
  

Abstract—A model of qubit has been designed as a stochastic  
oscillator formed by system of two coupled limit cycle 
oscillators with randomly perturbed limit cycles and own 
frequencies.  The oscillatory  qubit  imitates electrical field 
vector  behavior of  polarized light beam.  It adequately 
simulates  both pure and mixed states of two-level quantum 
system. A cluster of entangled qubits, that is usually 
exploited as a computation resource  in one-way 
quantum computation schemes, is suggested to design  
as synchronized  network of the oscillatory qubits. 
System of equations governing  the  oscillatory  network  
evolution   has been written.  The example of one-qubit gate is 
constructed. 

    

I. INTRODUCTION 
     Quantum computations is the interdisciplinary research 
field undergoing  active development  Currently both 
quantum physicians and information theory  experts focused 
their attention on theoretical analysis and experimental 
realizations of  quantum computation algorithms.  After the 
discovery of  Shor’s quantum algorithm for large number 
factorization  it become  clear that quantum algorithms are 
capable to provide an effective solution of  some 
mathematical problems for which exist no effective classical  
algorithms. The development of quantum calculations has 
been stimulated  the  appearance  of  new research branches 
such as  quantum informatics  [2-4], arisen  at the 
intersection of quantum physics and information theory. 
     Quantum computation  algorithms are based  on 
evolution of some quantum systems  and  exploitation of 
quantum physics laws for computation performance. In the 
way the type of parallelization is used that is inherent solely 
to quantum systems and cannot be realizable via traditional 
classical computers.   
      Modern  quantum computation schemes are based  on  
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construction  of  sequences  of  unitary  gates  imposed   into 
quantum network. One-qubit  gates define  modifications of 
single  qubit   states,  whereas  two-qubit  gates    specify the  
character of  qubit  interactions.   In 2001 a significantly 
new type of  quantum  computation scheme has been 
proposed   – so called one-way, or cluster  quantum 
computations (CQC) [5-7]. The feature of one-way QC is 
that the sequence of measurements, necessary to readout the 
information from qubit cluster, is explicitly included  in 
CQC computation scheme. So, each qubit cluster, initially 
prepared in maximally entangled state, undergoes  
irreversible evolution via  one-qubit measurements in the 
process of computations. As a result the coherent  cluster 
state is  turned out  to be   inevitably  destroyed by 
measurement process, and thus the cluster can be used for 
computations only once. The choice of measurement 
sequence just defines the quantum computation algorithm 
itself. The computation process can be regarded as a process 
of information transfer through  system  canals, similar to 
percolation phenomenon [5] (see fig. 1).     

 
Fig. 1.  Network scheme for one-way quantum computations (from [5])                                

 
    
One could even say that  information processing in one-way 
quantum calculation schemes  is  really performed in a 
classical level, although  quantum  physical  principles  have 
been used in preparation of cluster of strongly entangled 
qubits. It was shown that, for instance, the CQC scheme is 
ideally suitable for realization of  Grover’s algorithm [2].  
      So,  the  problem of construction   of   one-way  
quantum computation schemes requires analysis of  qubit 
cluster evolution at variable  qubit entanglement degree.  We 
try to develop a  network  approach to the problem. Namely, 
we suppose that at some restrictions to the problem  it can be  
formulated in terms of  state evolution of network of 
coupled stochastic oscillators under  special sequence of  
external actions on  single oscillators. Surely, the 

 Network of stochastic coupled oscillators and one-way quantum 
computations 

Eugene Grichuk,  Margarita Kuzmina and  Eduard Manykin                                      



preliminary design of proper  oscillatory model of single 
qubit is necessary. The qubit model should be capable to 
adequately imitate  the features of two-level quantum-
mechanical  system.  The example of  oscillatory model of 
qubit is just presented in the paper. Also  the system of 
equations, governing dynamics of the designed oscillatory 
network is written, and  the models for one-qubit gates are 
suggested.    
      

