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1. INTRODUCTION

Coherent ray tracing (that is, tracing several coher-
ent rays simultaneously by the same processor) has
recently become a subject of research. Modern micro-
processors support SIMD (Single Instruction Multiple
Data) extensions, which make it possible to perform
arithmetic and logic operations simultaneously on sev-
eral floating-point numbers. Different processors have
different SIMD extensions; for example, these are Intel
SSE (Streaming SIMD Extension) [1], AMD 3DNow!
[2], and Motorola AltiVec [3]. Among all these exten-
sions, Intel SSE is most widely used in coherent ray
tracing. Since recently, AMD processors also support
SSE, and Apple computers now also use Intel proces-
sors. Thus, SSE has become a de facto standard for
SIMD extensions for personal computers. For that rea-
son, the terms coherent, SIMD, and SSE ray tracing
will be used as synonyms in this paper.

Presently, there are several projects using SSE ray
tracing. The most well known one is the project devel-
oped in the Max Planck Institute [4] that uses SSE for
coherent ray tracing. Among the other projects is
Manta, which is the interactive ray tracer with the open
source code created for rendering huge models on
supercomputers with shared memory and multicore
workstations [5].

The group of researchers working in the Computer
Graphics Department of the Keldysh Institute of
Applied Mathematics (Russian Academy of Sciences)
has rich experience in developing physically accurate
rendering systems [6–8]. This group developed many
applications that support various aspects of photoreal-
istic rendering. The scientific results of these studies

were used in a commercial product (see [9]). The use of
SSE, which is now widespread, makes image genera-
tion considerably faster; for some scenes, it provides
interactive rendering. The computational effort
involved in ray tracing constitute a considerable part of
the total effort of generating photorealistic images, but
it does not cover all the computational cost. Rendering
also includes simulation of light dispersing properties
of surfaces and of physically accurate illumination cre-
ated by various light sources. To obtain a high-quality
image, the aliasing effect must be eliminated and tone
mapping algorithms must be used to transform the radi-
ometric magnitudes used to perform the simulation to
the color values shown by a display.

In this paper, we present an approach to using the
SSE instructions for speeding up the computations by a
factor of three or four times at all the rendering
stages—illumination calculation, treating complex
materials and light sources, transformation of physical
magnitudes to display colors, etc.

The paper is organized as follows. In Section 2, we
briefly describe the architecture and design of the
Inspirer2 rendering system, which was used as a basis
for coherent rendering. This section also outlines the
main parts of the system for coherent ray tracing. Sec-
tion 3 is devoted to coherent ray tracing. In Sections 4
and 5, we discuss the coherent treatment of complex
surface materials defined by the bidirectional reflection
distribution function (BRDF) in the general case, and
describe the set of types of light sources for coherent
treatment. Section 6 deals with the tone mapping oper-
ator. In Section 7, we describe an adaptive algorithm for
eliminating the aliasing effect in the four-ray SSE trac-
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ing. In Sections 8 and 9, we present estimates of the
system performance for certain scenes, and discuss
conclusions and the trends for future research.

2. ARCHITECTURE
OF THE BASE RENDERING SYSTEM

We implemented physically accurate rendering
using coherent ray tracing on the basis of the rendering
system Inspirer2 (earlier called Fly) [10].

This system supports both the interactive rendering
and the generation of high-quality images in the nonin-
teractive mode. The interactive mode was implemented
using OpenGL. In this mode, the system can visualize
various scenes at a rate close to real time (up to 20–
60 images per second). The main goal of the system
development was to give as high level of physical accu-
racy as is possible at such an image generation rate. In
the interactive mode, the system is able to generate
physically accurate shadows from point light sources,
surface materials specified by their bidirectional reflec-
tion distribution function (BRDF), and approximate
reflection using environment maps.

