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Abstract 

 

As the processing power of modern CPUs increases, 

coherent ray tracing becomes more and more popular, as it 

allows significantly accelerating ray tracing using SIMD 

instructions. It turns out, however, that as ray tracing is 

accelerated, other parts of physically accurate rendering 

algorithms tend to become bottlenecks.  

In this paper, we introduce a coherent physically 

accurate rendering approach, which allows taking advantage 

of SIMD capabilities of modern CPUs at every stage of 

rendering computations. We demonstrate coherent algorithms 

for lighting and material computations as well as for anti-

aliasing and tone mapping. The comparison performed on a 

number of test scenes demonstrates significant acceleration 

compared to common non-coherent approach. 

 

Keywords: SSE, interactive ray tracing, tone mapping, 

antialiasing, texturing, BRDF, photorealistic rendering. 

 

1. Introduction 

 

Coherent ray tracing, that is, tracing a number of rays 

simultaneously, has been a subject of scientific research in 

recent years. As modern commodity CPUs (central 

processing units) appear to support various kinds of SIMD 

(Single Instruction Multiple Data) extensions, which allow 

performing arithmetic operations on multiple floating point 

numbers simultaneously, tracing several rays in parallel 

becomes quite natural. Various CPUs offer various SIMD 

extensions, such as Intel SSE (Streaming SIMD Extension) 

[1], AMD 3DNow! [2] and Motorola AltiVec [3]. Of all 

these, only Intel SSE became common for coherent ray 

tracing implementation. Currently, there exist multiple SSE 

coherent ray tracing projects. One of the most widely known 

is [4] by Slusallek, Wald et al., which uses SSE to perform 

interactive ray tracing. Another example is the VirtualRay 

project [5], which uses SSE for interactive ray tracing of 

scenes consisting entirely of spheres. In fact, due to its wide 

availability, SSE became a de-facto standard for 

implementing coherent ray tracing. Hence both SSE ray 

tracing and coherent ray tracing will be used as synonyms 

across the paper. 

Computer Graphics department of Keldysh Institute for 

Applied Mathematics RAS, has a long experience of creating 

systems for physically accurate rendering [6], [7], [8]. It has 

created a number of applications which support various 

aspects of photorealistic rendering. Our scientific research 

results were used by Integra Inc. to create commercial 

products [9]. As SSE becomes widely available, it becomes 

highly desirable to be supported for both interactive and 

offline rendering.  

It is important to note that ray tracing is an essential, 

though not the only part of photorealistic rendering. The latter 

also includes modeling of physically accurate surface 

properties and physically accurate lighting with complex light 

sources. To render scene features with subpixel size correctly, 

rendering algorithm must include antialiasing, and tone 

mapping is necessary to obtain final images from lighting 

simulation results which usually are of high dynamic range.  

In this paper, we present an approach which benefits from 

SSE support and coherency not only in the process of ray 

tracing, but also for shading, tone mapping, lighting etc. 

Using SSE instructions gives nearly 4-times acceleration 

compared to non-SSE implementation. 

The paper is organized as follows. Section 2 briefly 

describes the architecture and design of the Inspirer2 

rendering system and outlines the main parts of the coherent 

ray tracing solution. Section 3 describes the coherent ray 

tracer. Section 4 deals with surface materials and BRDFs 

(bidirectional reflection distribution functions) in coherent ray 

tracing approach. Section 5 describes the support of multiple 

types of light sources for coherent ray tracing. Section 6 is 

about coherent antialiasing and tone mapping. The 

performance of the system is demonstrated on a number of 

test scenes and the results are reported in section 7. Section 8 

is devoted to the results discussion and possible future work. 

 

2. Outline of the Solution 

 

The physically accurate rendering with coherent ray 

tracing is implemented on the basis of Inspirer2 rendering 

system (formerly Fly) [10].  

This system has been designed to provide support for 

both interactive and offline rendering modes. Interactive 

mode implementation was based on OpenGL. In interactive 

mode, the system, while providing real-time framerates (25 – 

30 fps), aims at supporting the best level of physical accuracy 

possible at such frame rates. In interactive mode, the system 

is able to provide physically accurate shadows from point 

light sources and BRDF support for surface material 

specification. It is also able to approximate reflections using 

environment maps. 

In offline rendering mode, it provides physically 

accurate rendering using bi-directional ray tracing. It supports 

both point and surface light sources with goniodiagrams in 

order to create realistic lighting. It also provides support for 

materials with complex BRDFs and textures. Rendering is 

able of calculating multiple order reflections. For the global 

illumination computation, an algorithm based on forward 

Monte-Carlo ray tracing (MCRT) is used. The results of 

MCRT are stored in illumination maps [11] and used in both 

rendering modes. 

In fact, both interactive and offline rendering may 

benefit from the SSE ray tracing. Offline rendering is likely to 

perform 2 – 3 times faster since SSE is able to trace 4 rays in 

parallel. As to interactive rendering, SSE ray tracing may be 

used in a hybrid approach to provide physically accurate 

reflections and refractions over an OpenGL rendered image. 

 



The Inspirer2 architecture is presented in fig.1. The 

design of the architecture has been driven by the necessity of 

preserving physical attributes of the scene.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Overview of the system architecture. Generic 

Hierarchical scene description with physical attributes is 

converted to two Preprocessed Scene Description – one for 

OpenGL engine and another for ray tracing engine (including 
MCRT). 

