
EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker Volume 29 (2010), Number 2
(Guest Editors)

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA

Fast Ray Sorting and Breadth-First Packet Traversal for

GPU Ray Tracing

Kirill Garanzha1 and Charles Loop2

1 Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

2 Microsoft Research

Abstract

We present a novel approach to ray tracing execution on commodity graphics hardware using CUDA. We decom-

pose a standard ray tracing algorithm into several data-parallel stages that are mapped efficiently to the massively

parallel architecture of modern GPUs. These stages include: ray sorting into coherent packets, creation of frus-

tums for packets, breadth-first frustum traversal through a bounding volume hierarchy for the scene, and localized

ray-primitive intersections. We utilize the well known parallel primitives scan and segmented scan in order to

process irregular data structures, to remove the need for a stack, and to minimize branch divergence in all stages.

Our ray sorting stage is based on applying hash values to individual rays, ray stream compression, sorting and de-

compression. Our breadth-first BVH traversal is based on parallel frustum-bounding box intersection tests and

parallel scan per each BVH level.

We demonstrate our algorithm with area light sources to get a soft shadow effect and show that our concept is rea-

sonable for GPU implementation. For the same data sets and ray-primitive intersection routines our pipeline is ~3x

faster than an optimized standard depth first ray tracing implemented in one kernel.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Raytracing.

1. Introduction

Ray tracing [Whi80; CPC84; Shi00] is a flexible tool to get
realistic visual effects such as soft shadows, glossy reflec-
tions and global illumination. Ray tracing algorithms rely
on a fundamental trace() method. The purpose of this
trace() method is to find the intersection with the closest
scene primitive for a given ray. Acceleration structures
such as bounding volume hierarchies (BVHs) [KK86] built
on scene geometry make the complexity of trace() loga-
rithmic with respect to the scene size. Ray tracer execution
consists of acceleration structure construction, sampling
techniques, acceleration structure traversal, ray-primitive
intersection and shading. Ray tracing is a parallel algo-
rithm, since all the rays within the same ray generation can
be traced independently.

Our paper is about a faster trace() method (that includes
acceleration structure traversal and ray-primitive intersec-
tion), and not about sampling techniques, shading or accel-
eration structure construction [Wal07; LGS*09].

Generate Rays

Sort Rays

Build Frustums

Frustums Traversal

Local Intersection Tests

Accumulate Shading

Primary Rays

S
e

c
o

n
d

a
ry

 R
a

y
s

Generate Rays

Sort Rays

Build Frustums

Frustums Traversal

Local Intersection Tests

Accumulate Shading

Primary Rays

S
e

c
o

n
d

a
ry

 R
a

y
s

Figure 1: Our ray tracing pipeline. Tracing method is

decomposed into 4 stages: ray sorting, frustum creation,

breadth-first traversal and localized intersection tests.

1 email: garrill@bk.ru
2 email: cloop@microsoft.com

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

Modern desktop GPUs have ~1 TFlops of compute
power and ~150 Gb/sec of bandwidth (such as NVIDIA
GTX 285). But these compute devices are best suited for
streaming data-parallel algorithms with a local and coher-
ent execution and memory access patterns.

In this paper we propose a novel packet-based ray trac-
ing pipeline where the trace() method is represented in four
stages: ray sorting into coherent packets, creation of the
frustums for packets, breadth-first frustum traversal
through a bounding volume hierarchy for the scene, and
localized ray-primitive intersections (see Fig. 1). Our first
contribution is the ray sorting stage that is based on apply-
ing hash values to individual rays, ray stream compression,
sorting and decompression. Our second contribution is the
stack-less breadth-first BVH traversal that is based on par-
allel frustum-bounding box intersection tests and parallel
scan per each BVH level.

Our work was inspired by Arvo and Kirk’s 5D ray trac-
ing [AK87]. In that work a volume in 5D space (3D for
origin and 2D for direction) is used to represent a collec-
tion of rays. The initial 5D volume is decomposed into a
tree of hypercubes that are linked to lists of scene primi-
tives. Using this tree, the rays (5D points) are associated
with a hypercube and tested for intersection with a local list
of primitives. In contrast, we extract the coherent packets
of required rays; efficiently build the list of primitives per
each packet using a 3D bounding volume hierarchy for the
scene (and all the tracing stages are executed on a GPU).

2. Background

2.1 GPU Computing Model

Modern GPUs are composed of several independent SIMD
cores [NVIDIA; NBGS08]. Each core can execute multiple
threads in parallel that communicate via shared on-chip
memory. The GPU supports thousands of parallel threads
that execute 1 simple program (kernel) for different data
elements. The invocation of these kernels is organized in
the host program (running on the CPU). GPU threads are
subdivided into blocks (each block is executed on the sin-
gle GPU core). Shared memory is much faster than global
GPU memory and can be used for inter-thread communica-
tion within a single block of threads. Each block of threads
is organized into several warps (bundles of 32 threads)
which execute a single kernel instruction for the entire
warp of threads.

SIMD/SIMT. SIMT (single instruction multiple threads)
is a superset of SIMD where thread divergence is handled
by hardware. This feature simplifies programming but in
order to get high GPU compute utilization one should or-
ganize the execution so that all the threads within a warp
make the same branching decisions and access coherent
memory locations. If the code of the kernel contains condi-
tions and if some threads within a warp take different
branches then they will execute both code paths bringing

all the other threads of the warp with them. This case pro-
vides multi-branching and complicated memory access
pattern, resulting in a loss of compute efficiency.