In the high-quality image generation mode, the sys-
tem provides for illumination modeling and physically
accurate rendering by using bidirectional ray tracing. In
this mode, the point, linear, and surface light sources
described by goniograms can be correctly modeled,
which enables one to define almost any realistic illumi-
nation. We developed capabilities for specifying a nat-
ural illumination directly using the geographic location
and time parameters or calculating the illumination
defined by a high dynamic range (HDR) panorama
[11]. An example of a scene image illuminated by a
HDR panorama is shown in Fig. 1. Materials with com-
plex properties may also be specified by a BRDF in the
most common tabular form. The tabular specification of
the BRDF enables one to use the data measured using a
spectrophotometer [12]. To take into account the spec-
ular reflection and refraction, backward ray tracing is
used. To calculate the global illumination, the forward
ray-tracing algorithm based on the Monte Carlo

method is used. The resulting global illumination data
are stored in illumination maps [13] and are used in
both rendering modes.

The use of SSE ray tracing provides benefits both
for the interactive and for the noninteractive modes.
The high-quality noninteractive rendering can be accel-
erated by a factor of two or three because the SSE
instructions make it possible to trace 4 coherent rays
simultaneously. In the interactive mode, SSE ray trac-
ing may be used in the framework of a hybrid approach
for superimposing physically accurate reflections and
refractions on an OpenGL image.

The general architecture of Inspirer2 is presented in
Fig. 2. On the one hand, it satisfies the requirement that
a scene must be specified using physical quantities; on
the other hand, it can use different internal representa-
tions for different rendering modes. Such an architec-
ture facilitates integration of a new coherent tracing
algorithm by adding a new internal representation.

The coherent ray tracing, as well as the other com-
ponents of the system, was implemented in C++;
Assembler was not used. In order to use SSE instruc-
tions, wrapper classes over SSE intrinsic functions
(special functions that are translated by a compiler into
an SSE code) that are supported by Microsoft/Intel C++
compilers. Since modern compilers can efficiently opti-
mize a high-level code, this does not result in a signifi-
cant loss of performance; at the same time, the code is
easier to maintain.

 

Fig. 1.

 

 Image of a car generated using the image-based
lighting technique.
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Fig. 2.

 

 Architecture of Inspirer2: A hierarchical description
of the scene physical attributes is transformed into two pre-
processed scene descriptions (one of them for OpenGL ren-
dering, and the other for Monte Carlo ray tracing).
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3. COHERENT RAY TRACING

Ray tracing is usually considered to be the most
time consuming part of any physically accurate render-
ing algorithm. In [14], the time needed for ray tracing
is estimated as 95% of the total rendering time. How-
ever, according to our estimates, the relative tracing
time for physically accurate modeling is only about 65–
75%. This makes ray tracing the primary candidate for
SSE optimization.

SSE instructions are performed on four 32-bit float-
ing-point numbers simultaneously. Therefore, SSE ray
tracing makes it possible to trace four rays simulta-
neously. The algorithm does not differ significantly from
the corresponding one-ray tracing algorithm. To acceler-
ate tracing, space is represented in the form of a BSP tree
(binary space partition). Thus, the ray-tracing algorithm
consists of the tree traversal phase and the phase of find-
ing the intersections of the ray with the scene objects
belonging to a selected subspace. To support interactive
of scene objects, two-level tracing [16] is used. Under
this approach, each object (represented by a triangular
mesh) has a specific BSP tree (which is called the sec-
ond-level BSP tree or the BSP tree of the object) and a
specific bounding box (an axes aligned rectangular par-
allelepiped). Every object is placed into the scene
together with its transformation matrix. The scene con-
sists of a set of objects framed into boxes. The BSP tree
of the scene (which is called the first-level BSP tree
below) arranges all those complex scene objects in
space. Since only the bounding boxes of objects are
used in the first-level BSP tree, the partition is not
always as efficient as in the case when the BSP tree is
constructed using the triangular mesh of the entire
scene; this is the cost of the possibility to have moving
objects in the scene. In very sparse scenes, such a two-
level tree can even slightly improve the performance
because the empty space between the objects is handled
more efficiently.