 

As it is possible to build several rendering databases 

simultaneously for a single scene data base, it becomes easier 

to attach a new rendering engine, including one based on 

SSE, to the existing browser application.  

It has been decided, however, that a new scene rendering 

database need not be created to support SSE rendering as 

there exists already a database for Monte-Carlo ray tracing. 

Instead, this database has been slightly modified, where 

necessary, to better support coherent ray tracing. Such 

optimizations, however, has not been numerous due to the 

fact that MCRT database has been optimized already for the 
existing ray tracer.  

The coherent ray tracing, as well as other components of 

the solution, has been implemented in C++ language. No 

assembler has been used. In order to use SSE functionality, 

classes have been designed, which presented a high-level 

wrapper over the SSE intrinsics provided by the 

Microsoft/Intel C++ compiler [12]. As modern compilers tend 

to be able to optimize high-level code efficiently, this is not 

likely to cause a large loss of performance, while 

considerably improving the maintainability of the code 

written. 

 

3. Coherent Ray Tracer 

 

Ray tracing is typically considered the most time-

consuming part of any physically accurate algorithm. Whitted 

estimated the time spent on ray tracing as 95% of the total 

rendering time [13]. For physically accurate rendering, the 

relative amount of time spent on ray tracing is less; however, 

it is still about 65 – 75%, according to our estimates [14]. 

This makes the ray tracing process a primary candidate for 

SSE optimization.  

A common approach to SSE ray tracing optimization is 

tracing 4 rays in parallel as SSE performs operations on 4 32-

bit floating point numbers simultaneously.  

Conceptually, the algorithm is not changed significantly. 

The BSP tree space subdivision technique is used for ray 

tracing speedup. So the algorithm consists of both ray 

traversal phase and object (or triangle) intersection phase. As 

support for moving objects is highly desirable, a two-level 

hierarchy is used, similar to [15]. The scene consists of 

objects. Each object is a triangle mesh, which has its own 

BSP tree (further referred to as second-level BSP tree or 

object BSP tree) and a bounding box. The object is placed 

into the scene using the transformation matrix. The entire 

scene consists of the set of the object bounding boxes, the 

scene BSP tree (further referred to as first-level BSP tree) and 

the scene bounding box. As only object bounding boxes are 

included into the scene tree, the subdivision may seem to be 

not as efficient; however, this pays off by providing support 

for moving objects. This two-level subdivision may even 

improve the subdivision structure in sparse scenes, where it 

allows better handling of empty spaces between objects. 

As up to 4 rays are traced simultaneously, they may take 

different code paths in the ray tracing algorithm. As such, 

means for temporarily blocking some of the rays is necessary. 

In our approach, the mask of currently active rays is used for 

this. Typically, it is an SSE value (that is, a quadruple of 32-

bit floating point values), which contains either 0x00000000 

or 0xffffffff (bitwise notation) in each of the four positions. 

Using the mask allows to block some of the rays, if different 

rays take different paths in conditional or loop instructions. 

Masks are used for blocking rays which do not traverse the 

current object, which do not traverse the current node of the 

BSP tree or the first intersection of which has already been 

found. Masking is a widely used technique in SSE 

programming. In this paper, it is used in almost all 

components of our solution. Therefore, a special type has 

been designed for SSE mask (QBool type), for the sake of 

code maintainability. 

The coherent ray tracing algorithm proceeds as follows. 

First, all the rays are tested for intersection with the scene 

axis-aligned bounding box (AABB). If all the rays miss 

AABB, the algorithm immediately reports no intersection. If 

some of the rays intersect the AABB, the mask of currently 

active rays is updated, and non-intersecting rays are excluded. 

Then the algorithm proceeds to BSP traversal. As the 

rays which have different direction signs can have different 

BSP traversal order, the entire group is split into subgroups 

with the same direction signs. Although this reduces the 

efficiency of SSE ray tracing, the actual splits occur rather 

rarely. Moreover, it can be shown that rays which have a 

common intersection point, for instance, primary rays for a 

pinhole camera or shadow rays for a point light source, 

always have the same traversal order. 

After splitting the rays into groups, the algorithm sets the 

mask for currently active ray and proceeds to BSP tree 

traversal. As the hierarchy is, in fact, two-level, the same 

occurs both for the entire scene and for each of the objects 

which is being tested for intersection. For each non-leaf node, 

the BSP traversal algorithm proceeds as follows. If all of the 

rays go only to right or only to left subnode, the algorithm 

just updates the current node address and proceeds further 

with this subnode. If some of the rays intersect both 

subnodes, then the far one is pushed to the stack, the mask of 

active rays is updated and the algorithm proceeds with the 

near subnode of the current node. Note that due to splitting 
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rays into groups (see above) the situation where the rays 

traverse two nodes in opposite order is impossible. It is 

possible, however, that some of the rays traverse both nodes 

and some traverse only one of them. In this case, rays which 

do not traverse the current node are blocked; they are 

activated again only for the other node traversal. 