Parallel Scan and Segmented Scan. We utilize the well
known parallel primitives scan and segmented scan
[SHG08] in order to process irregular data structures. Par-
allel scan (or prefix sum) for a given array results in the
output array where the ith element is the sum of all the pre-
vious elements of the input array (including the ith element
for inclusive scan and excluding the ith element for exclu-
sive scan). Parallel segmented scan is the same as scan, but
this procedure computes the sum of all the previous ele-
ments within a segment of input array. The input array may
contain arbitrary sized segments that are concatenated in a
contiguous array. The segments of the input array are
specified by an additional array of head flags where all the
elements set to one denote the bases of segments; all the
zero elements denote the tails of segments. [CUDPP] pro-
vides a library of these parallel primitives.

2.2 Ray Tracing Review

Coherent Ray Tracing. Efficient ray-packet generation
and tracing is a challenging task. Recent research has fo-
cused significant effort on improving high coherence situa-
tions [GPSS07; WBS07; HM08; BW09]. These techniques
are successful for primary rays, hard shadows or soft shad-
ows with small area lights. This comes from grouping co-
herent rays together, bounding them within a tight frustum
and then performing the same traversal process for the
group of rays. Such a technique amortizes the average
computational and memory pattern access costs for a single
ray. Ray packet grouping is based on the original screen-
space layout of rays.

Breadth-first ray tracing and ray reordering. Breadth
first ray tracing was first investigated by Hanrahan
[Han86]. The idea behind breadth-first ray tracing is to
form a set of rays and intersect each BVH node against this
set during top down traversal. The set of rays is gradually
reordered for deeper BVH levels [GR08; ORM08] (if there
is no ray-box intersection then the ray reference is elimi-
nated from the set of rays that descends to the node’s chil-
dren). This algorithm amortizes the cost of node access
pattern among the rays. A stack is used to defer intersection
tests for neighboring nodes within a BVH. Our breadth-
first BVH frustum traversal is based on the full parallel
scan for all frustums (and rays) per each BVH level and
does not use a stack. Boulos et al. [BWB08] described a
combination of CPU-based ray reordering techniques for
improved coherence and effect on performance.

GPU Ray Tracing. Most GPU ray tracers are imple-
mented by mapping each ray to one thread. Each ray needs
a separate hierarchy traversal stack with a depth equal to
the maximum depth of the scene hierarchy. The stack is
usually stored in a private thread memory (local memory in

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

CUDA) that is slower than shared memory since it is
mapped to global GPU memory [NVIDIA]. Several works
[HSHH07; GPSS07] described ways to eliminate or miti-
gate stack usage in a GPU ray tracer. But these approaches
have no solution for the warp-wise multi-branching prob-
lem that was analyzed by Aila and Laine [AL09]. This
problem was mitigated by using persistent threads that
fetch the ray tracing task per each idle warp of threads.
Some warps within a block of threads become idle if one
warp executes longer than others. In our ray tracing pipe-
line we eliminate this warp-wise multi-branching at ex-
pense of a long pipeline and special ray sorting. Roger et
al. [RAH07] presented a GPU ray-space hierarchy con-
struction process based on screen-space indexing. Rays
were not actually sorted for better coherence.

3. GPU Ray Tracing Pipeline

In order to map ray tracing to efficient GPU execution we
decompose ray tracing into 4 stages: ray sorting, frustum
creation, breadth-first traveral, and localized ray-primitive
intersections (see Fig. 1).

Ray sorting is used to store spatially coherent rays in
consecutive memory locations. Compared to unsorted rays,
the tracing routine for sorted rays has less divergence on a
wide SIMD machine such as GPU. Extracting packets of
coherent rays enables tight frustum creation for packets of
rays. We explicitly maintain ray coherence in our pipeline
by using this procedure.

We create tight frustums in order to traverse the BVH
using only frustums instead of individual rays. For each
frustum we build the spatially sorted list of BVH-leaves
that are intersected by the frustum. Given that the set of
frustums is much smaller than the set of rays, we perform
breadth-first frustum traversal utilizing a narrower parallel
scan per each BVH level.

In the localized ray-primitive intersection stage, each ray
that belongs to the frustum is tested against all the primi-
tives contained in a list of sorted BVH-leaves captured in a
previous stage.

3.1 Ray Sorting

Our ray sorting procedure is used to accelerate ray tracing
by extracting coherence and reducing execution branches
within a SIMD processor. However, the cost of such ray
sorting should be offset by an increase in performance. We
propose a technique that is based on compression of key-
index pairs. Then we sort the compressed sequence and
decompress the sorted data.

Ray hash. We create the sequence of key-index pairs by
using the ray id as index, and a hash value computed for
this ray as the key. We quantize the ray origins assuming a
virtual uniform 3D-grid within scene’s bounding box. We
also quantize normalized ray directions assuming a virtual

uniform grid (see Fig. 2). We manually specify the cell
sizes for both virtual grids (see section 5.1). With quan-
tized components of the origin and direction we compute
cell ids within these grids and merge them into a 32-bit
hash value for each ray. Rays that map to the same hash
value are considered to be coherent in the 3D-space.

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

1

0

2

34

5

6

7

1

0

2

34

5

6

7

Figure 2: The quantization of ray origin and direction is

used to compute a hash value for a given ray.

Sorting. We introduce a “compression – sorting – de-
compression” (CSD) scheme (see Fig. 3) and explicitly
maintain coherence through all the ray bounce levels. Co-
herent rays hit similar geometry locations. And these hit
points form ray origins for next-generation rays (bounced
rays). There is a non-zero probability that some sequen-
tially generated rays will receive the same hash value. This
observation is exploited and sorting becomes faster. The
compressed ray data is sorted using radix sort [SHG09].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

Chunk Base:

Chunk Size:

Chunk Hash:
03 79 1417

34 25 33

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19Reordered IDs:

Hash values:

Decompress

Compress

Sort (radix, bitonic)

Figure 3: The overall ray sorting scheme.

