
Physically Accurate Rendering with Coherent Ray Tracing

Andrew Adinetz**, Boris Barladian*, Vladimir Galaktionov*, Lev Shapiro*, Alexey Voloboy*

*Keldysh Institute for Applied Mathematics RAS, Moscow

 **Moscow State University

Abstract

As the processing power of modern CPUs increases,

coherent ray tracing becomes more and more popular, as it

allows significantly accelerating ray tracing using SIMD

instructions. It turns out, however, that as ray tracing is

accelerated, other parts of physically accurate rendering

algorithms tend to become bottlenecks.

In this paper, we introduce a coherent physically

accurate rendering approach, which allows taking advantage

of SIMD capabilities of modern CPUs at every stage of

rendering computations. We demonstrate coherent algorithms

for lighting and material computations as well as for anti-

aliasing and tone mapping. The comparison performed on a

number of test scenes demonstrates significant acceleration

compared to common non-coherent approach.

Keywords: SSE, interactive ray tracing, tone mapping,

antialiasing, texturing, BRDF, photorealistic rendering.

1. Introduction

Coherent ray tracing, that is, tracing a number of rays

simultaneously, has been a subject of scientific research in

recent years. As modern commodity CPUs (central

processing units) appear to support various kinds of SIMD

(Single Instruction Multiple Data) extensions, which allow

performing arithmetic operations on multiple floating point

numbers simultaneously, tracing several rays in parallel

becomes quite natural. Various CPUs offer various SIMD

extensions, such as Intel SSE (Streaming SIMD Extension)

[1], AMD 3DNow! [2] and Motorola AltiVec [3]. Of all

these, only Intel SSE became common for coherent ray

tracing implementation. Currently, there exist multiple SSE

coherent ray tracing projects. One of the most widely known

is [4] by Slusallek, Wald et al., which uses SSE to perform

interactive ray tracing. Another example is the VirtualRay

project [5], which uses SSE for interactive ray tracing of

scenes consisting entirely of spheres. In fact, due to its wide

availability, SSE became a de-facto standard for

implementing coherent ray tracing. Hence both SSE ray

tracing and coherent ray tracing will be used as synonyms

across the paper.

Computer Graphics department of Keldysh Institute for

Applied Mathematics RAS, has a long experience of creating

systems for physically accurate rendering [6], [7], [8]. It has

created a number of applications which support various

aspects of photorealistic rendering. Our scientific research

results were used by Integra Inc. to create commercial

products [9]. As SSE becomes widely available, it becomes

highly desirable to be supported for both interactive and

offline rendering.

It is important to note that ray tracing is an essential,

though not the only part of photorealistic rendering. The latter

also includes modeling of physically accurate surface

properties and physically accurate lighting with complex light

sources. To render scene features with subpixel size correctly,

rendering algorithm must include antialiasing, and tone

mapping is necessary to obtain final images from lighting

simulation results which usually are of high dynamic range.

In this paper, we present an approach which benefits from

SSE support and coherency not only in the process of ray

tracing, but also for shading, tone mapping, lighting etc.

Using SSE instructions gives nearly 4-times acceleration

compared to non-SSE implementation.

The paper is organized as follows. Section 2 briefly

describes the architecture and design of the Inspirer2

rendering system and outlines the main parts of the coherent

ray tracing solution. Section 3 describes the coherent ray

tracer. Section 4 deals with surface materials and BRDFs

(bidirectional reflection distribution functions) in coherent ray

tracing approach. Section 5 describes the support of multiple

types of light sources for coherent ray tracing. Section 6 is

about coherent antialiasing and tone mapping. The

performance of the system is demonstrated on a number of

test scenes and the results are reported in section 7. Section 8

is devoted to the results discussion and possible future work.

2. Outline of the Solution

The physically accurate rendering with coherent ray

tracing is implemented on the basis of Inspirer2 rendering

system (formerly Fly) [10].

This system has been designed to provide support for

both interactive and offline rendering modes. Interactive

mode implementation was based on OpenGL. In interactive

mode, the system, while providing real-time framerates (25 –

30 fps), aims at supporting the best level of physical accuracy

possible at such frame rates. In interactive mode, the system

is able to provide physically accurate shadows from point

light sources and BRDF support for surface material

specification. It is also able to approximate reflections using

environment maps.

In offline rendering mode, it provides physically

accurate rendering using bi-directional ray tracing. It supports

both point and surface light sources with goniodiagrams in

order to create realistic lighting. It also provides support for

materials with complex BRDFs and textures. Rendering is

able of calculating multiple order reflections. For the global

illumination computation, an algorithm based on forward

Monte-Carlo ray tracing (MCRT) is used. The results of

MCRT are stored in illumination maps [11] and used in both

rendering modes.

In fact, both interactive and offline rendering may

benefit from the SSE ray tracing. Offline rendering is likely to

perform 2 – 3 times faster since SSE is able to trace 4 rays in

parallel. As to interactive rendering, SSE ray tracing may be

used in a hybrid approach to provide physically accurate

reflections and refractions over an OpenGL rendered image.