When the algorithm reaches a leaf-node, it proceeds to 

the ray-object intersection. For the first level subdivision, 

objects are actually scene objects, and the ray is transformed 

and proceeds with every object in much the same way it does 

with the entire scene. For the second level subdivision, 

objects are actually triangles which need be intersected.  

Ray-triangle intersection actually uses the modified 

projection barycentric test implemented in SSE as described 

in [4]. First, it is checked whether the intersection has been 

cached. In case of a cache hit, the intersection data (that is, 

the t value at the intersection point) are simply taken from the 

intersection cache and tested against the current ray segment. 

If this test succeeds, then the ray-triangle intersection is 

reported.  

In case of a cache miss, the entire intersection procedure 

is performed. First, the t value at the ray-plane intersection 

point is computed for currently active rays. If t is negative for 

all active rays, then the procedure returns immediately 

reporting no intersection. Otherwise, the active rays mask is 

corrected and a pair of coordinates of ray-plane intersection 

point is computed. Actually, the coordinates computed 

correspond to the axes of the plane to which the triangle 

projection is the largest. Barycentric coordinates of this point 

are computed and tested for the intersection. If the 

intersection occurs, then the t value is checked against the 

current ray segment. If it belongs to the current ray segment, 

the intersection is reported. The barycentric coordinates are 

then written to the shading context (a global structure which 

contains shading-related data). The same is performed in case 

of a cache hit, if the intersection t value belongs to the current 

ray segment. 

If the intersection t value does not fall into the current 

ray segment, only the cache data are updated. The intersection 

t value and the intersection point coordinates are written to 

the plane cache and no intersection is reported. 

After testing all the objects in the node, those rays which 

reported intersection are deactivated, as they need not traverse 

any further. If all the objects in the first-level leaf node have 

been tested, and intersections have been found for a number 

of rays in this node, these intersections are actually 

considered first intersections of those rays. After the first 

intersection has been found, all intersection data are put into 

the shade context. 

 

Figure 2. The BSP and triangles data layout used in our SSE 

ray tracer. 

 

Our framework, in fact, requires having 2 intersection 

methods. One of them finds only the first intersection of the 

ray. The algorithm how it works has been described above. 

The other one finds all intersections of the current ray 

quadruple. Actually, it proceeds in much the same way as the 

first intersection algorithm, those rays which have intersected 

the object, are not immediately disabled but rather continue 

further – until all intersections for them has been found.  

The layout of the scene subdivision and triangle data 

(shown in figure 2) is optimized with respect to cache 

coherency. Therefore, both children of a BSP tree node are 

stored in one memory chunk.  

The BSP is constructed using the parameterizable 

algorithm described in [16]. As object BSP trees are typically 

constructed only once, at the preprocessing stage, more time 

is devoted to their construction, which results in faster ray 

traversal. On the contrary the first level BSP tree is 

constructed often due to object movement. As BSP 

subdivision algorithm typically requires superlinear time to 

run, less time can be devoted to BSP tree construction. 

Therefore, a fast algorithm is used here, which constructs a 

less efficient BSP tree, though it does it faster. 

 The BSP ray tracer has been run separately for a number 

of test scenes. All of the tests are performed on the basis of 

the same number of pixel. Figure 3 shows a picture rendered 

with SSE ray tracer described here. 

 

 
 

Figure 3. A room scene rendered with SSE ray tracer. 

 

4. Surface Materials and BRDFs 

 

As coherent ray tracing gives about 3.5 times speedup 

compared to ordinary ray tracing algorithms, other parts of 

the physically accurate rendering algorithms can actually 

become bottlenecks. As it has been mentioned in the 

beginning, the portion of time spent in ray tracing is about 

70% total rendering time. SSE ray tracing accelerates the ray 

tracing itself about 3 times on the average, therefore its 

portion of rendering time is reduced to less than a half. In 

order to reduce the whole rendering time in the most effective 

way, other components do also need SSE acceleration. 

In fact, this problem has been encountered by other SSE 

ray tracing projects. In [17], after the authors of the project 

implemented ray tracing on SSE, shading actually became a 

bottleneck. According to their meaning, even simple Phong 

shading can increase rendering time considerably in such a 

situation, let alone complex shading algorithms involving 

textures and BDFs.  

Therefore, the need for implementing coherent material 

and BDF processing is clear. Since all previous our 

developments were oriented on delivering physically accurate 

images rather than creating visually pleasing effects, no 

general procedural shading is considered. 
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A physically accurate material we use typically consists 

of the following components: 

 

1. A simple bundle of Phong-like material attributes 

2. Reflection and refraction-related attributes 

3. Material textures 

4. Material BDFs 

 

The first two items are rather straightforward to 

implement in SSE. In fact, they involve simple vector and 

color operations, which can be easily implemented in SSE. 

Lighting computations require tracing shadow, reflection and 

refraction rays, but this can be easily accomplished by the 

means of efficient SSE ray tracer described above. Texturing 

and BDF support not as straightforward to implement in SSE, 

however. The aspects of their implementation are described 

and discussed separately in two subsequent sections. 

 

4.1. Coherent Texturing. 

 

In our framework, texture is an image applied to an 

object to modify its visual appearance. Figure 4 shows an 

example of an image with texture rendered using our 

framework. 