Due to the use of SSE, up to four rays can be traced
simultaneously; however, they can take different paths
in the tree in the ray-tracing algorithm. This fact implies
that some rays of these four must be temporarily
blocked. For that purpose, we use the active ray mask.
Usually, the mask is an SSE variable (four 32-bit float-
ing point numbers) containing either 0 

 

×

 

 00000000 or 0

 

×

 

 ffffffff (in binary representation) in each of the four
positions. The mask blocks the rays that do not pass
through the current branch of the BSP tree and the rays
for which the first intersection has already been found.
Masking is a common technique in SSE programming;
it reduces branching and makes the algorithm more
streaming. In the project described in this paper, mask-
ing is used in all the components of the rendering algo-
rithm.

The coherent ray-tracing algorithm proceeds as fol-
lows. First, all the rays are checked for the intersection
with the scene bounding box. If all the rays miss this
box, the algorithm immediately reports that there are no

intersections. If some of the rays intersect the scene
box, the ray mask is updated, and the rays that do not
intersect the scene box are removed. If two rays have
different signs in the direction vector, they can have dif-
ferent traversal order. In this case, the group of rays is
divided into subgroups with the same direction sign
(coherent subgroups). This slightly reduces the effi-
ciency of SSE tracing; however, such cases are rare.
Moreover, it can be shown that the rays that have a com-
mon origin, for example, the rays emanating from a
camera or shadow rays from a point light source,
always have the same traversal order.

After dividing the rays into subgroups, the algo-
rithm sets the mask for the current rays and starts tra-
versing the BSP tree. Since we have a two-level hierar-
chy, the procedure used for the entire scene is repeated
for each object that is tested for intersection. For every
non-leaf node, the BSP traversal is performed as fol-
lows. If all the rays go to the same subnode (to the right
or to the left one), the algorithm updates the current
node address and proceeds to this subnode. If some of
the rays go through both subnodes, then the farthest
subnode is pushed into the stack, the mask of active
rays is updated, and the algorithm goes to the nearest
subnode. Note that, due to dividing the rays into groups
(see above), the rays cannot traverse nodes in a different
order. However, it is possible that some rays have to
traverse both subnodes although actually they pass only
through one of them. In this case, such rays are blocked
by the mask; they are activated again after the node has
been traversed. When a leaf node is reached, the ray
intersects the corresponding object. For the first-level
tree, the objects are actually scene objects; therefore,
the ray is transformed to the object’s system of coordi-
nates, and the algorithm proceeds in much the same
way as for the scene as a whole. For the second-level
tree, objects are actually triangles.

To find the intersection of a ray with a triangle, the
modified projection barycentric algorithm (test) is used
that is implemented using SSE as described in [4]. After
checking all the objects in a node, the rays for which no
intersection is found are deactivated because they do
not need to be further traced in the tree. If all the objects
in a first-level leaf node have been tested and some
intersections have been found, they are considered the

 

first intersections

 

 of those rays.

Actually, the proposed scheme uses two intersection
methods. The first one, which finds only the first ray
intersections, was just described. The other one finds

 

all the intersections 

 

up to the first opaque object. The
second method works like the first one; however, if a
ray hits a transparent object, it is not masked but is
traced further until it hits the first opaque object.

The arrangement of the scene tree and the triangle
data in memory is optimized with regard for processor
cache. Both child nodes are stored one after the other in
the same cache line, which reduces data load time from
the main memory.
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The BSP tree is constructed using the algorithm
described in [17]. Since the construction of the BSP
tree is a time-consuming task, a two-level approach is
used that makes it possible to modify the tree as an
object location changes rather than to construct it from
scratch. As a result, dynamic scenes can be treated
interactively. However, as it has already been men-
tioned above, the BSP trees thus constructed are
slightly less efficient than the simple one-level BSP
trees.

Figure 4 shows a scene rendered using SSE ray trac-
ing.