Compression. We create the array Head Flags equal in
size to the array Hash values. All the elements of Head

Flags are set to 0 except for the elements whose corres-
ponding hash value is not equal to the previous one (see
Fig. 4). We apply an exclusive scan procedure [SHG08] to
the Head Flags array.

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

0 3 7 9 14 17

3 4 2 5 3 3

Chunk Base:

Chunk Size:

Chunk Hash:

1 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0Head Flags:

0 1 1 1 2 2 2 2 3 3 4 4 4 4 4 5 5 5 6 6Scan(Head Flags):

Figure 4: Compression example.

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

We then perform data compaction into Chunk Base and
Chunk Hash arrays: for each Head Flagsi = 1 we write the
value i into position of Chunk Base array specified by
Scan(Head Flags)i. Analogously, we build Chunk Hash
array. The values of Chunk Size elements are equal to dif-
ferences between neighboring Chunk Base elements.

Decompression. When the compressed data is sorted we
apply an exclusive scan procedure to the Chunk Size array
(see Fig. 5). We initialize the array Skeleton with ones, and
the array Head Flags with zeroes (the sizes of both arrays
are equal to Hash values array). Into positions of the array
Skeleton specified by Scan(Chunk Size) we write the cor-
responding values of Chunk Base array. Into positions of
the array Head Flags specified by Scan(Chunk Size) we
write ones. We then apply an inclusive segmented scan
[SHG08] to array Skeleton considering the Head Flags
array that specifies the bounds of data segments. The result
of the segmented scan is the array of reordered (sorted) ray
ids corresponding to their hash values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 79 1417

34 25 33

Scan(Chunk Size): 0 94 1711 14

3 1 1 1 9 1 1 1 1 7 1 17 1 1 0 1 1 14 1 1S = Skeleton:

0 1 23 4 5 6 7 89 10 11 12 13 14 15 1617 18 19SegScan(S, F):

1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0F = Head Flags:

Hash values:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Ray IDs:

Hash values:

Chunk Base:

Chunk Size:

Chunk Hash:

Sorted Chunks

Reordered IDs = SegScan(S, F)

Figure 5: Decompression example.

Decomposition: packet ranges extraction. We would
like to create packets of coherent rays no larger than some
capacity (e.g., MaxSize = 256). First, we extract the base
index and range of each cell that contains the chunk of rays
with the same hash value. In order to do this we apply the
compression procedure described above to the array of
sorted rays. As a result each element of Chunk Size repre-
sents the number of rays assigned to the corresponding grid
cell (see Fig. 6).

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

0 1 2 3 4 5 6

Chunk Base:

Chunk Size:

Chunk Hash:

0 9

39 5 3

numPackets: 3 2 11

0 4 4 9 4S = Skeleton:

0 4 8 9 14 17SegScan(S, F):

1 0 0 1 0 1 1F = Head Flags:

14 17

Scan(numPackets): 0 3 65

14 17

13

Ray Packet Base = SegScan(S, F)

Figure 6: Decomposition example. On this example each

chunk is decomposed into the packets of MaxSize = 4.

 We create the array numPackets where numPacketsi =

(ChunkSizei + MaxSize – 1) / MaxSize and then scan this
array. All the values of Skeleton are initially set to MaxSize
and all values of Head Flags are set to zero. Into positions
of the array Skeleton specified by Scan(numPackets) we
write the corresponding values of array Chunk Base. Into
positions of the array Head Flags specified by
Scan(numPackets) we write ones. As in the decompression
procedure, we apply an inclusive segmented scan to array
Skeleton considering the Head Flags. The result of this
segmented scan is the array of base indices for each ray
packet, the size of a ray packet is found as the difference of
consecutive bases.

3.2 Frustum Creation

Once the rays are sorted and packet ranges extracted, we
build a frustum for each packet. As in the work [ORM08],
we define the frustum by using a dominant axis and two
axis-aligned rectangles. The dominant axis corresponds to
the ray direction component with a maximum absolute
value. For the coherent rays of a packet this axis is assumed
to be the same. The two axis-aligned rectangles are
perpendicular to this dominant axis and bound all the rays
of the packet (see Fig. 7).

X

Y

Z

X

Y

Z
Figure 7: Frustum is defined by dominant axis X and two

axis-aligned rectangles.

We implemented the frustum creation in a single CUDA
kernel where each frustum is computed by a warp of (32)
threads. Shared memory is used to compute the valid in-
terval along the dominant axis and base rectangles for all
the rays in a packet.

3.3 Breadth-First Frustum Traversal

We perform breadth-first frustum traversal through the
BVH with the arity equal to eight. The binary BVH is
constructed on the CPU and 2/3rds of tree levels are
eliminated and an Octo-BVH is created (all the nodes are
stored in a breadth-first storage layout). Each BVH-node is
represented with 32 bytes: six float values for the axis-
aligned bounding box (AABB), one 32-bit integer value
represents the block of children (3 bytes for the base offset
of the block and 1 byte for the number of children), and
one 32-bit integer for the spatial order of children within
this node. All the children within the node are sorted in a
spatial 3D ascending order (see Fig. 8).

Per frustum child ordering. For each frustum, a 3-bit
value of F(DirSigns) is computed that corresponds to the
sign bits of the average frustum’s ray direction. The spatial
order of node’s children along the frustum direction is

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

computed using an xor-operation: SortedChildren[i] = i ^

F(DirSigns). See Fig. 8 for examples. Though this ordering
may not be exact for all the cases, it is simple and sufficient
for our purposes.