Texture itself belongs to the material, and each face has 

a material applied to it.  Texture mapping is done by the 

means of 2D texture coordinates, which are provided for each 

vertex belonging to a textured triangle.  

Thus, the texture coordinates at the intersection points 

need to be interpolated first of all. This is easily accomplished 

for 4 rays simultaneously using the barycentric coordinates 

calculated during the intersection point. The texture 

coordinates for the triangle vertices are loaded separately for 

different intersection triangles and are accumulated using a 

mask. The interpolation is performed using SSE instructions. 

 

 
 

Figure 4. An example of a texturized Glass1 scene rendered 

with our coherent physically accurate algorithm. 

 

The second stage is the interpolation of the texture value 

itself. Prior to color loading, the exact coordinates at which to 

take texture values must be determined. As the texture are 2D 

and use mipmapping, tri-linear filtering needs to be 

performed. Therefore, 3 coordinates are to be determined for 

each of the active quadruple rays. Calculation of first two 

texture coordinates, which correspond to the x and y position 

of the texel, are straightforward since they involve only 

division and number conversion. To provide the wider 

applicability of our solution, we refrain from using SSE 2; 

therefore, we model integer numbers by the means of 

floating-point ones, and the conversion actually takes place 

only when the texture is actually sampled. 

The computation of the mipmap coordinate is more 

complicated as it involves computing logarithm of the 

distance to the viewpoint (the t value of the intersection 

point). As the nearest integer to the logarithm is needed rather 

than the value of the logarithm itself, it has been decided that 

successive division by 2 (that is, multiplication by 0.5 for the 

sake of efficiency) be used instead. As the size of the texture 

is not very large (typically not more than 1024 x 1024), the 

number of mipmap levels is not very large too (not more than 

11), so the number of iterations is typically small. In fact, the 

loop is likely to terminate in the same number of iterations for 

all active the rays of the quadruple since they hit the surface 

near to one another. On the other hand the computation of the 

approximate value of the logarithm by the means of the 

Taylor series, for example, may turn out to be rather 

complicated and unstable due to its slow convergence. 

Moreover, it would involve normalizing the ray coordinate of 

the intersection point by some other value for the series to 

converge. 

Finally, the inverted tone mapping needs to be 

performed since the initial texture image is stored with only 8 

bits of precision. This is accomplished in much the same way 

as the final tone mapping of the rendered image, which is 

discussed in section 6.  

Separate tests for only texturing performance were not 

fulfilled. The reason is that it can vary greatly for different 

surroundings and for different textures, as texture access, 

contrary to BDF interpolation (see below), exhibits less 

coherence. We believe, however, that due to many 

vectorizable operations, the acceleration of about 2.5 times is 

achievable. 

 

4.2. Coherent BDFs  

 
Support for complex material properties is crucial for 

physically accurate rendering. Most of the objects of 

everyday occurrence, such as car paint, wood, plastic and 

clothes exhibit complex optical properties which cannot be 

explained using Phong model [18] or other simplified 

material models. In such cases, a more general model of 

surface scattering needs to be used.  

In our framework, we use BDFs based on various 

physical data. These BDFs can be either measured in a special 

setting [19] or calculated based on the material 

microstructure, as for clothes [20]. Tabulating seems to be the 

only practical way of representing such BDFs. The 

framework for BDF tabulation and computations is as 

follows.  

The BDF is parameterized using angles describing 

direction of illumination, observation direction and sample 

orientation. Depending on the number of the angles used for 

parameterization, the BDF is said to be 3- or 4-dimensional. 

The 3D are often referred to as isotropic BDFs and 4D are 

called anisotropic BDFs. 

The BDFs have distinct features and are of high 

dimension, so they can’t be tabulated uniformly for memory 

space reasons. As they are tabulated in a non-uniform fashion, 

binary search is to be applied for the computation of the BDF 

cell in which to interpolate. 

The entire algorithm for BDF computation thus proceeds 

as follows. First, the BDF angles of the rays are calculated. 

This is done using inverse trigonometric functions. Then 

binary search is performed to define the BDF interpolation 

cell. Finally, the value of the BDF is interpolated inside this 

cell for the given ray directions. 



The algorithms have been proposed to implement all of 

the above mentioned in SSE. Interpolation is rather 

straightforward to implement in SSE. For inverse 

trigonometric functions, an approximation has been used. 

Finally, the binary search algorithm has been modified to 

handle 4 values simultaneously. The detailed description of 

our approach is given in [21].  

Explicit BDF performance measurements have been 

performed. The dimensions of the anisotropic BDF were 17 x 

7 x 17 x 13. The tests were run on the Intel Centrino notebook 

with 1800 MHz Mobile Pentium-IV processor and 512 MB of 

433 MHz RAM. The timings are given in the table 1.  

 

#calls 100000 200000 400000 

non-SSE (sec.) 0.137 0.248 0.495 

SSE (sec.) 0.040 0.078 0.156 

Acceleration 3.43 3.17 3.17 

Table 1. Comparative timings for anisotropic BDF 

evaluations with and without SSE. 

 

The acceleration achieved is about 3.2 on the average. 

This is less than 4 due to the fact that evaluation of the 

tabulated BDF is rather a complicated procedure, which 

involves lots of branching in binary searches and the like 

algorithms. 