The Inspirer2 architecture is presented in fig.1. The

design of the architecture has been driven by the necessity of

preserving physical attributes of the scene.

Figure 1: Overview of the system architecture. Generic

Hierarchical scene description with physical attributes is

converted to two Preprocessed Scene Description – one for

OpenGL engine and another for ray tracing engine (including
MCRT).

As it is possible to build several rendering databases

simultaneously for a single scene data base, it becomes easier

to attach a new rendering engine, including one based on

SSE, to the existing browser application.

It has been decided, however, that a new scene rendering

database need not be created to support SSE rendering as

there exists already a database for Monte-Carlo ray tracing.

Instead, this database has been slightly modified, where

necessary, to better support coherent ray tracing. Such

optimizations, however, has not been numerous due to the

fact that MCRT database has been optimized already for the
existing ray tracer.

The coherent ray tracing, as well as other components of

the solution, has been implemented in C++ language. No

assembler has been used. In order to use SSE functionality,

classes have been designed, which presented a high-level

wrapper over the SSE intrinsics provided by the

Microsoft/Intel C++ compiler [12]. As modern compilers tend

to be able to optimize high-level code efficiently, this is not

likely to cause a large loss of performance, while

considerably improving the maintainability of the code

written.

3. Coherent Ray Tracer

Ray tracing is typically considered the most time-

consuming part of any physically accurate algorithm. Whitted

estimated the time spent on ray tracing as 95% of the total

rendering time [13]. For physically accurate rendering, the

relative amount of time spent on ray tracing is less; however,

it is still about 65 – 75%, according to our estimates [14].

This makes the ray tracing process a primary candidate for

SSE optimization.

A common approach to SSE ray tracing optimization is

tracing 4 rays in parallel as SSE performs operations on 4 32-

bit floating point numbers simultaneously.

Conceptually, the algorithm is not changed significantly.

The BSP tree space subdivision technique is used for ray

tracing speedup. So the algorithm consists of both ray

traversal phase and object (or triangle) intersection phase. As

support for moving objects is highly desirable, a two-level

hierarchy is used, similar to [15]. The scene consists of

objects. Each object is a triangle mesh, which has its own

BSP tree (further referred to as second-level BSP tree or

object BSP tree) and a bounding box. The object is placed

into the scene using the transformation matrix. The entire

scene consists of the set of the object bounding boxes, the

scene BSP tree (further referred to as first-level BSP tree) and

the scene bounding box. As only object bounding boxes are

included into the scene tree, the subdivision may seem to be

not as efficient; however, this pays off by providing support

for moving objects. This two-level subdivision may even

improve the subdivision structure in sparse scenes, where it

allows better handling of empty spaces between objects.

As up to 4 rays are traced simultaneously, they may take

different code paths in the ray tracing algorithm. As such,

means for temporarily blocking some of the rays is necessary.

In our approach, the mask of currently active rays is used for

this. Typically, it is an SSE value (that is, a quadruple of 32-

bit floating point values), which contains either 0x00000000

or 0xffffffff (bitwise notation) in each of the four positions.

Using the mask allows to block some of the rays, if different

rays take different paths in conditional or loop instructions.

Masks are used for blocking rays which do not traverse the

current object, which do not traverse the current node of the

BSP tree or the first intersection of which has already been

found. Masking is a widely used technique in SSE

programming. In this paper, it is used in almost all

components of our solution. Therefore, a special type has

been designed for SSE mask (QBool type), for the sake of

code maintainability.

The coherent ray tracing algorithm proceeds as follows.

First, all the rays are tested for intersection with the scene

axis-aligned bounding box (AABB). If all the rays miss

AABB, the algorithm immediately reports no intersection. If

some of the rays intersect the AABB, the mask of currently

active rays is updated, and non-intersecting rays are excluded.

Then the algorithm proceeds to BSP traversal. As the

rays which have different direction signs can have different

BSP traversal order, the entire group is split into subgroups

with the same direction signs. Although this reduces the

efficiency of SSE ray tracing, the actual splits occur rather

rarely. Moreover, it can be shown that rays which have a

common intersection point, for instance, primary rays for a

pinhole camera or shadow rays for a point light source,

always have the same traversal order.

After splitting the rays into groups, the algorithm sets the

mask for currently active ray and proceeds to BSP tree

traversal. As the hierarchy is, in fact, two-level, the same

occurs both for the entire scene and for each of the objects

which is being tested for intersection. For each non-leaf node,

the BSP traversal algorithm proceeds as follows. If all of the

rays go only to right or only to left subnode, the algorithm

just updates the current node address and proceeds further

with this subnode. If some of the rays intersect both

subnodes, then the far one is pushed to the stack, the mask of

active rays is updated and the algorithm proceeds with the

near subnode of the current node. Note that due to splitting

Hierarchical

Scene Description

Libraries of Lights,

Materials etc.

VRML, TBT,

DFX, 3DS etc.

