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Abstract 
In this paper we propose an improvement for background 
subtraction algorithms for specific video surveillance scenario. 
We consider a case, when a video camera is attached to a wall 
and observes people walking by or coming up to the camera. We 
propose 2 foreground mask models and show how to integrate 
these new mask constraints into common background subtraction 
techniques – pixel-based algorithms and methods, based on 
graphical models. 
The proposed modifications have no parameters and add little 
computational overhead. Experiments, conducted on our own 
video sequences, demonstrate segmentation accuracy 
improvement of the modified algorithms. 
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1. INTRODUCTION 

Human-computer interfaces, based on video surveillance, are a 
rapidly developing field of research and have a wide range of 
applications, e.g. smart advertisement. Such systems can react 
differently based on subject’s estimated relative position, gaze 
direction, gender, height, age, race, gestures, etc. However, an 
accurate estimation of these parameters are required, otherwise 
reaction can be awkward and confusing. 
Foreground extraction is an important preprocessing step of most 
operations in video-based human interfaces. Many detection and 
tracking algorithms  detect foreground blobs first and then match 
them to the tracked objects. Person classification and recognition 
algorithms could benefit from an accurate foreground mask by 
using the context: hair color, clothes texture, person height could 
bring the additional information for a more accurate 
classification in comparison with a common face classification.  
Most foreground extraction techniques are designed for a general 
video surveillance scenario. In this work we concentrate on a 
single video surveillance scenario, when a camera is attached to 
a wall at 1-2m height and observes people coming up to it, see 
Fig. 1 (a). This is a common case for smart advertisement 
systems, smart kiosks, etc. For this particular surveillance 
scenario we propose two different foreground mask models. 
These models constraint background subtraction: by allowing a 
smaller set of possible masks, they make the whole algorithm 
more stable for this scenario. We show how to modify standard 
pixel-based algorithms, and algorithms, based on Markov 
Random Fields to account for this model.  
The rest of the paper is organized as follows: section 2 describes 
current background subtraction techniques, in section 3 we 
define the proposed masks models. Modifications of standard 
background subtraction methods are given in section 4. In section 
5 we report the obtained results. Section 6 concludes the paper. 
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Figure 1: Example of background subtraction (a) a source frame, 
(b) result by an algorithm, based on Markov Random Field, (c) 
result of algorithm’s modification, Mask Model 1, (d) result of 

algorithm’s modification, Mask Model 2. See text for the details. 

2. RELATED WORK 

We can coarsely classify most background subtraction techniques 
into 3 classes: pixel-based [1], [2], [3], patch-based [4] and the 
algorithms that are based on some graphical models – Markov 
Random Field (MRF) and Conditional Random Field (CRF) [5], 
[6], [7]. 
Pixel-based algorithms model background color distributions for 
each pixel independently and for every video frame decide, 
whether the pixel is occluded by comparing it with a stored 
background model. Common examples are to model pixel color 
distribution with a single gaussian [1], gaussian mixture model 
[2] or non-parametrically [3].  
Patch-based algorithms [4] model distribution of image patches. 
By using patches instead of single pixels, they can consider 
image texture in addition to pixel color, so they can be more 
robust to noise and in some cases to illumination change. But 
again, the classification into foreground/background is made 
independently of other patches. 
The last group of the algorithms treats the whole image as a 
graphical model [5], [6], [7]. They fuse different features (colour, 
contrast, motion) by means of MRF or CRF. Then maximum a 
posteriori (MAP) solution is found with the use of GraphCut [8]. 
Most algorithms don’t impose any constraints on the resulting 
foregound mask, so they can be applied to any video surveillance 
scenario, though most tests consider the security applications: 
camera watching a parking, a shop, an entry to some office.
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Figure 2: Mask models example. (a, e) – source frames, (b, f) – ground truth foreground maks,  
(c, g) –mask model 1, (d, h) – mask model 2. 

 
Some mask constraints can be used only in a postproccessing: for 
choosing a radius of morphology operations or classification of 
resulting blobs into the objects of different classes or noise based 
on their size.  
Some CRF-based methods [6], [7] specifically consider the case 
of video-chat type sequences as they are designed for possible 
background substitution during video conferences. They learn 
motion cues to differentiate a closest person from people, 
walking behind him during the video conference. 
In this paper, we focus on a different scenario. A video-camera is 
attached to a wall or some stand, approximately on a human’s 
height and records people walking by or coming up to the 
camera.  
We propose 2 types of mask models for this scenario. We show 
how to integrate these mask constraints into different kinds of 
existing background subtraction techniques and demonstrate our 
results on 2 specific algorithms: a pixel-based and a MRF-based 
algorithm. Any other algorithm of such type or a patch-based 
algorithm could be modified in such way as well. 