It is also important to note that only one material is 

processed at a time. If the rays from the same quadruple hit 

two or more different materials, they are processed in turn, 

with the rays not hitting the current material being blocked. 

This allows simplifying the resulting code, as it works with 

only one material at a time. 

 

5. Light Sources 

 

In order to have the most efficient physically accurate 

coherent rendering, lighting should also be done using SSE 

instructions. The term "Lighting" denotes here the process of 

computing the incoming light intensity at the given point 

rather than visibility determination. As the visibility 

determination can be performed efficiently using SSE shadow 

ray caster, it is lighting computations which need 

acceleration.  

We have several types of light sources in our framework. 

These can be subdivided into point lights and surface lights. 

Surface lights are actually processed using Monte-Carlo 

approach, that is, a number of points is randomly generated 

on the light source and, based on these points, the intensity of 

the light source is determined. In determining the intensity, 

each of these points is treated similarly to a point light source, 

and the intensity is evaluated using one of the approaches 

described below.  

The other group includes various point light sources. 

They vary from simple ones, such as omnidirectional or spot 

light sources, to complex light sources with goniodiagrams.  

Figure 5 demonstrates rendering with HDRI lighting in 

our framework. 

For the simple light sources, implementing coherent 

lighting is rather straightforward, although some issues exist. 

As in the case of materials, the algorithm works with only one 

light source at a time. If by some reason (for example, the 

triangle is back-facing with respect to the light) no lighting 

computations need be done for some of the rays, they are 

simply blocked.  

 

 
 

Figure 5. An example of an Inspirer2-rendered image with 

HDR panorama. 

 

As only simple computations are performed for most of 

the light sources, the same computations are now performed 

in SSE for a quadruple of rays. The only light sources 

needing change are spot light sources. In order to compute the 

falloff, the cosine of the angle needs be computed. We have 

found, however, that replacing it with a rough approximation 

2
1cos

2x
−≈ϕ  

tends to work well as the falloff itself is important rather than 

the exact shape of the curve.  

The situation is more complicated with point light 

sources having goniodiagrams. The goniodiagram is a 

common industrial format to represent the outgoing light 

intensity of light source in various directions. Its support is 

crucial in our framework which aims at physically accurate 

rendering. The intensity of the goniodiagram light source is 

tabulated in a 2-dimensional non-uniform table, very much 

like that of the BDF. In order to evaluate it for the specified 

direction, the following computations have to be performed. 

First, the spherical coordinates of the ray direction need to be 

computed. Second, the exact cell the current ray direction 

belongs to has to be determined. Finally, the interpolation of 

the light intensity needs to be performed inside the given cell. 

These steps correspond exactly to what is done for BDF 

interpolation. In fact, both algorithms share a number of 

common functions used for both BDF and goniodiagram 

evaluation.  

The performance testing has been done for various kinds 

of light sources. Both SSE and non-SSE rendering have 

sufficient accuracy, so images rendered with these two 

approaches are virtually indistinguishable. SSE approach, 

however, performs more than 3.5 times faster than a non-SSE 

one. 

 The tests were run on the Pentium 4 2.8 GHz computer 

with 1 GB 433MHz memory. The results are summarized in 

table 2. All times are given in seconds. 

 

Type of Light non-SSE SSE Acceleration 

Omnidirectional 1.137 0.157 7.24 

Spot 0.816 0.211 3.87 

Parallel 0.444 0.103 4.31 

Direct 0.936 0.150 6.24 

Linear 6.696 1.149 5.83 

Circular 27.936 4.828 5.79 

Rectangular 145.252 24.375 5.96 

Goniodiagram 2.573 0.588 4.38 

Table 2. Comparative timings for non-SSE and SSE lighting 

for different light sources. 



 

For the linear light source, it has been subdivided into 7 

point light sources for rendering. For the rectangular light 

source, it has been subdivided into 7x3 = 21 light sources for 

rendering.  

As it can bee seen, for most of the light sources the 

acceleration achieved exceeds 4. Actually, only spot light 

sources yield less acceleration. For the non-point light 

sources, the acceleration is, on the average, greater than for 

point ones, for which it varies greatly. It can also be seen that 

the goniodiagram light source has less acceleration compared 

to an omnidirectional one, for example. This is due to the fact 

that goniodiagrams require more complex algorithm to 

evaluate. 

 

6. Antialiasing and Tone Mapping 

 

Physically accurate rendering cannot do without tone 

mapping and antialiasing. While the former is required to 

map the high dynamic range image obtained during rendering 

to the limited dynamic range of the monitor, the latter allows 

to get sufficiently accurate images of scenes with low-size 

details. Moreover, antialiasing is needed just to get visually 

pleasing images without jagged borders. 

As these two are rather independent procedures, they are 

discussed separately in the following subsections. 

 

6.1. Tone Mapping 

 

The tone mapping algorithm is performed as follows. 

First of all, a lower-sized copy of the image with high 

dynamic range values (that is, with floating-point values) is 

computed. This copy is used to compute the logarithmic 

average of the intensity. As the image itself may appear not at 

precise, it gives the general impression about the light 

distribution in the final image, and thus, about the logarithmic 

average of the final image. As the final image is updated 

iteratively in our antialiasing algorithm (see below), its 

logarithmic average cannot be used since it changes 

continuously.  