Preprocessed Scene

Description (RT)

Preprocessed Scene

Description (OpenGL)

Lighting Simulation Interactive Rendering

Raytraced Image OpenGL Image

rays into groups (see above) the situation where the rays

traverse two nodes in opposite order is impossible. It is

possible, however, that some of the rays traverse both nodes

and some traverse only one of them. In this case, rays which

do not traverse the current node are blocked; they are

activated again only for the other node traversal.

When the algorithm reaches a leaf-node, it proceeds to

the ray-object intersection. For the first level subdivision,

objects are actually scene objects, and the ray is transformed

and proceeds with every object in much the same way it does

with the entire scene. For the second level subdivision,

objects are actually triangles which need be intersected.

Ray-triangle intersection actually uses the modified

projection barycentric test implemented in SSE as described

in [4]. First, it is checked whether the intersection has been

cached. In case of a cache hit, the intersection data (that is,

the t value at the intersection point) are simply taken from the

intersection cache and tested against the current ray segment.

If this test succeeds, then the ray-triangle intersection is

reported.

In case of a cache miss, the entire intersection procedure

is performed. First, the t value at the ray-plane intersection

point is computed for currently active rays. If t is negative for

all active rays, then the procedure returns immediately

reporting no intersection. Otherwise, the active rays mask is

corrected and a pair of coordinates of ray-plane intersection

point is computed. Actually, the coordinates computed

correspond to the axes of the plane to which the triangle

projection is the largest. Barycentric coordinates of this point

are computed and tested for the intersection. If the

intersection occurs, then the t value is checked against the

current ray segment. If it belongs to the current ray segment,

the intersection is reported. The barycentric coordinates are

then written to the shading context (a global structure which

contains shading-related data). The same is performed in case

of a cache hit, if the intersection t value belongs to the current

ray segment.

If the intersection t value does not fall into the current

ray segment, only the cache data are updated. The intersection

t value and the intersection point coordinates are written to

the plane cache and no intersection is reported.

After testing all the objects in the node, those rays which

reported intersection are deactivated, as they need not traverse

any further. If all the objects in the first-level leaf node have

been tested, and intersections have been found for a number

of rays in this node, these intersections are actually

considered first intersections of those rays. After the first

intersection has been found, all intersection data are put into

the shade context.

Figure 2. The BSP and triangles data layout used in our SSE

ray tracer.

Our framework, in fact, requires having 2 intersection

methods. One of them finds only the first intersection of the

ray. The algorithm how it works has been described above.

The other one finds all intersections of the current ray

quadruple. Actually, it proceeds in much the same way as the

first intersection algorithm, those rays which have intersected

the object, are not immediately disabled but rather continue

further – until all intersections for them has been found.

The layout of the scene subdivision and triangle data

(shown in figure 2) is optimized with respect to cache

coherency. Therefore, both children of a BSP tree node are

stored in one memory chunk.

The BSP is constructed using the parameterizable

algorithm described in [16]. As object BSP trees are typically

constructed only once, at the preprocessing stage, more time

is devoted to their construction, which results in faster ray

traversal. On the contrary the first level BSP tree is

constructed often due to object movement. As BSP

subdivision algorithm typically requires superlinear time to

run, less time can be devoted to BSP tree construction.

Therefore, a fast algorithm is used here, which constructs a

less efficient BSP tree, though it does it faster.

 The BSP ray tracer has been run separately for a number

of test scenes. All of the tests are performed on the basis of

the same number of pixel. Figure 3 shows a picture rendered

with SSE ray tracer described here.

Figure 3. A room scene rendered with SSE ray tracer.

4. Surface Materials and BRDFs

As coherent ray tracing gives about 3.5 times speedup

compared to ordinary ray tracing algorithms, other parts of

the physically accurate rendering algorithms can actually

become bottlenecks. As it has been mentioned in the

beginning, the portion of time spent in ray tracing is about

70% total rendering time. SSE ray tracing accelerates the ray

tracing itself about 3 times on the average, therefore its

portion of rendering time is reduced to less than a half. In

order to reduce the whole rendering time in the most effective

way, other components do also need SSE acceleration.

In fact, this problem has been encountered by other SSE

ray tracing projects. In [17], after the authors of the project

implemented ray tracing on SSE, shading actually became a

bottleneck. According to their meaning, even simple Phong

shading can increase rendering time considerably in such a

situation, let alone complex shading algorithms involving

textures and BDFs.

Therefore, the need for implementing coherent material

and BDF processing is clear. Since all previous our

developments were oriented on delivering physically accurate

images rather than creating visually pleasing effects, no

general procedural shading is considered.

flags plane flags plane flags plane

Trg_ind Trg_ind Trg_ind Trg_ind … Term_ind

0 1 2

…

A physically accurate material we use typically consists

of the following components:

1. A simple bundle of Phong-like material attributes

2. Reflection and refraction-related attributes

3. Material textures

4. Material BDFs

The first two items are rather straightforward to

implement in SSE. In fact, they involve simple vector and

color operations, which can be easily implemented in SSE.