3. MASK MODEL 

Let I  be a video frame, 
yxM ,

 – mask of the foreground layer, 

1, yxM  for foreground pixels, and 0, yxM  for background 

pixels. 
Considering the described scenario and the shape of objects of 
interest (people), we propose to limit possible foreground masks 
to one of the 2 following mask models: 
Model 1  

 Formal definition: for every pixel column x , there is 
such )(xh , so that 1, yxM  for every )(xhy   and 

0, yxM  for every )(xhy  . 

So if any pixel is marked as foreground then all pixels under it 
must also be marked as foreground. An example of such mask is 

demonstrated on Fig 1 (c), 2 (c, g). As can be seen, it is rather 
adequate for examples, where a person is standing or walking 
frontally (doesn’t bend). Most errors occur in cases of bending or 
outstretched arms. 
Model 2 

 Formal definition: for every pixel column x , there are 
such )(1 xh  and )(2 xh , )()( 21 xhxh  so that 1, yxM  

for every )](),([ 21 xhxhy  and 0, yxM  for 

)(1 xhy   or )(2 xhy  . 

Examples of this model are given on Fig. 1 (d), Fig. 2 (d, h). 
This model places fewer constraints on the foreground mask. As 
can be seen in Fig 2 (h), this mask is much closer to the ground 
truth foreground mask, than mask of model 1. The remaining 
errors occur when there are more, than 2 foreground/background 
transitions in a single pixel column – for example near a neck 
(from bottom to top: shoulder-background near a neck – face – 
background again). 
 

3.1 Model validation 
To validate the proposed mask models we conducted the 
following experiments. We transformed ground truth 
segmentations of the 100 manually annotated frames from 20 
different video sequences, so that they conformed to our 2 
models. For the Model 1 we just marked every pixel under any 
foreground pixel as foreground, and for the Model 2 we found 
highest and lowest foreground pixels for every column, and 
marked every pixel between them as foreground.  
Then we computed a number of misclassified pixels. In Table 1 
we show these results compared to results, obtained by common 
pixel-based and MRF-based approaches. 
As can be seen, number of misclassified pixels for the 
transformed masks is much less than for the algorithms results, 
which leaves us a hope, that by constraining the algorithms to 
produce only masks of these types we could achieve a better 
segmentation.  



 Misclassified pixels, % 

Ground truth – Model 1 2.4 

Ground truth – Model 2 1.0 

Pixel-based algorithm 4.3 

MRF-based algorithm 4.0 

Table 1. Number of misclassified pixels comparison between 
background subtraction results and the proposed mask models. 
See text for the details. 

4. PROPOSED ALGORITHM 

In this section we show, how to constrain pixel-based and MRF-
based algorithms to produce only the proposed kind of masks.  
 

4.1 Pixel-based algorithm 
Let ))|( ,, yxyx MIp be a probability of pixel ),( yx to have color 

yxI ,
, being labeled 

yxM ,
. 

Common pixel-based algorithms mark a pixel as foreground if 
)0|),(()1|),(( yxIpyxIp   and as background otherwise. 

Now, let’s consider the case of mask Model 1. In this case for 
every x  we need to find )(xh  – such that all pixels above )(xh  
belong to a background, and all pixels under )(xh  belong to a 
foreground. So we need to maximize the following likelihood:  

)1,...,1,0,...,0|,...,,,...,())(( 11 HYY IIIIpYxhp  , where we 
have skipped index x , H - is a frame height, lower y-indices 
correspond to higher pixels. As HII ,...,1   are conditionally 
independent of mask labels M , 
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Instead of probability itself we can maximize its logarithm: 
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For fast computation we just need to precompute following 
integral projection images: 
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Now )),(),(max(arg)))((max(lnarg YxBYxFYxhp   and 
we need only to find a maximum value in each column of a 
precomputed image. 
In case of mask Model 2, for every x  we need to find 2 values 

)(1 xh  and )(2 xh . Now the likelilhood is   
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We can optimize it either globally by searching through all 
possible pairs ),( 21 YY or by searching for the best 1Y  at first 
(getting mask Model 1), fixing it, and searching for the best 2Y . 

As can be seen from the algorithm, this modification adds very 
little computational overhead. Another advantage is no additional 
parameters.  
 