Traversal. For simplicity, we allocate a large memory
block for the working queues (e.g. 4-8 million elements)
used in the traversal procedure. We initialize the array
Qin.FrustumIDs with frustum ids, and the array of
Qin.NodeIDs with the BVH root node id (i.e. with a zero).
At each iteration step (for each level) of the traversal pro-
cedure we perform intersection tests for each frustum cor-
responding to Qin.FrustumIDsi with all the children of the
BVH-node specified by Qin.NodeIDsi (using AABB-
Frustum culling). The number of intersected children is
saved in numIntersectedi. Spatially sorted 3-bit local offsets
of the intersected children are packed in a single word
SortedChildreni (see Fig. 9). We apply an exclusive scan
procedure to the numIntersected array. Into the chunk of
the array Qout.FrustumIDs specified by offset equal to
Scan(numIntersected)i and length equal to numIntersectedi
we propagate the value of Qin.FrustumIDsi. Into the corre-
sponding chunk of Qout.NodeIDs we write global ids of
the children that were packed in SortedChildreni. A global
id for k-th child of node is computed as the sum of k and
the base offset of node’s children. Then we swap the point-
ers Qin and Qout. This iterative procedure is repeated for
all the levels of the BVH. The leaf-nodes of unbalanced
tree are considered to be the children of themselves and we
bring them to the bottom level of the tree. The number of
levels is reduced by using Octo-BVH.

Init a queue with
Frustum IDs vs. root node

Scan(numIntersected):

0 1 2 3 4 5 6 7 8 9

Qin.FrustumIDs:

Qin.NodeIDs:

F0 F0 F1 Fi Fi Fk Fr Fr

NA NB NC ND NE NF NG NH

numIntersected: 2 1 2 0 0 1 2 2

0 2 3 5 5 5 6 8

Qout.FrustumIDs:

Qout.NodeIDs:

F0 F0 F0 F1 F1 Fk Fr Fr

NAL NAR NBL NCL NCR NFL NGL NGR

Fr Fr

NHL NHR

Qin.FrustumIDs:

Qin.NodeIDs:

F0 F1 F2 F3 F4 F5 F6 F7

N0 N0 N0 N0 N0 N0 N0 N0

SortedChildren: SNA SNB SNC SND SNE SNF SNG SNH

Scatter frustums and intersected children IDs

Test frustum intersection with node’s children

Repeat for all BVH-levels
Swap(Qin, Qout)

Init a queue with
Frustum IDs vs. root node

Scan(numIntersected):

0 1 2 3 4 5 6 7 8 9

Qin.FrustumIDs:

Qin.NodeIDs:

F0 F0 F1 Fi Fi Fk Fr Fr

NA NB NC ND NE NF NG NH

numIntersected: 2 1 2 0 0 1 2 2

0 2 3 5 5 5 6 8

Qout.FrustumIDs:

Qout.NodeIDs:

F0 F0 F0 F1 F1 Fk Fr Fr

NAL NAR NBL NCL NCR NFL NGL NGR

Fr Fr

NHL NHR

Qin.FrustumIDs:

Qin.NodeIDs:

F0 F1 F2 F3 F4 F5 F6 F7

N0 N0 N0 N0 N0 N0 N0 N0

F0 F1 F2 F3 F4 F5 F6 F7

N0 N0 N0 N0 N0 N0 N0 N0

SortedChildren: SNA SNB SNC SND SNE SNF SNG SNH

Scatter frustums and intersected children IDs

Test frustum intersection with node’s children

Repeat for all BVH-levels
Swap(Qin, Qout)

Figure 9: Breadth-first frustums’ traversal example.

After all traversal iterations are finished the
Qout.FrustumIDs array contains the irregular chunks with
the same values (frustum ids were propagated per chunk).
The corresponding chunks of Qout.NodeIDs array contain
the references to the intersected BVH leaves that are ap-
proximately spatially sorted along the frustums. We extract
the array of distinct frustum ids (active frustums) and the
corresponding ranges of leaf-chunks with a compression
procedure applied for Qout (see section 3.1, replace Hash

values with Qout.FrustumIDs in example Fig. 4).

3.4 Localized Intersection Tests

When we obtain the array of active frustum ids and corre-
sponding ranges of leaf-chunks per frustum we decompose
all the active frustums into chunks of 32 rays max (ray

warps) – since the numbers of rays per frustum may not be
equal. This decomposition is done analogously to the ex-
ample in Fig. 6. Each ray warp is mapped to a CUDA
thread warp execution (32 threads in a warp). All rays
within a warp share the same frustum id that determines the
computations and memory reads (see Fig. 10). This kind of
execution eliminates multi-branching within a CUDA warp
of threads and only ray masking remains. In this stage we
exploit the sorted list of leaves per each frustum. For all
rays in each ray warp the intersections are analyzed for the
closest triangles first and ray distance parameters are up-
dated. Using updated ray distance parameters we avoid
intersection tests for occluded triangles (using ray-AABB
test). We use CUDA persistent threads [AL09] in order to
balance the workload since the frustums may capture ir-
regular chunks of intersected leaves during traversal stage.

while(ray warps are available) { // persistent

 RayWarp = fetch_next_warp(); // threads [AL09]

 Ray = fetch_ray(RayWarpBase + threadIdx.x);

 FrustumId = frustum_id(RayWarp);

 for(all leaves(FrustumId))
 if(Ray intersects AABB(Leafi))// mask rays
 for(all primitives(Leafi) // coherent reads
 intersect Ray with a primitivej;
}

Figure 10: CUDA kernel of localized ray-primitive

intersection tests. threadIdx.x belongs to interval [0..32).

