 0 : 1);

In conclusion, note that there is some flexibility in the order
of the algorithm phases. For example, refitting can be per-
formed separately for bottom-level and top-level phases to
trade off cluster bounding box precision against parallelism.

Scene # of Triangles # of 15-bit Clusters BVH Memory Build Time
final temp new old

Fairy 174k 2.4k 4 MB 33 MB 4.8 ms 23 ms
Conference 282k 2.5k 6.5 MB 36 MB 6.2 ms 45 ms
Stanford Dragon 871k 2.1k 20 MB 51 MB 8.1 ms 81 ms
Turbine Blade 1.76M 2.3k 42 MB 75 MB 10.5 ms 137 ms
Power Plant 12.7M 2.0k 290 MB 367 MB 62.0 ms -

Table 1: Build time and memory consumption statistics for various scenes. The Build Time column reports the building
times for both our new binned SAH HLBVH implementation, and the one from Pantaleoni and Luebke. The Power Plant
could not be built with the previous version of HLBVH due to its higher memory usage.

Scene HLBVH
Morton code setup 0.19 ms
radix sort 1.64 ms
top level SAH build 2.17 ms
middle split emission 3.1 ms
AABB refitting 1.0 ms

Table 2: Timing breakdown for the Stanford Dragon.

4 Results

We have implemented all our algorithms using CUDA.
The resulting source code will be freely available at
http://code.google.com/p/hlbvh/.

We have run our algorithms on a variety of typical ray trac-
ing scenes with various complexity: the Fairy Forest, the
Conference, the Stanford Dragon, the Turbine Blade and
the Power Plant (Figure 1). Our benchmark system uses a
GeForce 480 GTX GPU with 1.5GB of GPU memory, and
a 3GHz 4-core AMD Phenom with 16 GB DDR3 memory,
running CUDA 3.2 and Windows XP-64.

In Table 1 we report absolute build times for our new imple-
mentations of the SAH-based HLBVH. In all cases, our trees
used 4 primitives per leaf. Table 2 provides a more detailed
breakdown of the timings of the individual components of
our builders on one scene.

Besides measuring build performance, we measured the qual-
ity of the trees produced by both our algorithms. Table 7
shows both the traversal performance predicted using the
SAH cost metric [Goldsmith and Salmon 1987], and the mea-
sured performance in the context of a 3-bounce GPU path
tracer.

5 Summary and Discussion

First, we have presented a novel implementation of HLBVH
based on generic task queues, demonstrating how this flexi-
ble paradigm of work dispatching can be used to build sim-
ple and fast parallel algorithms. Second, we used the same
mechanism to implement a massively parallel binned SAH
builder for the high quality HLBVH variant. Since this is
implemented on the GPU the synchronization and memory
copies between CPU and GPU are eliminated. When consid-
ering the elimination of these overheads the resulting builder
is 5-10 times faster than the previous state-of-the-art. When
considering just the kernel times alone it is up to 3 times
faster. The new implementation can produce high quality
bounding volume hierarchies in real-time even for moder-
ately complex models.

The new algorithms are faster than the original HLBVH

Figure 7: Predicted and measured traversal performance
of middle-split HLBVH, our binned SAH-based HLBVH
and a classical SAH sweep builder. The performance mea-
surements were done in the context of 3-bounce path trac-
ing. On the left column, we report 1/SAH cost, on the
right, actual traversal speed. All the values in the chart
are normalized to 1 relative to the SAH sweep builder.
Smaller values are better.

implementation despite the fact that they don’t exploit any
spatial or temporal coherence in the input meshes. This is
possible thanks to the general simplification offered by the
adoption of work queues, which allows significantly reducing
the number of high latency kernel launches and reducing
data transformation passes.

5.1 Future Work

As part of future work, we plan to integrate specialized
builders for clusters of fine intricate geometry, such as hair,
fur and foliage. Further on, this work can be easily inte-
grated with triangle splitting strategies such as those de-
scribed by Ernst and Greiner [2007]. Another interesting av-
enue is to try re-incorporating some of the original compress-
sort-decompress techniques to exploit coherence internal to
the mesh.

5.2 Aknowledgements

We thank the University of Utah for the Fairy scene, Anat
Grynberg and Greg Ward for the Conference scene and the
University of North Carolina for the PowerPlant model. We
are grateful to the anonymous reviewers for their valuable
comments.

References

Ernst, M., and Greiner, G. 2007. Early split clipping for
bounding volume hierarchies. Symposium on Interactive
Ray Tracing 0 , 73–78.

Goldsmith, J., and Salmon, J. 1987. Automatic cre-
ation of object hierarchies for ray tracing. IEEE Computer
Graphics and Applications 7, 5 , 14–20.

Kalojanov, J., and Slusallek, P. 2009. A parallel al-
gorithm for construction of uniform grids. In Proceedings
of the Conference on High Performance Graphics 2009,
ACM, New York, NY, USA, HPG ’09, 23–28.

Kalojanov, J., Billeter, M., and Slusallek, P. 2011.
Two-level grids for ray tracing on GPUs. Computer
Graphics Forum (4).

Lauterbach, C., Garland, M., Sengupta, S., Luebke,
D., and Manocha, D. 2009. Fast bvh construction on
GPUs. Comput. Graph. Forum 28, 2, 375–384.

Merrill, D., and Grimshaw, A. 2010. Revisiting sorting
for GPGPU stream architectures. Tech. Rep. CS2010-03,
Department of Computer Science, University of Virginia,
February.

Nickolls, J., Buck, I., Garland, M., and Skadron, K.
2008. Scalable parallel programming with cuda. ACM
Queue 6, 2, 40–53.

Pantaleoni, J., and Luebke, D. 2010. HLBVH: Hier-
archical LBVH construction for real-time ray tracing of
dynamic geometry. In High-Performance Graphics 2010,
ACM Siggraph / Eurographics Symposium Proceedings,
Eurographics, 87–95.

Popov, S., Günther, J., Seidel, H.-P., and Slusallek,
P. 2006. Experiences with streaming construction of SAH
KD-trees. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, IEEE Computer Society, 89–94.

Shevtsov, M., Soupikov, A., and Kapustin, E. 2007.
Highly parallel fast kd-tree construction for interactive ray
tracing of dynamic scenes. Computer Graphics Forum 26,
3 , 395–404.

Wald, I., Boulos, S., and Shirley, P. 2007. Ray Tracing
Deformable Scenes using Dynamic Bounding Volume Hi-
erarchies. ACM Transactions on Graphics 26, 1, 485–493.

Wald, I., Mark, W. R., Günther, J., Boulos, S., Ize,
T., Hunt, W., Parker, S. G., and Shirley, P. 2007.
State of the Art in Ray Tracing Animated Scenes. In
Eurographics 2007 State of the Art Reports, Eurographics.

Wald, I. 2007. On fast Construction of SAH based Bound-
ing Volume Hierarchies. In Proceedings of the 2007 Eu-
rographics/IEEE Symposium on Interactive Ray Tracing,
Eurographics.

Wald, I. 2010. Fast Construction of SAH BVHs on the
Intel Many Integrated Core (MIC) Architecture. IEEE
Transactions on Visualization and Computer Graphics.
(to appear).

Wächter, C., and Keller, A. 2006. Instant ray trac-
ing: The bounding interval hierarchy. In In Rendering
Techniques 2006 - Proceedings of the 17th Eurographics
Symposium on Rendering, Eurographics, 139–149.

Zhou, K., Hou, Q., Wang, R., and Guo, B. 2008. Real-
time kd-tree construction on graphics hardware. ACM
Trans. Graph. 27, 5, 1–11.