Lighting computations require tracing shadow, reflection and

refraction rays, but this can be easily accomplished by the

means of efficient SSE ray tracer described above. Texturing

and BDF support not as straightforward to implement in SSE,

however. The aspects of their implementation are described

and discussed separately in two subsequent sections.

4.1. Coherent Texturing.

In our framework, texture is an image applied to an

object to modify its visual appearance. Figure 4 shows an

example of an image with texture rendered using our

framework.

Texture itself belongs to the material, and each face has

a material applied to it. Texture mapping is done by the

means of 2D texture coordinates, which are provided for each

vertex belonging to a textured triangle.

Thus, the texture coordinates at the intersection points

need to be interpolated first of all. This is easily accomplished

for 4 rays simultaneously using the barycentric coordinates

calculated during the intersection point. The texture

coordinates for the triangle vertices are loaded separately for

different intersection triangles and are accumulated using a

mask. The interpolation is performed using SSE instructions.

Figure 4. An example of a texturized Glass1 scene rendered

with our coherent physically accurate algorithm.

The second stage is the interpolation of the texture value

itself. Prior to color loading, the exact coordinates at which to

take texture values must be determined. As the texture are 2D

and use mipmapping, tri-linear filtering needs to be

performed. Therefore, 3 coordinates are to be determined for

each of the active quadruple rays. Calculation of first two

texture coordinates, which correspond to the x and y position

of the texel, are straightforward since they involve only

division and number conversion. To provide the wider

applicability of our solution, we refrain from using SSE 2;

therefore, we model integer numbers by the means of

floating-point ones, and the conversion actually takes place

only when the texture is actually sampled.

The computation of the mipmap coordinate is more

complicated as it involves computing logarithm of the

distance to the viewpoint (the t value of the intersection

point). As the nearest integer to the logarithm is needed rather

than the value of the logarithm itself, it has been decided that

successive division by 2 (that is, multiplication by 0.5 for the

sake of efficiency) be used instead. As the size of the texture

is not very large (typically not more than 1024 x 1024), the

number of mipmap levels is not very large too (not more than

11), so the number of iterations is typically small. In fact, the

loop is likely to terminate in the same number of iterations for

all active the rays of the quadruple since they hit the surface

near to one another. On the other hand the computation of the

approximate value of the logarithm by the means of the

Taylor series, for example, may turn out to be rather

complicated and unstable due to its slow convergence.

Moreover, it would involve normalizing the ray coordinate of

the intersection point by some other value for the series to

converge.

Finally, the inverted tone mapping needs to be

performed since the initial texture image is stored with only 8

bits of precision. This is accomplished in much the same way

as the final tone mapping of the rendered image, which is

discussed in section 6.

Separate tests for only texturing performance were not

fulfilled. The reason is that it can vary greatly for different

surroundings and for different textures, as texture access,

contrary to BDF interpolation (see below), exhibits less

coherence. We believe, however, that due to many

vectorizable operations, the acceleration of about 2.5 times is

achievable.

4.2. Coherent BDFs

Support for complex material properties is crucial for

physically accurate rendering. Most of the objects of

everyday occurrence, such as car paint, wood, plastic and

clothes exhibit complex optical properties which cannot be

explained using Phong model [18] or other simplified

material models. In such cases, a more general model of

surface scattering needs to be used.

In our framework, we use BDFs based on various

physical data. These BDFs can be either measured in a special

setting [19] or calculated based on the material

microstructure, as for clothes [20]. Tabulating seems to be the

only practical way of representing such BDFs. The

framework for BDF tabulation and computations is as

follows.

The BDF is parameterized using angles describing

direction of illumination, observation direction and sample

orientation. Depending on the number of the angles used for

parameterization, the BDF is said to be 3- or 4-dimensional.

The 3D are often referred to as isotropic BDFs and 4D are

called anisotropic BDFs.

The BDFs have distinct features and are of high

dimension, so they can’t be tabulated uniformly for memory

space reasons. As they are tabulated in a non-uniform fashion,

binary search is to be applied for the computation of the BDF

cell in which to interpolate.

The entire algorithm for BDF computation thus proceeds

as follows. First, the BDF angles of the rays are calculated.

This is done using inverse trigonometric functions. Then

binary search is performed to define the BDF interpolation

cell. Finally, the value of the BDF is interpolated inside this

cell for the given ray directions.

The algorithms have been proposed to implement all of

the above mentioned in SSE. Interpolation is rather

straightforward to implement in SSE. For inverse

trigonometric functions, an approximation has been used.

Finally, the binary search algorithm has been modified to

handle 4 values simultaneously. The detailed description of

our approach is given in [21].

Explicit BDF performance measurements have been

performed. The dimensions of the anisotropic BDF were 17 x

7 x 17 x 13. The tests were run on the Intel Centrino notebook

with 1800 MHz Mobile Pentium-IV processor and 512 MB of

433 MHz RAM. The timings are given in the table 1.

#calls 100000 200000 400000

non-SSE (sec.) 0.137 0.248 0.495

SSE (sec.) 0.040 0.078 0.156

Acceleration 3.43 3.17 3.17

Table 1. Comparative timings for anisotropic BDF

evaluations with and without SSE.