II. BEAM OF QUASI-MONOCHROMATIC POLARIZED 
LIGHT AS A QUBIT.  QUANTUM AND CLASSICAL 

LEVELS OF BEAM  DESCRIPTION  
 As it is known, a qubit (quantum bit of information) can 

be described as a two-level quantum-mechanical system that 
can be either in pure or in mixed quantum state. So,  qubit 
state should be  generally   understood as a state of statistical 
ensemble of  identical quantum systems described by density 
operator (density matrix) ρ̂  satisfying the conditions  

        
                            ˆ ˆdet 0, 1.Trρ ρ≥ =                      (1) 

 
In the case of  pure qubit state, defined by a column state 
function  |ψ〈 , the density operator is reduced to one-

dimensional projector onto the state |ψ〈 , | | .ˆψ ψ ψρ 〉〈=                                    

Here we  used  the ordinary notations:  operator | |A ψ ϕ= 〉〈     
of rank 1 acts on state |χ〈  by formula  | | | ,A χ ψ ϕ χ〉 = 〉〈 〉  
where |ϕ ψ〈 〉 is inner product. If one uses the basis 

{(1 0) , (0 1) }{ }, T T
x ye e =G G ,  it is convenient to introduce the    

basis of Pauli matrices in real space of Hermitian matrices 
and represent  the density operator in the form  
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   ˆ ˆ ˆˆ ˆ ˆ, , ,( ) ( ) ( )x y zx y zp p pTr Tr Trρσ ρσ ρσ= = =    (3) 

and   ( , , )x y zP p p p=  are  Stokes parameters.  From the 

condition  det ˆ 0ρ ≥  it follows the restriction on P: 
2 2 2 1x y zp p p+ + ≤ . Pure states are characterized by the 

condition 2 2 2 1x y zp p p+ + =   and  form the Bloch sphere 

(which is known also as Poincare sphere in optics). 
      As it is also known, Stokes parameters are used for 
description of polarization  of  classical electromagnetic 
radiation in terms of  intensity,  degree of polarization, shape 
and orientation of the polarization ellipse. Moreover, a beam  

of quasi-monochromatic light can be equivalently described 
both at quantum mechanical level (as a photon ensemble)   
and  at classical level, in frames of classical electromagnetic 
field theory. At quantum level of description a beam of 
quasi-monochromatic light is considered as photon beam, 
propagating in a direction  specified by vector k

G
. It can be 

described as statistical ensemble of photons with moment  
( / )p ch c kω=

GG   and polarization state defined by two-
dimensional unit vector   eG , located in the plane orthogonal 

to k
G

.  Stokes parameters  characterize the ensemble in a 
mixed state from the viewpoint of its representation by a 
superposition of two sub-ensembles in pure states with 
polarization vectors xeG  and  .yeG  In the case of coherent 

superposition of the sub-ensembles we have a beam of fully 
polarized  photons, in the case of completely non-coherent 
sub-ensembles superposition – a beam of unpolarized 
photons, and in an intermediate case of partially coherent 
sub- ensembles superposition – a beam of partially polarized 
photons.    
     From the viewpoint of classical  electrodynamics a beam 
of quasi-monochromatic light is plane quasi-monochromatic 
electromagnetic wave, specified by its propagation vector 
k
G

. Electrical field vector ( )E t
G

 of the electromagnetic 

wave, that is located in the plane,  orthogonal to k
G

 
(electromagnetic wave transversality),  can be written as  
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For adequate description of light beam polarization in terms 
of  electrical field one should represent ( )E t

G
 is as a two-

dimensional stationary random function of time. Let ( )E t
G

 

be the mean of random function ( )E t
G

 and so   

( ) ( ) ( )E t E t E t= −
G G�  be the fluctuation of ( )E t

G
. For 

stationary random functions the mean ( )E t
G

 coincides with 

the mean over time , ( )E t〈 〉
G

 , that is  
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There is the following relation between the coherence matrix 
Ĵ  of quasi-monochromatic light beam in the basis { },x ye eG G
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and  correlation matrix D̂  of   2D  random  function ( )E t
G
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In optics Stokes parameters, denoted as Q, U, V , are used  
for beam polarization characterization. In the basis { },x ye eG G

 

there is the following relation between  light beam  intensity  
I, Stokes parameters and coherence matrix Ĵ (correlation 
matrix D̂  of stationary random function ( )E t

G
): 
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The Stokes parameters characterize form and orientation of 
polarization ellipse – the curve that the end of random vector 