4. OPTICAL PROPERTIES
OF MATERIALS AND BRDF

Since the coherent ray tracing improves the perfor-
mance of ray tracing by a factor of two to three com-
pared with conventional ray tracing algorithms, the
other parts of the physically accurate rendering algo-
rithm become a bottleneck for the total performance.
We have already mentioned that the time spent on ray
tracing is about 70% of the total rendering time. There-
fore, the total image generation time decreases less than
by a factor of two. We conclude that the other parts of
the rendering algorithm should be also accelerated.

Other developers of the coherent ray tracing faced
the same problem. For example, in [18], the authors
note that after the SSE tracing has been implemented,
shading became the bottleneck. It was found that even
the simple Phong model can considerably slow down
the rendering let alone the use of more complicated
BRDFs.

In the framework of the project described in this
paper, the main goal was to generate physically accu-
rate images rather than to create visually plausible
effects. Therefore, we had to implement coherent treat-
ment of materials and BRDFs.

In order to accurately model the optical properties of
materials, our implementation uses the following com-
ponents to describe materials:

1. a simple set of the material’s attributes repre-
sented by the Phong model;

2. refraction and reflection-related attributes;
3. textures;
4. the material’s BRDF.
The first two components can be implemented

straightforwardly using SSE; indeed, they only involve
simple vector and color operations. Illumination com-
putations require tracing shadowed, reflected, and
refracted rays, which can easily be implemented using
the efficient SSE ray tracing described above.

However, texturing and BRDF support are not easy
to implement using SSE. These issues are discussed in
the following subsections.

 

4.1. Coherent Texturing

 

Texture (two-dimensional color matrix) is
imposed on the surface of a scene object to change its
appearance. An example of using texture is illustrated
in Fig. 5.

In the framework of our system, textures are
assigned to materials, and materials are assigned to the
triangles constituting objects. The texture mapping is
performed using texture coordinates specified for each
triangle vertex with a textured material assigned to it.
To compute the texture coordinates at the points where
the quadruple of rays hits a triangle, the barycentric
coordinates obtained while finding the intersection of
rays with the triangle are used. Using the barycentric
coordinates, the texture coordinates can be interpo-
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Fig. 3.

 

 Arrangement of the scene tree and triangle indexes in memory.

 

Fig. 4.

 

 A scene rendered using SSE ray tracing.
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lated. This can easily be done using SSE for four points
simultaneously if they belong to the same triangle. If
the points belong to different triangles, interpolation is
performed using several passes with masking inactive
points.

Then, the texture values are interpolated using trilin-
ear filtering. Computation of a mipmap level (a prefil-
tered image with various filter sizes multiple of two) is
more complicated because it involves the base 2 loga-
rithm of the distance from the point to the camera.
Since we need only the nearest integer value of the log-
arithm, we may use its binary representation (fraction
and exponent). The logarithm of a floating-point num-
ber can be represented by the sum of the logarithm of
the fraction and the exponent, which can be obtained
using bitwise operations. The fraction is in the range
from 0.5 to 1, and its logarithm can easily be approxi-
mated by a polynomial. The accuracy of such an
approximation depends only on the accuracy of the
polynomial on this interval, where the logarithm has no
singularities.

The mipmap level is chosen in such a way that the
adjacent rays almost always hit different pixels; there-
fore, the data coherence, which is necessary for the effi-
ciency of SSE, is lost. However, we can use SIMD
instructions for the bilinear interpolation of the RGBA
components, where the data are always coherent.
Hence, we perform bilinear interpolation at the two
nearest mipmap levels, and then perform linear interpo-
lation between them.

 

4.2. Coherent BRDF Implementation

 

A support of complex material properties is crucial
for physically accurate rendering. Most objects of
everyday occurrence, such as car paint, wood, plastic
and fabrics exhibit complex optical properties that can-
not be described using simple heuristic models, such as
the Phong model [18]. In such cases, a more general
surface scattering model must be used.

In the project discussed in this paper, we use BRDFs
based on various physical data. These BRDFs can be

either measured using special equipment [19] or simu-
lated. A tabular representation seems to be the only
practical way of representing such BRDFs.