The acceleration achieved is about 3.2 on the average.

This is less than 4 due to the fact that evaluation of the

tabulated BDF is rather a complicated procedure, which

involves lots of branching in binary searches and the like

algorithms.

It is also important to note that only one material is

processed at a time. If the rays from the same quadruple hit

two or more different materials, they are processed in turn,

with the rays not hitting the current material being blocked.

This allows simplifying the resulting code, as it works with

only one material at a time.

5. Light Sources

In order to have the most efficient physically accurate

coherent rendering, lighting should also be done using SSE

instructions. The term "Lighting" denotes here the process of

computing the incoming light intensity at the given point

rather than visibility determination. As the visibility

determination can be performed efficiently using SSE shadow

ray caster, it is lighting computations which need

acceleration.

We have several types of light sources in our framework.

These can be subdivided into point lights and surface lights.

Surface lights are actually processed using Monte-Carlo

approach, that is, a number of points is randomly generated

on the light source and, based on these points, the intensity of

the light source is determined. In determining the intensity,

each of these points is treated similarly to a point light source,

and the intensity is evaluated using one of the approaches

described below.

The other group includes various point light sources.

They vary from simple ones, such as omnidirectional or spot

light sources, to complex light sources with goniodiagrams.

Figure 5 demonstrates rendering with HDRI lighting in

our framework.

For the simple light sources, implementing coherent

lighting is rather straightforward, although some issues exist.

As in the case of materials, the algorithm works with only one

light source at a time. If by some reason (for example, the

triangle is back-facing with respect to the light) no lighting

computations need be done for some of the rays, they are

simply blocked.

Figure 5. An example of an Inspirer2-rendered image with

HDR panorama.

As only simple computations are performed for most of

the light sources, the same computations are now performed

in SSE for a quadruple of rays. The only light sources

needing change are spot light sources. In order to compute the

falloff, the cosine of the angle needs be computed. We have

found, however, that replacing it with a rough approximation

2
1cos

2x
−≈ϕ

tends to work well as the falloff itself is important rather than

the exact shape of the curve.

The situation is more complicated with point light

sources having goniodiagrams. The goniodiagram is a

common industrial format to represent the outgoing light

intensity of light source in various directions. Its support is

crucial in our framework which aims at physically accurate

rendering. The intensity of the goniodiagram light source is

tabulated in a 2-dimensional non-uniform table, very much

like that of the BDF. In order to evaluate it for the specified

direction, the following computations have to be performed.

First, the spherical coordinates of the ray direction need to be

computed. Second, the exact cell the current ray direction

belongs to has to be determined. Finally, the interpolation of

the light intensity needs to be performed inside the given cell.

These steps correspond exactly to what is done for BDF

interpolation. In fact, both algorithms share a number of

common functions used for both BDF and goniodiagram

evaluation.

The performance testing has been done for various kinds

of light sources. Both SSE and non-SSE rendering have

sufficient accuracy, so images rendered with these two

approaches are virtually indistinguishable. SSE approach,

however, performs more than 3.5 times faster than a non-SSE

one.

 The tests were run on the Pentium 4 2.8 GHz computer

with 1 GB 433MHz memory. The results are summarized in

table 2. All times are given in seconds.

Type of Light non-SSE SSE Acceleration

Omnidirectional 1.137 0.157 7.24

Spot 0.816 0.211 3.87

Parallel 0.444 0.103 4.31

Direct 0.936 0.150 6.24

Linear 6.696 1.149 5.83

Circular 27.936 4.828 5.79

Rectangular 145.252 24.375 5.96

Goniodiagram 2.573 0.588 4.38

Table 2. Comparative timings for non-SSE and SSE lighting

for different light sources.

For the linear light source, it has been subdivided into 7

point light sources for rendering. For the rectangular light

source, it has been subdivided into 7x3 = 21 light sources for

rendering.

As it can bee seen, for most of the light sources the

acceleration achieved exceeds 4. Actually, only spot light

sources yield less acceleration. For the non-point light

sources, the acceleration is, on the average, greater than for

point ones, for which it varies greatly. It can also be seen that

the goniodiagram light source has less acceleration compared

to an omnidirectional one, for example. This is due to the fact

that goniodiagrams require more complex algorithm to

evaluate.

6. Antialiasing and Tone Mapping

Physically accurate rendering cannot do without tone

mapping and antialiasing. While the former is required to

map the high dynamic range image obtained during rendering

to the limited dynamic range of the monitor, the latter allows

to get sufficiently accurate images of scenes with low-size

details. Moreover, antialiasing is needed just to get visually

pleasing images without jagged borders.

As these two are rather independent procedures, they are

discussed separately in the following subsections.

6.1. Tone Mapping

The tone mapping algorithm is performed as follows.

First of all, a lower-sized copy of the image with high

dynamic range values (that is, with floating-point values) is

computed. This copy is used to compute the logarithmic

average of the intensity. As the image itself may appear not at

precise, it gives the general impression about the light

distribution in the final image, and thus, about the logarithmic

average of the final image. As the final image is updated

iteratively in our antialiasing algorithm (see below), its

logarithmic average cannot be used since it changes

continuously.