The tone mapping method used is in fact the one 

described in [22]. The only difficulty with implementing it in 

SSE is the power function, needed to compute xy. Since the 

number of iterations needed to obtain sufficient precision 

depends greatly on the range, the range is desirable to be 

reduced. The expression itself can be reformulated: 
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where Max(x) is the maximum value of the color obtained 

from the low-sized image pre-rendered. As this variable 

affects only the precision of computations, this is sufficient. 

The domain of the logarithm is thus reduced to [0, 1] and the 

domain of the exponent to [-∞, 0]. For the exponent 

approximation, a hybrid approach is used. In the [-3.8, 0] 

range, Pade approximation [23] is used 
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In that range, it gives sufficient precision (about 1%). In [-14, 

-3.8], however, Pade approximation works poorly, so the 

table lookup with interpolation is used. A 1024-entry uniform 

table is sufficient, providing about 1% precision in the entire 

range. As arguments for the exponent typically do not fall 

outside the [-14, 0] range in our applications, this approach 

works well.  

 A similar hybrid approach is used for logarithm 

computations. For values greater than 0.17, Pade 

approximation is used, while for values between 0 and 0.17 

the interpolation lookup table is used instead. This was found 

to provide sufficient precision and is also easy to implement 

in SSE for both logarithm and exponent computations.  

 

6.2. Antialiasing 

 
Since the coherent physically accurate rendering 

algorithm is required to work in an interactive setting, it has 

to exhibit convergence and progressiveness. That is, while the 

image is still (neither camera nor scene objects move), it must 

be updated iteratively and the quality has to increase. 

Alternatively, in an offline setting, the image is rendered 

progressively and the current image is displayed. When the 

user is satisfied (or when the precision objective has been 

reached), the rendering is terminated. 

Antialiasing is one of the ways of improving the quality 

of rendered image. As such, it must possess progressiveness 

and adaptivity. Our framework also requires precision 

control, as it is required in many industrial applications. 

These considerations governed the design of antialiasing 

algorithm used. 

The algorithm is based on the ability to generate a 

sequence of coherent portions of 4 rays which eventually 

cover the entire screen with any required density and which 

can be generated on different levels of the hierarchy. In fact, 

the algorithm starts with a sparse uniform grid of superpixels, 

with the size of a superpixel being greater than the size of a 

pixel. The span of the ray quadruple generated is governed by 

a so-called coherence radius R, which depends on the current 

superpixel (or subpixel) size. When the R is decreased, the 

level of details at which the current rendering takes place is 

increased.  

For the generation of samples in the screen plane, the 2-

dimensional Halton sequence [24] is used with base 2k along 

x-dimension and base 3n along y-dimension. The number s = 

2k3n is called span in our algorithm. Due to the quasi-

periodicity of the Halton sequence, the sequence samples with 

indices j, j + s, j + 2s, j + 3s are located nearly to one another 

and can thus be traced simultaneously as they are coherent. 

The span thus defines the number of rays in a single portion. 

In order not to trace the same rays twice, the j index ranges 

from 0 to s – 1. The span thus allows us to control the number 

of rays generated. 

Typically, the coherence radius is inversely proportional 

to the span. More precisely,  
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If sample accuracy is not yet sufficient (see below), a ray 

is traced. For four coherently generated samples, 4 coherent 

rays are traced simultaneously. Each ray is traced to the end 

(i.e. the entire ray stack produced by the ray is traced) and the 

color calculated is returned. The color is then tone mapped 

and written to the screen matrix. 



In order to control accuracy, a simple heuristic is used 

[25]. There are, in fact, 2 copies of the screen matrix. For 

each copy, 2 arrays are stored. The first one is the arrays of 

pixel colors. The second one is the number of samples taken 

at that pixel. Independently of the current coherence radius 

and span, the size of the screen matrix is always the same as 

the resolution of the image. 

The resulting pixel color is computed based on both 

copies of the screen matrix. The difference of the estimates 

given by these two matrices is used as a measure of accuracy. 

If for the current coherent group of 4 rays the accuracy is 

acceptable for all rays, then these rays are not traced. 

As the accuracy tends to be unacceptable in those 

regions where aliasing takes place, this algorithm efficiently 

deals with antialiasing. Moreover, as the size of initial 

superpixels can be set to more than one pixel (sizes up to 16 x 

24 have been used), in those regions of the image where 

lighting changes slowly (on walls, for example), interpolation 

may be used to further reduce rendering time. To be eligible 

for interpolation, the superpixel has to have the difference 

between the values at its corners less than the desired 

accuracy. 

It has been found out that an adaptive algorithm, even 

with antialiasing turned on, can even be faster than classical 

algorithm due to superpixel interpolation and adaptability, 

thus providing a reasonable speed – quality tradeoff.  

 

7. Results 

 

The algorithms discussed above have been implemented 

in C++ language in Visual Studio 2003 development 

environment. No assembler has been used for the reasons of 

code maintainability. SSE instructions were accessed via 

intrinsics, which, in turn, have been wrapped into classes 

which provide common functionality.  