4. Benchmark Implementation

We test the new ray tracing pipeline for primary rays (at
1024x768 resolution) and soft shadow rays (with area light
source and 16 samples maximum per shade point).

In the ray sorting stage we sort only ray origins for soft
shadow samples (see Fig. 2). The virtual uniform grid for
ray sorting has a user-specified size of the cell (cells are
cubical). This size is selected as the fraction of scene’s
bounding box extents: CellSize = UserCellFraction *

SceneBboxDiagonal. Ray directions are sorted per each
origin according to the stratified sampling over the light
source domain. For big area light sources the rays that hit 4
or 16 different stratums are assigned to 4 or 16 different
frustums (however some rays may share the same origins).

00
01

X

Y

1101 1000 1000 1101

F(DirSigns) = 10

0111 0010

Sorted Children:

0010 0111

F(DirSigns) = 11

Sorted Children:

F(DirSigns) = 00

Sorted Children:

F(DirSigns) = 01

Sorted Children:

10
11

Within a node all the

children are stored in a

spatial 3D ascending order00
01

X

Y

1101 1000 1000 1101

F(DirSigns) = 10

0111 0010

Sorted Children:

0010 0111

F(DirSigns) = 11

Sorted Children:

F(DirSigns) = 00

Sorted Children:

F(DirSigns) = 01

Sorted Children:

10
11

Within a node all the

children are stored in a

spatial 3D ascending order

Figure 8: Four examples of node’s children ordering

along the frustum are presented in a 2D projection.

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

Within a compression-sorting-decompression (CSD)
scheme we use a full 32-bit radix sort [SHG09]. It is possi-
ble to apply a faster partial sorting procedure (e.g. bitonic
sort from CUDA SDK) that locally sorts data within the
equal chunks of compressed ray buffer. This procedure
may extract reasonable, but not perfect ray coherence.

Primary rays are indexed and sorted according to a
screen-space Z-curve (256 rays per primary frustum).

We use the Utah Fairy Forest (174K triangles), Confer-
ence (280K triangles), and Sponza (68K triangles) as the
test scenes for our algorithm (all tested viewpoints are pre-
sented on Fig. 11). We build a binary BVH on the CPU for
these models using a binning algorithm [Wal07]; we stop
recursive construction and create a leaf when a BVH-node
contains less than (or equal to) 10 triangles. As a ray-
triangle intersection test we use the scheme of Möller-
Trumbore [MT97].

(a) Fairy Forest (simple view)

(b) Fairy Forest (complex view)

(c) Conference

(d) Sponza

Figure 11: Benchmark scenes and tested viewpoints. Right

column: an example of soft shadow frustum origins.

All measurements were done using an NVIDIA GTX
285 and all the kernels were compiled using CUDA 2.2
[NVIDIA]. We compare the new ray tracing pipeline with
our implementation of “persistent speculative while-while”
(the most efficient) ray tracing kernel described by Aila and
Laine [AL09]. For both methods the same data-sets, BVH,
intersection tests and viewpoints are used (for the new
pipeline we convert the binary BVH to the Octo-BVH).

When we measure ray tracing performance (millisec-
onds, rays/second) for the new pipeline we take into ac-
count only tracing-specific stages: “sort rays”, “build frus-

tums”, “traversal”, “intersection tests” (see Fig. 1).

In our [AL09] implementation we replace three of our
logic stages “build frustums”, “traversal”, “intersection

tests” with a single “trace” kernel described in [AL09]. In
all performance measurements we take into account only
“trace” timings, but still this method works with sorted
rays (for these rays CUDA thread warps should execute
with less divergence). Ray sorting timings are not taken
into account when we evaluate [AL09] performance.

5. Results and Analysis

5.1 Ray Quantization Parameters Evaluation

UCF Fig.11(a) Fig.11(b) Fig.11(c) Fig.11(d)

MaxSize=128

0.002 681K / 108K / 31 432K / 67K / 31.9 859K / 119K / 30 721K / 77K / 30.8

0.004 668K / 97K / 31.6 444K / 66K / 31.9 691K / 91K / 30.9 610K / 66K / 31.4

0.008 690K / 91K / 31.9 461K / 65K / 31.9 618K / 78K / 31.7 557K / 60K / 31.8

0.016 709K / 89K / 31.9 467K / 65K / 31.9 640K / 74K / 31.9 546K / 59K / 31.9

MaxSize=256

0.002 521K / 80K / 30.5 232K / 35K / 31.9 945K / 116K / 29 512K / 50K / 30.9

0.004 444K / 57K / 31.5 233K / 34K / 31.9 572K / 62K / 30.8 378K / 37K / 31.5

0.008 445K / 48K / 31.9 254K / 33K / 31.9 438K / 44K / 31.6 318K / 32K / 31.8

0.016 500K / 46K / 31.9 258K / 33K / 31.9 447K / 39K / 31.9 303K / 30K / 31.9

MaxSize=512

0.002 430K / 66K / 30.6 130K / 19K / 31.8 792K / 96K / 29.5 494K / 45K / 30.8

0.004 317K / 35K / 31.5 134K / 18K / 31.9 431K / 44K / 31.0 283K / 25K / 31.5

0.008 313K / 26K / 31.8 144K / 17K / 31.9 303K / 26K / 31.6 189K / 14K / 31.8

0.016 328K / 24K / 31.9 148K / 16K / 31.9 294K / 21K / 31.9 171K / 16K / 31.9

Table 1: Ray quantization parameters and working statistics

for soft shadows: the number of leaves references captured

for all frustums by traversal stage / the number of frustums /

avgerage number of rays per ray warp (frustums are

decomposed into ray warps in intersection stage). This data

depends on the size of frustums; the size of each frustum

depends on the UserCellFraction and MaxSize. A bigger

value of UCF (UserCellFraction) denotes a bigger cubic cell

in a virtual grid (according to which ray origins are

quantized). MaxSize denotes the maximum capacity (in rays)

per each frustum. This data is presented for the fixed area

light source. Performance is given on Fig. 12.