The tone mapping method used is in fact the one

described in [22]. The only difficulty with implementing it in

SSE is the power function, needed to compute xy. Since the

number of iterations needed to obtain sufficient precision

depends greatly on the range, the range is desirable to be

reduced. The expression itself can be reformulated:










⋅=







⋅=)(

ln

)(
)(

)(
xMax

x
y

y

y

yy exMax
xMax

x
xMaxx

where Max(x) is the maximum value of the color obtained

from the low-sized image pre-rendered. As this variable

affects only the precision of computations, this is sufficient.

The domain of the logarithm is thus reduced to [0, 1] and the

domain of the exponent to [-∞, 0]. For the exponent

approximation, a hybrid approach is used. In the [-3.8, 0]

range, Pade approximation [23] is used

168018084020

168018084020
234

234

++−−
++++

=
xxxx

xxxx
e x

In that range, it gives sufficient precision (about 1%). In [-14,

-3.8], however, Pade approximation works poorly, so the

table lookup with interpolation is used. A 1024-entry uniform

table is sufficient, providing about 1% precision in the entire

range. As arguments for the exponent typically do not fall

outside the [-14, 0] range in our applications, this approach

works well.

 A similar hybrid approach is used for logarithm

computations. For values greater than 0.17, Pade

approximation is used, while for values between 0 and 0.17

the interpolation lookup table is used instead. This was found

to provide sufficient precision and is also easy to implement

in SSE for both logarithm and exponent computations.

6.2. Antialiasing

Since the coherent physically accurate rendering

algorithm is required to work in an interactive setting, it has

to exhibit convergence and progressiveness. That is, while the

image is still (neither camera nor scene objects move), it must

be updated iteratively and the quality has to increase.

Alternatively, in an offline setting, the image is rendered

progressively and the current image is displayed. When the

user is satisfied (or when the precision objective has been

reached), the rendering is terminated.

Antialiasing is one of the ways of improving the quality

of rendered image. As such, it must possess progressiveness

and adaptivity. Our framework also requires precision

control, as it is required in many industrial applications.

These considerations governed the design of antialiasing

algorithm used.

The algorithm is based on the ability to generate a

sequence of coherent portions of 4 rays which eventually

cover the entire screen with any required density and which

can be generated on different levels of the hierarchy. In fact,

the algorithm starts with a sparse uniform grid of superpixels,

with the size of a superpixel being greater than the size of a

pixel. The span of the ray quadruple generated is governed by

a so-called coherence radius R, which depends on the current

superpixel (or subpixel) size. When the R is decreased, the

level of details at which the current rendering takes place is

increased.

For the generation of samples in the screen plane, the 2-

dimensional Halton sequence [24] is used with base 2k along

x-dimension and base 3n along y-dimension. The number s =

2k3n is called span in our algorithm. Due to the quasi-

periodicity of the Halton sequence, the sequence samples with

indices j, j + s, j + 2s, j + 3s are located nearly to one another

and can thus be traced simultaneously as they are coherent.

The span thus defines the number of rays in a single portion.

In order not to trace the same rays twice, the j index ranges

from 0 to s – 1. The span thus allows us to control the number

of rays generated.

Typically, the coherence radius is inversely proportional

to the span. More precisely,

s

yx
R resres

π
=

If sample accuracy is not yet sufficient (see below), a ray

is traced. For four coherently generated samples, 4 coherent

rays are traced simultaneously. Each ray is traced to the end

(i.e. the entire ray stack produced by the ray is traced) and the

color calculated is returned. The color is then tone mapped

and written to the screen matrix.

In order to control accuracy, a simple heuristic is used

[25]. There are, in fact, 2 copies of the screen matrix. For

each copy, 2 arrays are stored. The first one is the arrays of

pixel colors. The second one is the number of samples taken

at that pixel. Independently of the current coherence radius

and span, the size of the screen matrix is always the same as

the resolution of the image.

The resulting pixel color is computed based on both

copies of the screen matrix. The difference of the estimates

given by these two matrices is used as a measure of accuracy.

If for the current coherent group of 4 rays the accuracy is

acceptable for all rays, then these rays are not traced.

As the accuracy tends to be unacceptable in those

regions where aliasing takes place, this algorithm efficiently

deals with antialiasing. Moreover, as the size of initial

superpixels can be set to more than one pixel (sizes up to 16 x

24 have been used), in those regions of the image where

lighting changes slowly (on walls, for example), interpolation

may be used to further reduce rendering time. To be eligible

for interpolation, the superpixel has to have the difference

between the values at its corners less than the desired

accuracy.

It has been found out that an adaptive algorithm, even

with antialiasing turned on, can even be faster than classical

algorithm due to superpixel interpolation and adaptability,

thus providing a reasonable speed – quality tradeoff.

7. Results

The algorithms discussed above have been implemented

in C++ language in Visual Studio 2003 development

environment. No assembler has been used for the reasons of

code maintainability. SSE instructions were accessed via

intrinsics, which, in turn, have been wrapped into classes

which provide common functionality.