BRDFs can be parameterized using an angle
description of the directions of illumination and obser-
vation. Depending on the number of the angles used for
the parameterization, BRDFs can be 3- or 4-dimen-
sional. 3-dimensional BRDFs are often said to be iso-
tropic and 4-dimensional ones are said to be anisotro-
pic.

Since BRDFs can be singular and can be multidi-
mensional, they cannot be tabulated in a regular fashion
due to high memory requirements. For that reason, we
use binary search to find the cell in which interpolation
will be performed.

Let us now describe the BRDF computation algo-
rithm. First, the incident and observation angles of the
rays are calculated using the inverse trigonometric
functions. Then, binary search is performed to define
the interpolation cell. Finally, the value of the BRDF is
found using the interpolation inside this cell for the
given ray directions.

In order to efficiently implement this algorithm
using SSE, we developed algorithms for the coherent
binary search of four values simultaneously and for the
approximation of inverse trigonometric functions.
Interpolation within a cell is straightforwardly imple-
mented using SSE. A detailed description of the pro-
posed approach can be found in [20]. Figure 6 shows an
example of the SSE rendering of a scene containing a
material described by a BRDF.

Table 1 presents the results of comparing the SSE
implementation of the BRDF with an implementation
that does not employ SSE for an anisotropic BRDF of
the size 17 

 

×

 

 7 

 

×

 

 17 

 

×

 

 13. The comparison was per-
formed on an Intel Centrino 1800MHz Mobile Pen-
tium-IV computer with 512 Mb of 433 MHz memory.

The acceleration was about 3.2 times on the average,
which is less than 4 because the computation of BRDFs
include a large number of branchings thus reducing the
efficiency of SSE. It is important that only one material

 

Fig. 5.

 

 A scene with textures rendered using the proposed
coherent algorithm.

 

Fig. 6.

 

 Rendering of an optically complex material
described by an BRDF using the proposed approach.
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can be processed at the same time. If a quadruple of
rays hit different materials, then they are processed one
after another. The rays that are irrelevant for a particular
computation are masked.

5. LIGHT SOURCES

In order for the physically accurate coherent render-
ing to be efficient, illumination computations should be
implemented using SSE. The term 

 

illumination compu-
tations

 

 here denotes the computation of the incident
light intensity at the given point without regard for the
visibility of the light source. The computation of visi-
bility can be performed efficiently using SSE tracing
for shadow rays.

We considered several types of light sources that can
be subdivided into point and surface sources. In order
to compute the illumination created by surface light
sources, certain points on their surface must be gener-
ated, the intensity of light created by each of those
points must be determined, and then integrated over the
surface. Surface light sources produce natural soft
shadows (half-shadows).

The other group includes various point light
sources. They vary from simple ones, such as omnidi-
rectional or spotlight sources, to complex light sources
described by their goniograms. For simple light
sources, the coherent illumination computation is
implemented straightforwardly. As for materials, the
algorithm treats a single light source at a time. If the
illumination for a ray need not be calculated for a cer-
tain reason (for example, the light source is on the other
side of the triangle being processes), the ray is masked.

For most light sources, fairly simple computations
are performed; with SSE, the same computations are
performed on quadruples of rays. The situation is more
complicated with point light sources described by their
goniograms. A goniogram is an industrial format for
representing the emitted intensity of light sources. The
support of such light sources is crucial for physically
accurate rendering. The intensity of a light source
described by a goniogram is tabulated in a two-dimen-
sional nonuniform table, and, in that respect, it is very
similar to the BRDF. In order to evaluate the intensity
for the specified direction, its spherical coordinates
must be first found. Then, the cell containing the given
direction must be determined. Finally, the intensity
must be interpolated inside this cell. These steps are the
same as those used for the computation of BRDFs.
Actually, both algorithms share a number of functions.

The performance of the proposed coherent imple-
mentation was measured for various types of light
sources. Both implementations (using SSE and without
SSE) are very accurate so that the images produced by
them are almost identical. However, the SSE imple-
mentation is by a factor 3.5 faster.