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

Traversal and intersection statistic for different ray quan-
tization parameters are given in Table 1. E.g. LS = “the

number of leaves captured for all frustums” and FS = “the

number of frustums” represent the working queue size of
the breadth-first traversal. A relation LS / FS is the average
number of leaves captured per each frustum. For all quanti-
zation parameters (given in Table 1) a value of this relation
is around 10. Given the fact that we build the BVH with
~10 triangles per leaf the maximum number of triangle
intersection tests per ray in our benchmarks should be
~100. But all the leaves are sorted along the frustum direc-
tion and we perform ray masking (i.e. if the AABB of the
leaf is not intersected, see Fig. 10) so the actual number of
ray-triangle intersection tests can be much lower.

Actual performance of ray tracing is given in Fig. 12 (for
the viewpoints presented in Fig. 11) and it is not clear what
parameters are the best for all scenes. However selecting
MaxSize=256 and UserCellFraction=0.004 seems to be
robust for high performance ray tracing and leads to rela-
tively small working queues. We use these parameters for
all the following measurements and comparisons.

5.2 Ray Tracing Pipeline Stages

Fig. 13 presents the time spent in different stages of our
pipeline for soft shadows with a fixed light source. For the
left chart 1024x768 elements are sorted in a ray sorting
stage. This stage takes ~6ms for all scenes and includes
hash value computation, compression, 32-bit radix sort,
decompression, frustum ranges extraction. For the right
chart 1024x768x16 elements are sorted in ~40ms with a
CSD scheme (including all the supplementary routines). In
contrast, only the 32-bit radix sort (without CSD) for
1024x768x16 elements takes ~80ms.

0% 25% 50% 75% 100%

Fig.11(d)

Fig.11(c)

Fig.11(b)

Fig.11(a)

0% 25% 50% 75% 100%

Fig.11(d)

Fig.11(c)

Fig.11(b)

Fig.11(a)

Ray Sorting
Build Frustums
Traversal
Localized Intersections

Figure 13: Time spent in logic stages of ray tracing

pipeline for soft shadow rays. Left chart: 16 shadow rays

were generated per primary hit point. Right chart: 1

shadow ray was generated per primary hit point (with 4x4

per pixel antialiasing). For the right chart data there are

16 shadow samples per pixel (and we sort 16x more ray

origins overall than for the left chart data).

5.3 Comparison with a Depth-first Ray Tracing

The charts in Fig. 14 represent our pipeline in comparison
to our implementation of the Aila and Laine approach
[AL09]. The gap between two approaches is bigger for soft
shadow rays that are less coherent since we reduce warp-
wise branches in our ray tracing pipeline (we have only ray
masking in intersection stage, see Fig. 10).

Primary rays (at 1024x768):

56

26
46 40

63
50

69
81

0

25

50

75

100

Fig.11(a) Fig.11(b) Fig.11(c) Fig.11(d)

M
ra

y
s
/s

e
c

Soft Shadow rays (at 1024x768x16 samples):

34 24
46 46

123 112
147 153

0

50

100

150

200

Fig.11(a) Fig.11(b) Fig.11(c) Fig.11(d)

M
ra

y
s
/s

e
c

[AL09] New Pipeline

Figure 14: Performance comparison of our ray tracing

pipeline and our implementation of [AL09] (bigger

numbers are better). See Fig. 11 for viewpoints.

Performance measurements (rays per second) of the
depth-first ray tracing implementation [AL09] may be dif-
ferent from results published in this paper. We build the
BVH with another algorithm without tessellating large
triangles; we use different triangle intersection tests, differ-
ent viewpoints and sampling techniques. But the input data
and all these intersection routines are the same for our
comparisons. Careful splitting of large triangles may pro-
vide significant speedup for ray tracing (e.g. 2-3x [DK08;

Fig. 11 (a)

90

103

115

128

140

0,002 0,004 0,008 0,016
UCF

Fig. 11 (b)

95

100

105

110

115

0,002 0,004 0,008 0,016
UCF

Fig. 11 (c)

110

120

130

140

150

0,002 0,004 0,008 0,016
UCF

Fig. 11 (d)

130

140

150

160

0,002 0,004 0,008 0,016
UCF

MaxSize=128

MaxSize=256

MaxSize=512

Figure 12: Ray quantization parameters and performance

in million rays / second for soft shadow rays (bigger

numbers are better). Parameters meaning and stats are

given in Table 1.

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

EG07]). Our scenes contain large triangles. Low level op-
timizations are not applied yet for our new pipeline and the
implementation of [AL09].

5.4 Scalability

The charts on Fig. 15 represent ray tracing timings for lar-
ger light source (less coherent ray directions) and different
sampling rates (less dense packets for our pipeline). The
relative speedup of our approach compared to [AL09] is
increased for the viewpoint on Fig. 11b. This viewpoint
was analyzed in our benchmarks since the depth of geome-
try is highly varying in a screen-space as well as for
shadow rays. This setup can be considered as the hard case
for packet-based ray tracers (or ray tracers that rely on wide
SIMD/SIMT units only). A difficult part for these tech-
niques is that individual rays may make different decisions
during traversal and follow different branches. But all these
individual decisions will bring any other rays within a
packet or warp of threads to the useless paths for them.
This case provides multi-branching and complicated mem-
ory access pattern that affects ray tracing performance. In
our approach we explicitly maintain a linear execution
without multi-branching but within a longer pipeline.