The performance of the ray tracer has been tested on a

number of test scenes. The tests have been performed on a

dual 933 MHz Pentium III – machine with 1 GB of 133MHz

memory. For 1 CPU tests, one of the processors has been

disabled. All times are given in seconds. Acceleration gives

the ration of time spent by non-SSE renderer in 1 CPU setting

to that of an SSE renderer in 1 CPU setting. All images were

rendered at 1024 x 768 resolution. The rendering times are

given in table 3 and the scene characteristics in table 4. Table

5 compares performance of our approach on single-CPU and

dual-CPU machines. As the number of CPUs double, the

performance increases approximately 1.9 times.

Scene non-

SSE

SSE

(1 CPU)

Acceleration

Car 489.88 82.11 5.97

SPDemo 43.41 2.63 16.51

Glass1 52.66 6.18 8.52

Room2 35.12 4.77 7.36

Table 3. The comparative timings of rendering a 1024 x 768

image with and without using SSE instructions.

Scene № trigs № lights depth

Car 233000 4 2

SPDemo 988 3 2

Glass1 44794 2 2

Room2 12000 4 1

Table 4. The characteristics of the scenes used for testing.

Scene 1 CPU 2 CPU Acceleration

Polo 82.11 41.06 2.00

SPDemo 2.63 1.39 1.89

Glass1 6.18 3.20 1.93

Room2 4.77 2.49 1.91

Table 5. Comparative timings of rendering 1024x768 image

with SSE with 1 and 2 CPUs.

The Car test scene contains measured tabulated BRDF,

transparent and refractive objects. SPDemo and Glass1 scenes

exhibit high reflective complexity. In addition, Glass1 scene

is heavily textured. Ray tracing depth 0 corresponds to tracing

only camera rays, depth 1 means one level of reflection etc.

8. Discussion

We have presented a physically accurate coherent

rendering algorithm which is more than 6 times faster than

common ones. The acceleration achieved is mainly due to the

use of SSE instructions, which gives a speedup of about a

factor of 4. The remaining speedup is due to more careful

selection of algorithms and data structures. It is also partly

due to more time spent on code optimization.

The resulting rendering times do not seem interactive,

although they are rather small. It should be noted, however,

that images were rendered at a resolution 1024x768 with 3

light sources. Reducing the resolution to 512x512 will

decrease the rendering time roughly 3 times (as it almost

linearly depends on the image resolution). Cutting the number

of the light sources in the scene will also decrease the

rendering time.

Figure 7. The Car scene rendered using our approach.

Other direction of SSE ray tracing application is

acceleration of global illumination calculation. In order to

render higher-order indirect illumination the illumination

maps technique is used now. As i-maps are calculated by

Monte-Carlo ray tracing method they can also benefit from

SSE optimizations. However, the rays cast for the

illumination map computation, are far less coherent than

those cast during ordinary ray tracing. Therefore, coherent

algorithms for illumination mapping need to be developed.

Currently, only RGB colors are supported using SSE. It

would be interesting, however, to investigate spectral color

support. As spectral colors are harder to compute (typically,

one spectral color object contains 20 to 40 intensities

measured for different wavelengths), this approach does not

seem to be interactive. However, it would allow for faster

rendering of spectral-based effects, which is required in some

areas of industrial rendering. For non-SSE rendering, our

framework currently supports spectral BDFs and materials.

The version of the paper with color illustrations can be

found at

http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.ht

m

Acknowledgements

This work has been supported by the Russian President

“Leading Scientific Schools” grant № RI-112/001/278, RFBR

grant № 05-01-00345 and by the Integra Inc. (Tokyo, Japan).

References
[1] IA-32 Intel Architecture Optimization Reference

Manual, p. 440

http://www.intel.com/design/pentium4/manuals/24896612.pdf

[2] AMD 3DNow! extensions http://www.amd.com/us-

en/Processors/SellAMDProducts/0,,30_177_4458_4513^141

3^2137,00.html

[3] PrPMC800: MPC7410 Processor PMC with AltiVec

Technology

http://www.motorola.com/content/0,,5626,00.html

[4] Ingo Wald, Carsten Benthin, Markus Wagner, Philipp

Slusallek: Interactive Rendering with Coherent Ray Tracing.

Proc. of Eurographics 2001, vol. 20, № 3, pp. 153 – 164.

[5] Virtual Ray Interactive Sphere Ray Tracing Engine,

http://www.virtualray.ru/

[6] Andrei Khodulev, Edward Kopylov: Physically

Accurate Lighting Simulation in Computer Graphics

Software. Proc. GraphiCon'96: The 6-th International

conference on Computer Graphics and Visualization, St.

Petersburg, Russia, July 1-5, 1996. Vol.2, pp.111-119.

[7] Konstantin V. Kolchin, Andrei B. Khodulev: Device-

Independent Rendering in Display Color Space. Proc.