The performance of the ray tracer has been tested on a 

number of test scenes. The tests have been performed on a 

dual 933 MHz Pentium III – machine with 1 GB of 133MHz 

memory. For 1 CPU tests, one of the processors has been 

disabled. All times are given in seconds. Acceleration gives 

the ration of time spent by non-SSE renderer in 1 CPU setting 

to that of an SSE renderer in 1 CPU setting. All images were 

rendered at 1024 x 768 resolution. The rendering times are 

given in table 3 and the scene characteristics in table 4. Table 

5 compares performance of our approach on single-CPU and 

dual-CPU machines. As the number of CPUs double, the 

performance increases approximately 1.9 times. 

 

Scene non-

SSE 

SSE 

(1 CPU) 

Acceleration 

Car 489.88 82.11 5.97 

SPDemo 43.41 2.63 16.51 

Glass1 52.66 6.18 8.52 

Room2 35.12 4.77 7.36 

Table 3. The comparative timings of rendering a 1024 x 768 

image with and without using SSE instructions. 

 

Scene № trigs № lights depth 

Car 233000 4 2 

SPDemo 988 3 2 

Glass1 44794 2 2 

Room2 12000 4 1 

Table 4. The characteristics of the scenes used for testing. 

 

Scene 1 CPU 2 CPU Acceleration 

Polo 82.11 41.06 2.00 

SPDemo 2.63 1.39 1.89 

Glass1 6.18 3.20 1.93 

Room2 4.77 2.49 1.91 

Table 5. Comparative timings of rendering 1024x768 image 

with SSE with 1 and 2 CPUs. 

 

The Car test scene contains measured tabulated BRDF, 

transparent and refractive objects. SPDemo and Glass1 scenes 

exhibit high reflective complexity. In addition, Glass1 scene 

is heavily textured. Ray tracing depth 0 corresponds to tracing 

only camera rays, depth 1 means one level of reflection etc. 

 

8. Discussion 

 

We have presented a physically accurate coherent 

rendering algorithm which is more than 6 times faster than 

common ones. The acceleration achieved is mainly due to the 

use of SSE instructions, which gives a speedup of about a 

factor of 4. The remaining speedup is due to more careful 

selection of algorithms and data structures. It is also partly 

due to more time spent on code optimization.  

The resulting rendering times do not seem interactive, 

although they are rather small. It should be noted, however, 

that images were rendered at a resolution 1024x768 with 3 

light sources. Reducing the resolution to 512x512 will 

decrease the rendering time roughly 3 times (as it almost 

linearly depends on the image resolution). Cutting the number 

of the light sources in the scene will also decrease the 

rendering time. 

 

 
Figure 7. The Car scene rendered using our approach. 

 

Other direction of SSE ray tracing application is 

acceleration of global illumination calculation. In order to 

render higher-order indirect illumination the illumination 

maps technique is used now. As i-maps are calculated by 

Monte-Carlo ray tracing method they can also benefit from 

SSE optimizations. However, the rays cast for the 

illumination map computation, are far less coherent than 

those cast during ordinary ray tracing. Therefore, coherent 

algorithms for illumination mapping need to be developed. 

Currently, only RGB colors are supported using SSE. It 

would be interesting, however, to investigate spectral color 

support. As spectral colors are harder to compute (typically, 

one spectral color object contains 20 to 40 intensities 

measured for different wavelengths), this approach does not 

seem to be interactive. However, it would allow for faster 



rendering of spectral-based effects, which is required in some 

areas of industrial rendering. For non-SSE rendering, our 

framework currently supports spectral BDFs and materials. 

The version of the paper with color illustrations can be 

found at  

http://www.keldysh.ru/pages/cgraph/publications/cgd_publ.ht

m 

 

Acknowledgements 

This work has been supported by the Russian President 

“Leading Scientific Schools” grant № RI-112/001/278, RFBR 

grant № 05-01-00345 and by the Integra Inc. (Tokyo, Japan).  

 

References 
[1] IA-32 Intel Architecture Optimization Reference 

Manual, p. 440 

http://www.intel.com/design/pentium4/manuals/24896612.pdf  

[2] AMD 3DNow! extensions http://www.amd.com/us-

en/Processors/SellAMDProducts/0,,30_177_4458_4513^141

3^2137,00.html 

[3] PrPMC800: MPC7410 Processor PMC with AltiVec 

Technology  

http://www.motorola.com/content/0,,5626,00.html 

[4] Ingo Wald, Carsten Benthin, Markus Wagner, Philipp 

Slusallek: Interactive Rendering with Coherent Ray Tracing. 

Proc. of Eurographics 2001, vol. 20, № 3, pp. 153 – 164. 

[5] Virtual Ray Interactive Sphere Ray Tracing Engine, 

http://www.virtualray.ru/ 

[6] Andrei Khodulev, Edward Kopylov: Physically 

Accurate Lighting Simulation in Computer Graphics 

Software. Proc. GraphiCon'96: The 6-th International 

conference on Computer Graphics and Visualization, St. 

Petersburg, Russia, July 1-5, 1996. Vol.2, pp.111-119. 

[7] Konstantin V. Kolchin, Andrei B. Khodulev: Device-

Independent Rendering in Display Color Space. Proc. 

Graphicon’98: The 8-th International Conference on 

Computer Graphics and Visualization, Moscow, Russia, 

September 7-11, 1998, pp.162-163. 