Table 2 summarizes the efficiency of the SSE imple-
mentation for several types of light sources. The com-

2

2

 

parison was performed on a 2.8 GHz Pentium-IV com-
puter with 433 MHz memory of 1 Gb. The results are
given in seconds.

It is seen that the acceleration was more than four-
fold for most light sources. The acceleration was less
than four times only for the spotlight. The source
described by its goniogram also had a less speedup
than, e.g., the omnidirectional source because the
goniogram requires binary search, which causes inco-
herence of the data.

6. TONE MAPPING OPERATOR

Physically accurate rendering is impossible without
tone mapping. This is because the images obtained as a
result of modeling are represented in terms of units in
the range [0, 

 

∞

 

) while display devices have limited
dynamic ranges. Hence, we face the problem of con-
structing a contracting mapping preserving important
details.

The tone mapping algorithm is as follows. First, a
low-resolution copy of the image with a high dynamic
range is produced. This copy is used to compute the
logarithmic average of the intensity, which yields a
general impression about the intensity distribution in
the final image.

We used the method described in [21]. Here, we
briefly describe the approach to its SSE implementa-
tion, while a detailed description of the algorithm can
be found in [21].

2

2

 

Table 1. 

 

 Comparison of the performance of the SSE imple-
mentation for an anisotropic BRDF with the implementation
that does not employ SSE

Number of calls 100000 200000 400000

Without SSE (s) 0.137 0.248 0.495

With SSE (s) 0.040 0.078 0.156

Acceleration 3.43 3.17 3.17

 

Table 2. 

 

 Comparison of the performance of the SSE imple-
mentation of light sources with the implementation that does
not employ SSE

Type of light
source

Without 
SSE SSE Accelera-

tion

Omnidirectional 1.137 0.157 7.24

Spot 0.816 0.211 3.87

Parallel 0.444 0.103 4.31

Directed 0.936 0.150 6.24

Linear 6.696 1.149 5.83

Circular 27.936 4.828 5.79

Rectangular 145.25 24.375 5.96

With a goniogram 2.573 0.588 4.38 2
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The main difficulty in the implementation of this
algorithm is the evaluation of the power function 

 

x

 

y

 

,
which can be represented in terms of the logarithm and
the exponential function:

An efficient SSE implementation of the logarithm
was described in Section 4.1. A similar idea is also used
for evaluating the exponential function. First, it is
reduced to base 2, and then represented in the form 2

 

x

 

 =
2

 



 

x

 



 

2

 

x

 

 – 

 



 

x

 



 

, where 

 



 

x

 



 

 is the integral part of 

 

x

 

. Here, the
first factor is computed using the binary shift, and the
second one is approximated by a polynomial. A signif-
icant acceleration of the evaluation of the power, loga-
rithmic, and exponential functions can be achieved only
by using SSE2 instructions, which are able to perform
operations on four integer numbers simultaneously
while keeping them in the SSE registers.

7. ANTIALIASING ALGORITHM FOR TRACING 
FOUR RAYS SIMULTANEOUSLY

In this paper, we present only the main ideas of the
new adaptive antialiasing algorithm based on SSE trac-
ing of four rays simultaneously. A more detailed
description of this algorithm can be found in [22].

Each time when a region with a sharp variation of
the image intensity is found, it is desired to trace four
new rays rather than trace these rays one-by-one. The
proposed algorithm uses the SSE mask of the differ-
ence of colors of close rays as an index in the disconti-
nuity table. This helps determine the regions of the
sharp change of image intensity very quickly. The pro-
posed algorithm makes it possible to trace 1.5–2 rays
per pixel on the average with the quality similar to that
obtained by tracing 25 rays per pixel.