( )E t
G

 traces  out  in  some plane,  orthogonal  to  vector   

k
G

,  the direction  of  beam propagation (fig. 2): 
 

 
                                     
                                            Fig. 2   Polarization ellipse 
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The optical Stokes parameters  are related to Stokes 
parameters , ,x y zp p p , defined in eq. (3), as 

               / , / , / .x y zp U I p V I p Q I= = =                 (9) 
The inequality  
                                 2 2 2 2Q U V I+ + ≤                         (10) 
 
is fulfilled for optical Stokes parameters  (the equality  takes 
place in the case of fully polarized light). The value   

2 2 2 1/ 2( ) /Q U Vp I= + +  defines light  polarization degree, 
that is,  the  part of  fully polarized  light in the beam. 
     Summarizing, we could say that a beam of quasi-
monochromatic light, although  being a  macro-physical 
object,  remains the necessary properties of two-level 
quantum system in its polarization characteristics. Therefore, 
it seems reasonable the attempt to design a proper  qubit 
model relying on correlation theory of stationary random 

functions. It will allow us to further formulate some 
quantum computation problems in terms of controllable 
dynamics of artificial neural networks [11-13], qubit being 
network processing unit.  In particular, one-way quantum 
computations seem to be naturally related to dynamical 
evolution of artificial feed-forward neural networks under 
gradual variation of   both  network processing unit states 
and  network  interconnection  architecture.  

III. QUBIT MODEL AS A SYSTEM OF TWO COUPLED 
OSCILLATORS  

      Single qubit has been modeled as a system of two 
coupled limit cycle oscillators, containing random 
components of their dynamics. Namely, let the initial 
dynamical equations  for  limit cycle oscillators, that will be 
used in qubit model construction, be written as  
                         2 2

1,2 1,21 [ ]| |u u uiρ ω= + −�  

where 1,2 1,2 1,2u x iy= +  is complex-valued dynamical 

variables, 1ρ ,  2ρ  are  radii of circular limit cycles  and  

1 2,ω ω   are own oscillator frequencies of two identical 
oscillators [11-13]. Consider further randomly perturbed 
oscillators of the type, that is,  oscillators  with  limit cycle 
radii  1ρ� , 2ρ�  and  own frequencies 1ω� ,  2ω�   chosen as      

          1,2 1,2 1,2 1,21,2 1,2( ), ( ),t tρ ρ ξ ω ω η= + = +� �           (11) 

where  1,2 ( )tξ�  and   1,2 ( )tη�  are stationary random functions 

with zero means. Then the system of ODE governing 
internal dynamics of  two coupled  stochastic oscillators  can 
be written as 
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where 

1 1 1 2 2 2, ,u x y u x yi i= + = +                            (13) 

and  | | ie δκ κ= is the strength of  oscillator connection  The 

variable 1 2U u u= + , defining  oscillation superposition of 
two  oscillator - components,  will represent the main 
interest  in qubit behavior.  So it is convenient to rewrite 
system  (12)  for variables 
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where 
                 1 2, .v x iy v z iu= + = +                             (15) 
Four-dimensional dynamical system (14) has been 
constructed in such a manner, that the projection  of its 



trajectory onto  ( , )x y -plane  imitates the behavior of 

electrical field vector ( )E t
G

 of light beam, that is  now 
presented as  the superposition of two beams  in the states of 
right and left circular polarization. The polarization of the 
summary  beam depends on superposition type of beam 
components. In the case of coherent superposition of two 
oppositely circularly polarized light beams the summary 
beam will be in some state of full polarization, whereas  in 
the case of non-coherent  superposition it will be in the 
unpolarized state. Three typical examples of ( )E t

G
behavior 

of summary beam in the case of coherent   superposition of 
beam-components are shown in fig. 3 – 5. The electric field 
of circularly polarized light beam, depicted in fig. 3, is 
obtained in the case of zero light intensity of the second 
beam. It corresponds to pure qubit state | 1〉  (photon 
ensemble of fully circular polarized photons). The electric 
field of linearly polarized summary  light beam, depicted in 
fig. 4, is obtained in the case of coherent superposition of 
two oppositely circularly polarized light beams at phase 
difference 0δ =  for electric field vectors 1,2 ( )E t

G
. The 

general case  of elliptic polarization, obtained in the case  of 
coherent beams superposition at 0δ ≠ , is shown in fig. 5. 
At last, the electrical field  of  unpolarized light beam, 
obtained in the case of non-coherent superposition of two 
oppositely circularly polarized  beams, is  presented in fig. 6.  
    