4.2 Constraining the algorithm, based on MRF or 
CRF 
These algorithms minimize an energy of the form 

 



p Nqp

qpp MMIMIME
},{

),|()|()(  ,  

where )|( pMI and ),|( qp MMI are some unary and pair-

wise potentials. Minimization of this energy is equivalent to 
maximizing a maximum aposteori probability.  This energy is 
usually globally minimized by means of binary graph cut.  
To constrain this algorithm to produce only masks of Model 1, 
we perform the following:  

 Add 2 artificial hidden rows of pixels (variables in the 
random field) to the image – one at the top of it, the 
other at the bottom.  

 Modify unary potentials for the added rows: 
InfI p )1|(  for the top row and InfI p )0|( for 

the bottom row. 

 Vertical pair-wise potentials between the added rows 
and previous border rows is set equal to the nearest 
pair-wise vertical potential in the image. 

 Add to all vertical pair-wise potentials some ‘big 
value’: 

BigValueMMIMMI qppqpp  ),|(),|(   

Such unary potentials for the top and bottom rows ‘oblige’ the 
algorithm to make at least 1 cut in every image column, and 
modified vertical pair-wise potentials lead to maximum 1 cut in 
every image column. BigValue  must be larger than sum of unary 
potentials for any column. So the artificial bottom row is marked 
as foreground, top row is marked as background, and for every 
column there is a single label transition – and the mask is 
conformed with mask Model 1. 
In case of Model 2, we perform operations described above, so 
that the mask becomes of type 1. Then we fix the top border of 
the foreground mask, and perform the same operation with 
foreground-background mask labels switch. However, this 
doesn’t give the global minimum.  

5. RESULTS AND COMPARISON 

We have tested our modifications on 2 specific algorithms: 

 A pixel-based algorithm, where a pixel background color 
probability is modeled as a single 3d Gaussian. Foreground 
color model is uniform.  
We have also experimented with different uniform 
foreground color probability values (so mathematically they 
are not probabilities, because they do not sum up to 1), 
which is equivalent to comparing background color 
probability to a threshold. 

 MRF-based algorithm. Unary potentials are computed from 
the same pixel color probabilities, as in the pixel-based 



algorithm. Pair-wise potential is standard for segmentations 
with GraphCut and uses background attenuation from [5]. 

For the experiments we have collected 20 video sequences, shot 
by a camera, placed at 1.3m – 2m above the floor level. Video 
resolution varies between 320x240 and 640x480, but we 
downsampled all video sequences to 320x240. Video recording 
was conducted in 3 different rooms with different illumination. 
To be able to evaluate background subtraction results we have 
manually segmented 100 random frames into foreground and 
background. 
In Table 2 we show the results of the experiments. For all 
algorithms (original and modified) we used the same parameters. 
It can be seen, that the proposed mask constraints improve 
segmentation accuracy for both algorithms. Both types of 
constraints decrease the algorithm precision, but increase the 
recall.  
From Table 2 we can note, that on our data MRF-based 
algorithm made rather modest segmentation accuracy 
improvement, compared to a simple pixel-based approach. But 
modified versions of both algorithms showed almost similar 
results. 
By changing foreground probability (i.e. threshold) we can make 
precision/recall curves for the pixel-based algorithm and its 
modifications (for MRF-based algorithm a dependency on this 
parameter is more complex). These curves are demonstrated on 
Fig. 3. We can see, that mask model 2 shows the best 
precision/recall ratio.  
 

Algorithm Misclassified 
pixels, % 

Precision, 
% 

Recall % 

Pixel-based 4.3 96.4 80.5 

Pixel-based, 
Mask Model 1 

3.1 88.9 93.4 

Pixel-based, 
Mask Model 2 

2.9 94.7 88.6 

MRF-based 4.0 96.8 81.4 

MRF-based, 
Mask Model 1 

3.0 90.2 92.8 

MRF-based, 
Mask Model 2 

3.4 95.4 84.3 

Table 2. Mask accuracy comparison between original and the 
modified algorithms.  

6. CONCLUSION 

In this paper, we have considered a special case of video 
surveillance scenario, where a camera is attached to a wall on 1-
2m height and records people walking by or coming up to the 
camera. We proposed 2 special foreground mask models for this 
scenario and showed how to integrate new mask constraints into 
typical background subtraction algorithms. The proposed 
modifications have no parameters and add little computational 
overhead. Experiments, conducted on our own video sequences, 
demonstrated segmentation accuracy improvement of the 
modified algorithms. 
 

 
Figure 3. Precision/recall curves for the original pixel-based 
background subtraction algorithm and its 2 modifications. See 
text for the details. 
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