The screen is subdivided into square regions (tiles)
of the size 64 

 

×

 

 64 pixels. First, rasterization is per-

xy 2
y x2log

.=

1

1

 

formed for the current tile using a graphic processor.
This can save us tracing many additional rays that could
be needed for determining geometric discontinuities.
Thus, the visibility map is constructed represented in
the form of a matrix of the triangles' indices that are vis-
ible from the camera through the pixels. The resolution
of this matrix is several times higher that the tile size
(by a factor of four for ordinary quality and by a factor
of six for high quality). Next, the algorithm checks, for
each pixel, if it contains a discontinuity; that is, the
algorithm checks if the pixel contains values of the vis-
ibility map corresponding to objects with very different
normals or distances from the camera. This yields a dis-
continuity matrix of the size equal to the tile size. At
this stage, we only determine the pixels containing geo-
metric discontinuities but do not find the location of the
discontinuity within the pixel.

The proposed adaptive algorithm has three levels.
The next level is applied when a discontinuity at the
preceding level is detected.

At the first level, a regular sample is used. The rays
are traced in quadruples through the pixels' vertices.
The color values for each ray are stored in a matrix.
Then, the next pixel in the tile is chosen, and the color
values corresponding to its vertex rays are extracted
from this matrix (the points 

 

ABCD

 

 in Fig. 7a). The
algorithm determines the type of the discontinuity (hor-
izontal or vertical). A horizontal discontinuity is
detected if there is a high gradient between the points 

 

A

 

and 

 

B

 

 or 

 

C

 

 and 

 

D

 

. If the detection is ambiguous, i.e., if
there is a great variation between the points 

 

A

 

 and 

 

B

 

 and
between the points 

 

B

 

 and 

 

D

 

, then the algorithm assumes
that there is a horizontal discontinuity only. If a discon-
tinuity is detected in the visibility map and the differ-
ences between the vertex values are small, we also
assume that there is a horizontal discontinuity.

If the algorithm detects a vertical discontinuity, the
points 

 

ABCD

 

 are rotated by 90

 

°

 

 counterclockwise.
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z

 

1 between the points 

 

E

 

 and 

 

G

 

; (b) the
vertical version rotated by 90

 

°

 

 counterclockwise.



 

PROGRAMMING AND COMPUTER SOFTWARE

 

      

 

Vol. 34

 

      

 

No. 5

 

      

 

2008

 

THE USE OF COHERENT RAY TRACING 301

 

Such a rotation makes the algorithm linear indepen-
dently of the discontinuity type (see Fig. 7b).

If discontinuity is detected neither in the visibility
map nor by comparing the vertex values, then and only
then the algorithm sets the color of the pixel to the aver-
age of its vertex values and proceeds to the next pixel.
Otherwise, the second level of the algorithm is applied
to this pixel.

Inside this pixel, we shoot four rays through the
points 

 

E

 

, 

 

F

 

, 

 

G

 

, and 

 

H

 

 as shown in Fig. 7. To determine
discontinuities between the points obtained at the first
and at the second levels of the algorithm, we perform
three quads of comparisons between the R, G, and B
color components using SSE instructions. Each SSE
comparison produces a 4-bit mask that is used as an
index in the discontinuity table (this table is created in
advance). The entries in this table contain flags defining
the discontinuity regions 

 

z

 

0, 

 

z

 

1, 

 

z

 

2, 

 

z

 

3, and 

 

z

 

4 (Fig. 7).
The values obtained from the three tables (three quads
of comparisons) are logically added (disjunction). The
resulting flags indicate the discontinuity regions in
which additional rays should be shot.

At the third level, four rays are shot in a zigzag fash-
ion (see Fig. 8). Each zigzag covers one of the discon-
tinuity regions. At most, five zigzags per pixel are shot.
Note that the points in each zigzag are spaced at 1/20 of
the pixel side apart along the high gradient of the inten-
sity (see Fig. 8). In other words, in the case of a large
horizontal (for example) discontinuity, each of the ver-
tical lines spaced at 1/20 of the pixel side apart contains
one zigzag point. Moreover, independently of the case
(horizontal or vertical discontinuity), the closest points
in the adjacent pixels are located at the same places.
This property ensures a relative uniformity of the point
arrangement even in pixels with different orientations.