5.5 Discussion

The new ray tracing pipeline provides the possibility to
trace relatively big packets of rays and perform efficient
view-independent queries using a breadth-first frustum
traversal. Memory access patterns for breadth-first traversal
are coherent as we perform operations in parallel for each
BVH level (and the BVH is stored in a breadth-first lay-
out). The warp-wise execution and memory access pattern

of the intersection stage are also coherent according to the
explicit work-load organization.

Since we store all the leaf references for all the frustums
the memory consumption may be considerable (and we
also store the rays). But this consumption may be reduced
through using a screen-space tiling (send reasonably big
tiles to render on the GPU) or even frustum depth tiling.

A bad case for our algorithm (and for many others)
would be if one frustum captures all the leaves of the
scene’s BVH and other frustums capture nothing during
breadth-first traversal. This would cause a very unbalanced
workload for the intersection stage that will be not hidden
or amortized by persistent threads. In this case it is possible
to replicate the ray hit information (hit distance parameter
and primitive id) of this frustum into n instances. Then
each of these instances perform parallel intersection tests
with 1/nth of the leaves for this frustum. After all the inter-
sections are tested then all results are merged by segmented
parallel reduction with a min-operation. This reduction can
be implemented much like segmented scan [SHG08].

BVH traversal. For our pipeline we convert a binary
BVH to the Octo-BVH since this operation reduces the
height of the tree by a factor of 2-3 and reduces the number
of calls for the scan operation. Octo-BVH also increases
the number of AABB-frustum culling tests and texture
fetches per each traversal thread (8 node children are tested
per thread). Overall, the breadth-first traversal stage with
the Octo-BVH is 2x faster than with a binary BVH.

We actually implemented the depth-first traversal stage
for created frustums (where each frustum selects K leaves

Fig.11(a) Fig.11(b)

Scalability: larger area light source (16 shadow samples)

248 265

77 95
130

298

0

50

100

150

200

250

300

1 x larger (initial) 4 x larger (medium) 16 x larger (big)

m
s

[AL09] New Pipeline

336 350

78 83 91

380

0
50

100
150
200
250
300
350
400

1 x larger (initial) 4 x larger (medium) 16 x larger (big)

m
s

[AL09] New Pipeline

Scalability: # of shadow rays for big area light source

44
98

42 64
130

298

0

50

100

150

200

250

300

1spp 4spp 16spp

m
s

[AL09] New Pipeline

64
142

18 34
91

380

0
50

100
150
200
250
300
350
400

1spp 4spp 16spp

m
s

[AL09] New Pipeline

Figure 15: Timings comparison of our pipeline and our implementation of [AL09] in a Fairy Forest (see Fig. 11a,b)

(smaller numbers are better). These charts represent the difference between two approaches in shadow tracing for larger

area light sources (with the same # of rays) and for the different # of samples (with a fixed light source).

Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

and the intersections are performed in another stage). But
depth-first traversal was 5x slower than a breadth-first one.

Comparison to CPU ray tracer. We also implemented
a CPU ray tracer with our packet assembling approach
(sorting only origins of shadow samples). These origins
were sorted using a binning approach for grids assigned to
screen-space tiles. We employed CPU-friendly algorithms:
tile-based multi-core parallelism, depth-first traversal,
SIMD instructions, advanced triangle culling techniques
and other state of the art CPU optimizations that are very
similar to the approaches described in [BW09]. Although
no details are presented on the charts, our new ray tracing
pipeline running on a GTX 285 is ~4x faster than a CPU-
friendly implementation running on a Core 2 Quad 2.4GHz
Q6600. We used almost the same scene setup to compare
both versions (the same scenes and BVHs, but different
viewpoints and execution routines).

6. Conclusion and Future Work

In this paper we have presented a novel ray tracing pipeline
using CUDA. This pipeline consists of multiple data-
parallel stages where the warp-wise multi-branching is
eliminated. We rely on the ray sorting procedure and ex-
plicitly maintain coherent execution within all the stages of
our pipeline. We have proposed a simple compression-
sorting-decompression (CSD) technique in order to accel-
erate the ray sorting stage. We have proposed a fast stack-
less breadth-first frustum traversal algorithm that supports
view-independent queries by using a full parallel scan of
each BVH level.

An advantage of our work is that it is a software pipeline
that runs on existing GPU (this means flexibility). We have
also shown that the ray tracing executed in our pipeline is
faster than current state of the art GPU or CPU ray tracers.
Though our results and implementation are still prelimi-
nary, we expect performance improvement for Whitted ray
tracing and path tracing. A complete solution should take a
large number of rays (e.g. a set of arbitrary rays from a
single ray-generation level) at input and provide intersec-
tion information at output (for shading stage).

We are going to extend the application of our CSD tech-
niques. First, we will implement a faster GPU-based accel-
eration structure (BVH) builder using the Z-curve index-
ing, sorting, compression, BVH-construction [LGS*09]
and decompression. Second, we are going to accelerate the
stream reordering for deferred shading [HLJH09].

Finally, we are going to integrate a Reyes-style adaptive
smooth surface subdivision [EML09] into our ray tracing
pipeline that will rely on frustum-patch subdivision crite-
rion. Assuming the view-independent ray tracing queries,
this feature should increase the visual quality of geometry
appearance.

Acknowledgments

We thank the University of Utah for the Fairy scene, Anat
Grynberg and Greg Ward for Conference scene and Marko
Dabrovic for Sponza Atrium scene. We are grateful to the
anonymous reviewers for their valuable comments.