[8]  A.G. Voloboi, V. A. Galaktionov, K.A. Dmitriev, and 

E.A. Kopylov: Bidirectional Ray Tracing for the Integration 

of Illumination by the Quasi-Monte Carlo Method. 

Programming and Computer Software, Vol. 30, No. 5, 2004, 

pp. 258-265.  

[9] Products Page of Integra Inc. 

http://www.integra.jp/eng/products/index.htm  

[10] A. Ignatenko, B. Barladian, K. Dmitriev, S. Ershov, V. 

Galaktionov, I. Valiev, A. Voloboy: A Real-Time 3D 

Rendering System with BRDF Materials and Natural 

Lighting. Proc. Graphicon’2004: The 14-th International 

Conference on Computer Graphics and its Applications, 

Moscow, Russia, pp. 159-162. 

[11] E.Kopylov, A.Khodulev, V.Volevich: The Comparison 

of Illumination Maps Technique in Computer Graphics 

Software. Proc. GraphiCon'98: The 8-th International 

Conference on Computer Graphics and Visualization, 

Moscow, Russia, September 7-11, 1998, pp.146-153.  

[12] Intel C++ Compiler Product Page 

http://www.intel.com/cd/software/products/asmo-

na/eng/compilers/220009.htm 

[13] Turner Whitted: An Improved Illumination Model for 

Shaded Display. Communications of ACM, Vol. 23, № 6, 

June 1980, pp. 343-349. 

[14] Волобой А.Г., Метод компактного хранения 

октарного дерева в задаче трассировки лучей. 

«Программирование», № 1, 1992, стр. 21-27.  

[15] Ingo Wald, Carsten Benthin, Philipp Slusallek: OpenRT 

– A Scalable and Flexible Engine for Interactive 3D 

Graphics. http://graphics.cs.uni-sb.de/%7Ewald/Publications/ 

2002_OpenRT/2002_OpenRT.pdf  

[16] V. Havran: Heuristic Ray Shooting Algorithms. 

Dissertation Thesis, Faculty of Electrical Engineering, Czech 

Technical University, Prague, 2000.  

[17] Carsten Benthin, Ingo Wald, Philipp Slusallek: A 

Scalable Approach to Interactive Global Illumination. 

Proceedings of Eurographics 2003, Computer Graphics 

Forum, v.22, №3, pp. 621 – 630. 

[18] B. Phong: “Illumination for Computer Generated 

Pictures”. Communications of the ACM, vol. 18, № 6, 1975, 

pp. 311 – 317. 

[19] Letunov A. A., Barladian B. H., Zueva E. Yu., 

Veshnevetc V. P., Soldatov S. A.: CCD-based device for 

BDF measurements in computer graphics. Proc. 

GraphiCon'99: The 9th International Conference on 

Computer Graphics and Computer Vision, Moscow, Russia, 

1999, pp. 129-135. 

[20] Vladimir Volevich, Andrei Khodulev, Edward Kopylov, 

Olga Karpenko: An Approach to Cloth Synthesis and 

Visualization. Proc. GraphiCon'97: The 7th International 

Conference on Computer Graphics and Visualization, 

Moscow, Russia, 1997, pp. 45-49. 

[21]  Адинец А.В.,  Барладян Б.Х., Волобой А.Г.,  

Галактионов В.А., Копылов Э.А., Шапиро Л.З., 

Когерентная трассировка лучей для сцен, содержащих 

объекты со сложными светорассеивающими свойствами. 

Препринт ИПМ им. М.В. Келдыша РАН № 107, 2005. 

[22] B. Kh. Barladian, A.G. Voloboi, V. A. Galaktionov, and 

E.A. Kopylov "An Effective Tone Mapping Operator for 

High Dynamic Range Images" Programming and Computer 

Software, Vol. 30, No. 5, 2004, pp. 266-272. 

[23] An article on Pade approximants in MathWorld online 

encyclopedia. 

http://mathworld.wolfram.com/PadeApproximant.html  

[24] H. Niederreiter. Random Number Generation and 

Quasi-Monte Carlo Methods. Chapter 4, SIAM, 

Pennsylvania, 1992.  

[25] V.Volevich, K.Myszkowski, A.Khodulev, E.Kopylov:  

Using the Visual Differences Predictor to Improve 

Performance of Progressive Global Illumination 

Computations. ACM Transactions on Graphics, 2000, v.19, 

№ 2, pp.122-161. 

Authors: 

Andrew V. Adinetz, five course student of the Moscow State 

University. E-mail: adi_@mail.ru. 

 

Boris H. Barladian, PhD, senior researcher of the Keldysh 

Institute for Applied Mathematics RAS. 

E-mail: obb@gin.keldysh.ru. 

 

Vladimir A. Galaktionov, PhD, head of department of the 

Keldysh Institute for Applied Mathematics RAS. 

E-mail: vlgal@gin.keldysh.ru. 

 

Lev Z. Shapiro, PhD, senior researcher of the Keldysh 

Institute for Applied Mathematics RAS. 

 

Alexey G. Voloboy, PhD, senior researcher of the Keldysh 

Institute for Applied Mathematics RAS. 

E-mail: voloboy@gin.keldysh.ru. 