A zigzag can be traced or interpolated using the val-
ues of the sample obtained at the preceding level of the
algorithm. The decision on what operation to perform
(tracing or interpolation) is made on the basis of the

flags obtained from the discontinuity tables. Interpola-
tion is performed by the points belonging to the current
discontinuity region because each zigzag is processed
independently of the others. For example, the points of
the zigzag 

 

z

 

2 are interpolated using the points 

 

F

 

 and 

 

G

 

only, while 

 

E and H are not used for the interpolation
because the regions z1 and z3 can contain discontinui-
ties. Each point of the zigzag z0 is interpolated by two
of the three points A, C, and E: the upper point (see Fig.
8a) is interpolated by the points A and E; and the three
other points by E and C. The zigzag z1 is interpolated
by the points E and G; the zigzag z2 by G and F; the zig-
zag z3 by H and F; and the points of z4 are interpolated
by two of the three points H, B, and D.

The location of all the points is prescribed in
advance; therefore, in order to calculate the color of a
particular pixel, the weight of each of these points in the
sum used to obtain the color of the pixel can be deter-
mined in advance. As a result, the algorithm becomes
much faster. If a rectangular filter is used (a common
situation), then the color of every pixel can be immedi-
ately placed in the frame buffer upon processing—there
is no need to store information about subpixel colors.

Comparisons show that, for typical scenes, the pro-
posed adaptive algorithm with 1.5–2 rays per pixel
gives the quality comparable with that given by 25 rays
per pixel in the regular sample.

8. RESULTS

The algorithms described above were implemented
in C++ using the Visual Studio 2003 development envi-
ronment. No assembler was used for SSE instructions.
SSE instructions were invoked through intrinsics,
which, in turn, were wrapped by special classes. Such
an approach provides good code maintainability at the
cost of a minor loss of performance.

Table 3 presents the results of the comparison of the
rendering rate with SSE and without SSE for three
scenes Car, Glass, and Room shown in Figs. 6, 5, and 4,
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Fig. 8. The points used at the third level of the discontinuity detection algorithm: (a) horizontal version; (b) vertical version. 
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respectively. The experiments were performed on a
dual 2.13 Athlon MP computer with memory of 2 Gb.
Only one processor was used (the other was disabled).
Images of the size 1024 × 768 pixels were generated.
The characteristics of the rendered scenes are given in
Table 4, where the tracing depth denotes the maximum
height of the ray tree; that is, the depth 0 corresponds to
rays from the camera, the depth 1 corresponds to one
ray reflection, etc.

The scene Car is descriped by a measured tabulated
BRDF, transparent and refracting objects. The scene
Glass contains many textured surfaces.

9. CONCLUSIONS

In this paper, physically accurate coherent rendering
algorithms are presented that accelerate the image gen-
eration rate more than by a factor of 3. The acceleration
is achieved mainly due to the use of SSE instructions,
which can give a speedup up to four times in the case of
complete coherence. A careful selection of algorithms
and data structures, as well as considerable effort aimed
at code optimization, also contributed to the speedup.

The resulting rendering rate is not an interactive one
but is close to it. If the image resolution is reduced and
the number of light sources is limited, an interactive
rendering rate can be achieved.

Another direction of application of the SSE ray trac-
ing is the computation of global illumination. To render
the indirect illumination, we currently use illumination
maps (see [13]). To compute the illumination maps,
Monte Carlo ray tracing is used. However, the rays in
this method are much less coherent; therefore, the
direct use of SSE is complicated.

Currently, only the RGB color model is used in the
SSE implementation. It would be interesting to try the
spectral color representation as well. Usually, a spectral
representation involves 20–40 light intensities mea-
sured for various wavelengths; therefore, such an

approach is expected to be far from interactive. How-
ever, it can accelerate the rendering of various spectral
effects required in industrial visualization. The imple-
mentation of Inspirer2 without SSE already supports
spectral BRDFs and optical material properties. Calcu-
lations for several dozens of spectral values can fit into
the SIMD scheme, which will give an acceleration of
up to a factor of four.

A version of this paper with color illustrations is
available at http://www.keldysh.ru/pages/cgraph/publi-
cations/cgd_publ.htm.
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