 
Fig.  3. Pure qubit  state  | 1〉   

(Ensemble of circular polarized photons) 
 
 

 
Fig.  4. Pure qubit state  | 1 | 0〉 + 〉      

(Ensemble of linearly polarized photons ) 

 
 

 
Fig. 5.Pure qubit  state  | 1 | 0α β〉 + 〉          

(Ensemble of elliptically polarized   photons ) 
 
 

 
Fig.  6. Mixed qubit  state , corresponding to ˆ 0.5 [1,1]diagρ = ⋅           

(Ensemble of unpolarized  photons) 
 

 
 So, the designed oscillatory model of qubit  correctly 
simulates light electric field behavior both in typical states 
of full light polarization (that correspond to pure  quantum 
mechanical states of photon beam) and  in  the case of  
unpolarized light (that corresponds to mixed quantum 
mechanical  state of photon beam).   

IV. CLUSTER OF ENTANGLED  QUBITS.                   
ONE-QUBIT GATES 

      One-way computation schemes are based on cluster 
entanglement degree control via a sequence of  one-qubit 
gates acting on single cluster qubits. The  operation of 
arbitrary qubit rotation on the Bloch sphere has been 
constructed in [7]. We clarified the possibility of classical 
qubit interpretation as polarized  light  beam and designed 
qubit model as stochastic oscillator, imitating the behavior 
of  electric field of electromagnetic wave. Further it seems to 
be natural  to model a strongly entangled qubit cluster as  
synchronized network of coupled oscillator qubits subjected 
to a sequence of external actions, transforming single qubit 
states and, possibly, network connections. Since the strongly 
entangled cluster can be viewed as fully polarized light 



beam, one-qubit gates can be naturally constructed as 
models of optical devices modifying polarization of beam 
light. So, let us write the system of equations governing 
dynamics of  entangled cluster of  N-qubits  (network of  N  
coupled  oscillators) of  as [11-13]   
  

1

(15)
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1, ... ,

ˆ; ( ) ,
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where ( , , , )j j j j j TV x y z u=
G

is  four–component  variable, 

specifying  qubit model state,  1 2 1 2{ , , , , }j j j j j jρ ρ ω ω κα = � � � �  
is the collection of internal qubit parameters (see eq. (14)-

(15)), ˆ[ ]jkW  is the matrix connections of oscillatory qubit 
network (as a rule, it will be the matrix of all-to-all 
connections depending on network oscillator states), 

( ; )jF V β
G G

is four-component function, specifying external 
action on  j-th  qubit (that is, one-qubit gate).  In view of 
optical interpretation  of  our oscillatory qubits,  the one-
qubit gates should imitate the actions of typical optical 
devices capable to modify polarization of light.  A polarizer 
is just one of widely used optical devices that transforms 
light polarization. It converts a beam of arbitrarily polarized 
light into beam with well-defined light polarization, for 
instance, linear polarization. We are able to model the action 
of linear polarizer in frames of our qubit model. Let θ   be 
the angle between  the direction of polarizer plane of 

polarization  and  direction of  xeG  -vector,  and E
G

 be 
electric field vector of incident light beam.  Then electric 

field vector 'E
G

 of transmitted light is ˆ'E AE=
G G

  ( Â  is the 
matrix of the linear polarizer). In frames of our  model the 
one-qubit gate, imitating qubit passing through linear 
polarizer of some finite thickness d , can be defined by 

function  ( ; ),F V tθ Δ
G G

 that is nonzero only during  finite 

time interval 2 1, .t t t t dΔ Δ= − ∼   The example  of 

analytical expression for such  ( ; ),F V tθ Δ
G G

can be written as 

11

2 2

( ; )
ˆ

, { ( ) },
ˆ

F V
AvF dt H t

dtF Av
θ =Δ

⎡ ⎤⎡ ⎤
= ⋅ ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

G G
G G
G G               (16) 