References

[AK87] ARVO J., KIRK D.: Fast ray tracing by ray classifi-
cation. ACM SIGGRAPH Computer Graphics 21, 4
(1987), 55–64.

[AL09] AILA T., LAINE S.: Understanding the Efficiency of
Ray Traversal on GPUs. In Proceedings of the High Per-

formance Graphics (2009).

[BW09] BENTHIN C., WALD I.: Efficient Ray Traced Soft
Shadows using Multi-Frusta Tracing. In Proceedings of

the High Performance Graphics (2009).

[BWB08] BOULOS S., WALD I., BENTHIN C.: Adaptive Ray
Packet Reordering. In Proceedings of the 2008 IEEE/EG
Symposium on Interactive Ray Tracing (2008).

[CPC84] COOK R., PORTER T., CARPENTER L.: Distributed
Ray Tracing. Computer Graphics (Proceedings of
SIGGRAPH 84) 18, 3 (1984), 137–144.

[CUDPP] CUDPP: CUDA data parallel primitives library,
(2009). http://www.gpgpu.org/developer/cudpp/.

[DK08] DAMMERTZ H., KELLER A.: The Edge Volume Heu-
ristic – Robust Triangle Subdivision for Improved BVH
Performance. In Proceedings of the 2008 IEEE/EG Sym-
posium on Interactive Ray Tracing (2008).

[EG07] ERNST M., GREINER G.: Early split clipping for
bounding volume hierarchies. In Proceedings of the 2007
IEEE/EG Symposium on Interactive Ray Tracing (2007).

[EML09] EISENACHER C., MEYER Q., LOOP C.: Real-Time
View-Dependent Rendering of Parametric Surfaces. In
Proceedings of ACM SIGGRAPH Symposium on Interac-

tive 3D Graphics and Games (I3D) (2009).

[GR08] GRIBBLE C.-P., RAMANI K.: Coherent Ray Tracing
via Stream Filtering. In Proceedings of the 2008
IEEE/EG Symposium on Interactive Ray Tracing (2008).

[GPSS07] GÜNTHER J., POPOV S., SEIDEL H.-P. and
SLUSALLEK P.: Realtime ray tracing on GPU with BVH-
based packet traversal. In Proceedings of the 2007
IEEE/EG Symposium on Interactive Ray Tracing (2007).

[HAN86] HANRAHAN P.: Using caching and breadth first
traversal to speed up ray tracing. In Proceedings of the
Graphics Interface (1986).

[HM08] HUNT W., MARK W.-R.: Ray-Specialized Accel-
eration Structures for Ray Tracing. In Proceedings of the
2008 IEEE/EG Symposium on Interactive Ray Tracing
(2008).

 Kirill Garanzha & Charles Loop / Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

[HLJH09] HOBEROCK J., LU V., JIA Y., HART J.C.: Stream
Compaction for Deferred Shading. In Proceedings of the

High Performance Graphics (2009).

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M.,
HANRAHAN P.: Interactive k-d tree GPU ray tracing. In
Proceedings of the 2007 symposium on Interactive 3D

graphics and games (2007).

[KK86] KAY T., KAJIYA J.: Ray tracing complex scenes. In
Proceedings of SIGGRAPH (1986), 269–278.

[LGS*09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast BVH Construction on
GPUs. In Proceedings of Eurographics (2009).

[MT97] MÖLLER T., TRUMBORE B.: Fast, minimum storage
ray triangle intersection. JGT, 2(1): 21-28, (1997).

[NBGS08] NICKOLLS J., BUCK I., GARLAND M., SKADRON

K.: Scalable parallel programming with CUDA. Queue 6,
2 (2008), 40–53.

[NVIDIA] NVIDIA Corporation. NVIDIA CUDA Pro-
gramming guide (2009).

[ORM08] OVERBECK, R., RAMAMOORTHI, R., MARK, W.-R.:
Large Ray Packets for Real-time Whitted Ray Tracing. In
Proceedings of the 2008 IEEE/EG Symposium on Inter-

active Ray Tracing (2008).

[RAH07] ROGER D., ASSARSSON U., HOLZSCHUCH N.:
Whitted Ray-Tracing for Dynamic Scenes using a Ray-
Space Hierarchy on the GPU. In Proceedings of Euro-

graphics Symposium on Rendering (2007).

[SHG08] SENGUPTA S., HARRIS M., GARLAND M.: Efficient
parallel scan algorithms for GPUs. NVIDIA Technical

Report NVR-2008-003 (December 2008).

[SHG09] SATISH N., HARRIS M., GARLAND M.: Designing
efficient sorting algorithms for manycore GPUs. In Pro-

ceedings 23rd IEEE International Parallel and Distrib-

uted Processing Symposium (2009).

[Shi00] SHIRLEY P.: Realistic Ray Tracing. AK Peters, Ltd.,

2000.

[WAL07] WALD I.: On fast Construction of SAH-based
Bounding Volume Hierarchies. In Proceedings of the

IEEE/EG Symposium on Interactive Ray Tracing (2007).

[WBB08] WALD I., BENTHIN C., BOULOS S: Getting Rid of
Packets – Efficient SIMD Single-Ray Traversal using
Multi-branching BVHs. In Proceedings of the 2008
IEEE/EG Symposium on Interactive Ray Tracing (2008).

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray Tracing
Deformable Scenes using Dynamic Bounding Volume
Hierarchies. ACM Transactions on Graphics 26, 1
(2007), 1–18.

[WHI80] WHITTED T.: An improved Illumination Model for
Shaded Display. Communications of the ACM 23, 6
(1980), 343–349.