Graphicon’98: The 8-th International Conference on

Computer Graphics and Visualization, Moscow, Russia,

September 7-11, 1998, pp.162-163.

[8] A.G. Voloboi, V. A. Galaktionov, K.A. Dmitriev, and

E.A. Kopylov: Bidirectional Ray Tracing for the Integration

of Illumination by the Quasi-Monte Carlo Method.

Programming and Computer Software, Vol. 30, No. 5, 2004,

pp. 258-265.

[9] Products Page of Integra Inc.

http://www.integra.jp/eng/products/index.htm

[10] A. Ignatenko, B. Barladian, K. Dmitriev, S. Ershov, V.

Galaktionov, I. Valiev, A. Voloboy: A Real-Time 3D

Rendering System with BRDF Materials and Natural

Lighting. Proc. Graphicon’2004: The 14-th International

Conference on Computer Graphics and its Applications,

Moscow, Russia, pp. 159-162.

[11] E.Kopylov, A.Khodulev, V.Volevich: The Comparison

of Illumination Maps Technique in Computer Graphics

Software. Proc. GraphiCon'98: The 8-th International

Conference on Computer Graphics and Visualization,

Moscow, Russia, September 7-11, 1998, pp.146-153.

[12] Intel C++ Compiler Product Page

http://www.intel.com/cd/software/products/asmo-

na/eng/compilers/220009.htm

[13] Turner Whitted: An Improved Illumination Model for

Shaded Display. Communications of ACM, Vol. 23, № 6,

June 1980, pp. 343-349.

[14] Волобой А.Г., Метод компактного хранения

октарного дерева в задаче трассировки лучей.

«Программирование», № 1, 1992, стр. 21-27.

[15] Ingo Wald, Carsten Benthin, Philipp Slusallek: OpenRT

– A Scalable and Flexible Engine for Interactive 3D

Graphics. http://graphics.cs.uni-sb.de/%7Ewald/Publications/

2002_OpenRT/2002_OpenRT.pdf

[16] V. Havran: Heuristic Ray Shooting Algorithms.

Dissertation Thesis, Faculty of Electrical Engineering, Czech

Technical University, Prague, 2000.

[17] Carsten Benthin, Ingo Wald, Philipp Slusallek: A

Scalable Approach to Interactive Global Illumination.

Proceedings of Eurographics 2003, Computer Graphics

Forum, v.22, №3, pp. 621 – 630.

[18] B. Phong: “Illumination for Computer Generated

Pictures”. Communications of the ACM, vol. 18, № 6, 1975,

pp. 311 – 317.

[19] Letunov A. A., Barladian B. H., Zueva E. Yu.,

Veshnevetc V. P., Soldatov S. A.: CCD-based device for

BDF measurements in computer graphics. Proc.

GraphiCon'99: The 9th International Conference on

Computer Graphics and Computer Vision, Moscow, Russia,

1999, pp. 129-135.

[20] Vladimir Volevich, Andrei Khodulev, Edward Kopylov,

Olga Karpenko: An Approach to Cloth Synthesis and

Visualization. Proc. GraphiCon'97: The 7th International

Conference on Computer Graphics and Visualization,

Moscow, Russia, 1997, pp. 45-49.

[21] Адинец А.В., Барладян Б.Х., Волобой А.Г.,

Галактионов В.А., Копылов Э.А., Шапиро Л.З.,

Когерентная трассировка лучей для сцен, содержащих

объекты со сложными светорассеивающими свойствами.

Препринт ИПМ им. М.В. Келдыша РАН № 107, 2005.

[22] B. Kh. Barladian, A.G. Voloboi, V. A. Galaktionov, and

E.A. Kopylov "An Effective Tone Mapping Operator for

High Dynamic Range Images" Programming and Computer

Software, Vol. 30, No. 5, 2004, pp. 266-272.

[23] An article on Pade approximants in MathWorld online

encyclopedia.

http://mathworld.wolfram.com/PadeApproximant.html

[24] H. Niederreiter. Random Number Generation and

Quasi-Monte Carlo Methods. Chapter 4, SIAM,

Pennsylvania, 1992.

[25] V.Volevich, K.Myszkowski, A.Khodulev, E.Kopylov:

Using the Visual Differences Predictor to Improve

Performance of Progressive Global Illumination

Computations. ACM Transactions on Graphics, 2000, v.19,

№ 2, pp.122-161.

Authors:

Andrew V. Adinetz, five course student of the Moscow State

University. E-mail: adi_@mail.ru.

Boris H. Barladian, PhD, senior researcher of the Keldysh

Institute for Applied Mathematics RAS.

E-mail: obb@gin.keldysh.ru.

Vladimir A. Galaktionov, PhD, head of department of the

Keldysh Institute for Applied Mathematics RAS.

E-mail: vlgal@gin.keldysh.ru.

Lev Z. Shapiro, PhD, senior researcher of the Keldysh

Institute for Applied Mathematics RAS.

Alexey G. Voloboy, PhD, senior researcher of the Keldysh

Institute for Applied Mathematics RAS.

E-mail: voloboy@gin.keldysh.ru.