2

2

cos ( ) cos( ) sin( )

cos( ) sin( ) cos ( )
ˆ ,A

θ θ θ

θ θ θ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                            (17)         

1 2( ) 0.5{ ( ( )) ( ( ))}, 1,H t th t t th t tγ γ γ= − − − �      (18) 

1
1 2

2

, , .V
v x z

v v
v y u

=
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

G
G

G G
G                              (19) 

 
 

Fig. 7  Single qubit under action of one-qubit gate, imitating passing 
through  linear polarizer  ( oscillations after transmission are shown by 

curves of green  color) 
 

As one can see from fig. 7,  linear polarization of oscillatory 
qubit has been transformed into another linear polarization 
after transmission through one-qubit gate, corresponding to 
linear polarizer action. In the case gate simulates the action 
of  absorptive polarizer which absorbs all the unwanted 
polarization states besides the one inherent to polarizer.  
Although there exist also so called  beam-splitting polarizers  
that split the unpolarized light beam into two beams with 
opposite polarization states,  it is just the gate, 
corresponding to absorptive polarizer will be of the main 
interest in CQC problems .     
      Besides one-qubit gate, imitating polarizer action, in a 
similar manner  one-qubit gates, corresponding to phase-
shifters (polarization  rotators) and optical compensators can 
be  designed as well.  Phase-shifters transform a linearly 
polarized light beam into beam of circularly polarized light 
via creating of additional phase difference between two 

components of electric field E
G

. Matrix Â  of optical 

compensator in the complex-valued basis { , }e e+ −G G
,   

21/( )( )x ye e ei± = ±G G G
 can be written as 

                  
cos( / 2) sin( / 2)

sin( / 2) cos( / 2)
ˆ .cA

δ δ

δ δ

±⎛ ⎞
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⎝ ⎠∓
                  (20) 

Thus, different kinds of  one-qubit gates, modeling  actions 
of external optical  devices on  single network qubits,  can 
be easily constructed in the frames of  our model. The gates 
are specified  by functions ( ; )jF V β

G G
, that figure at right-

hand sides of dynamical system (15), governing  dynamics 
of oscillatory network. The dynamical system (15) is 
intended to describe evolution of  synchronized oscillatory  
network  under gradual predefined state modifications of   
network processing units.  The oscillator state modifications 



will be specified by CQC algorithm  and expressed in 
construction of functions ( ; )jF V β

G G
. If network connections 

will be constructed as functions of oscillator states  (as it 
was done in [11-13]) , the network synchronization state will 
also be capable to gradual modifications.         

 

V. SUMMARY 
    We suggested an interpretation of one-way quantum 
computations  as  state evolution of synchronized  network 
of stochastic oscillators.  In the way  the following  issues  
are elucidated: 
 
•  a beam of quasi-monochromatic polarized light can be 
used as a computation resource in one-way quantum 
computation schemes; 
 
•  single qubit  can be also viewed as a beam  polarized 
light; 
 
•oscillatory model of qubit is designed in the paper as 
stochastic oscillator formed by  two coupled limit cycle 
oscillators, which oscillation amplitudes and own 
frequencies are stationary functions of time;  the model 
adequately imitates both pure and mixed states of two-level 
quantum-mechanical system; 
 
•  synchronized  network of coupled stochastic oscillators is 
suggested as a model of cluster of entangled qubits; the 
number of network oscillators is equal to the number of 
controllable beam components contained in initial light 
beam;   

       
        •  one-qubit gates can be modeled as actions of typical 

optical devices; an example of the gate, imitating the action 
of polarizer, is constructed in the paper; 

        
       •  system of equation, governing   dynamics of oscillatory 

network  is written;  
       

•   the suggested model can be considered as quantum-
inspired neuro-evolutionary model: it allows to  formulate 
the one-way quantum computation scheme as dynamical 
evolution of  controllable artificial feed-forward neural 
network under gradual variation of both  network processing 
unit states and network interconnection architecture .  

 
       The approach could be helpful both for computer study of 

behavior entangled qubit cluster model and for development 
of  methods of cluster evolution control. 
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