
 
 

 

  

Abstract— Oscillatory network model with controllable 
oscillator dynamics and self-organized dynamical coupling has 
been created for synchronization-based image processing.   The 
model was previously obtained via reduction from a 
biologically motivated oscillatory model of the primary visual 
cortex. The reduced network model performance consists in 
network relaxation into the state of  synchronization.  The set 
of internally synchronized but mutually desynchronized  
network ensembles (clusters), arising at final synchronization 
state,  corresponds to full set of image fragments.  New model 
developments, presented in the paper, include: a) the advanced 
version of single oscillator dynamics, admitting introduction of 
arbitrary continuous dependence of oscillator limit cycle size 
on pixel brightness; b) new principle of network coupling, 
permitting to  increase image segmentation accuracy and to 
control network noise reduction. In addition new capability of 
selective image segmentation (extraction of image fragment 
subset of a priori prescribed brightness levels) is inherent to 
current model version .    

    

I. INTRODUCTION 
      Although a great variety of traditional   methods of 
image  processing has been developed in the field of 
computer vision, there is a significant interest in 
neuromorphic methods, based on imitation  of 
neurobiological processes in the brain neuronal structures. 
Since synchronized oscillations of neural activity of 40-60 
Hz frequency range were experimentally discovered in the 
brain visual cortex (VC) in 1988-1989 (and confirmed in 
later experiments) the attention to oscillatory aspects of 
visual information processing was reinforced. A series of 
oscillatory network models for image processing, 
demonstrating synchronization capabilities, has been created 
[1]-[11], [15]-[20]. Two of them are most closely related to 
our model.  The first one, developed by D. Wang with 
coauthors [1]-[5], delivers effective oscillatory method of   
brightness   and   texture   image   segmentation,  that is 
capable    to   process    real   multi-pixel   images   and 
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demonstrates   some   advantages  compared   to  modern 
computational methods of image segmentation. The second 
biologically motivated oscillatory neural network model was 
developed by Z .Li [6]-[9] for contour integration tasks and 
texture image segmentation.  Relation of our model to those 
by D. Wang and Z. Li was discussed in detail in [18]. Our 
network, providing dynamical method of image processing, 
was obtained by reduction from more general oscillatory 
neural network model that can be viewed as an oscillatory 
model of the brain visual cortex. Namely, the starting model 
simulated self-organized collective behavior of orientation 
selective cells of the primary visual cortex at low (pre-
attentive) level of visual information processing. Active 
network unit is neural oscillator, formed by a pair of 
interconnected cortical neurons. It is a limit cycle oscillator 
with dynamics, controlled by image characteristics. The first 
version of single oscillator dynamics (see [15]-[19]) was 
constructed in relation to biologically motivated neural 
oscillator model, designed in [6]. Network oscillators of the 
source model were located at the nodes of 3D spatial lattice. 
Spatial network architecture imitated the columnar structure 
of primary visual cortex, one oscillator column being 
corresponded to each image pixel. Network connectivity 
rule specified self-organized nonlocal dynamical coupling of  
oscillators in the 3D network. The known neurobiological 
data on connections in VC (in particular, connection 
dependence on orientations of cortical receptive fields) were  
reflected in the connectivity rule construction. The 
hypothesis on existence of synchronization-based dynamical 
binding in the brain visual cortex during visual information 
processing [12]-[14] was also taken into account. As it 
turned out, the simplified  2D oscillatory network model,  
extracted as limiting case of the initial 3D source model, 
provides a workable dynamical image segmentation method  
[15]-[18].  The presented paper contains new steps of further   
model development. Computer results, confirming the 
improvement of performance of new model version, are 
presented.   Noticeable increasing of segmentation quality 
has been achieved mainly due to new version of single 
oscillator dynamics.  
       To  conclude  the  introduction  it  is  worth  to stress    
general    advantages    inherent   to   dynamical      network  
methods of image processing. These are: parallel  distributed 
way  of   information   processing, "automatic" performance,  
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noise reduction. In particular, an easy  way  of  introduction 
of a simple type of filtration can be  also regarded  as 
additional advantage of the developed  image segmentation 
method . 
      
                II. CURRENT MODEL VERSION   

 
      Oscillators of the network are located at the nodes of 

2D spatial square lattice being in one-to-one correspondence 
with pixel array of segmented image. Image segmentation is 
carried out by the oscillatory network via synchronization of 
network assemblies (clusters), corresponding to image 
fragments of various brightness levels. If an image to be 
segmented is defined by M N× -matrix [ ]jmI  of pixel 

brightness, the network state is defined by M N× - matrix 
ˆ [ ]jmu u=  of complex-valued variables, defining states of 

all network oscillators. System of ODE, governing 
oscillatory network dynamics, can be written as  
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Here functions ( ; )jm jmf u I  define internal dynamics of 

isolated network oscillators whereas the second term defines 
contribution into dynamics via oscillator coupling.  Single 
network oscillator is limit cycle oscillator,  being defined by 
a pair of real-valued variable 1 2,( ).u u  Oscillator dynamical 
system  can  be  written  in  the  form  of  single   ODE   for 
complex-valued variable 1 2u u iu= + : 
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The limit cycle for dynamical system (1)-(3) is the circle of 
radius ρ , circle center being located at the point with 

coordinates 10 20u u ρ= =  in phase plane 1 2( , )u u . The 
following parameters are contained in (2),(3): the parameter 
ρ , defining limit cycle radius (free parameter which can be 
specified by arbitrary monotone continuous function of 
brightness, ( )Iρ ρ= ); ω  is the frequency of free 

oscillations, *h  is the parameter, defining brightness 
threshold value, below which Hopf bifurcation of 
converting the limit cycle into stable focus occurs, α  is the 

parameter, defining  quickness of oscillation damping after 
limit cycle converting into  focus,  σ  is a constant 
( 1σ ). A family of limit cycles and focuses at some 
collection of brightness values is shown in Fig. 1.  
 
 
 

 
 

Fig. 1. The collection of limit cycles and focuses at different values of 
brightness I. 

 
  
 

  
 
  Fig. 2.  Oscillator dynamics “response”   to  pixel   brightness variation.  

 



 
 

 

Oscillator “response” to pixel brightness variation                
at ( )I Iρ α=  is depicted in Fig. 2, where the curves            

of  time dependence 1( )u t  and 2 ( )u t and the corresponding 
phase trajectory are  presented.   
     In the first model version the values ' 'jm j mW , defining 

coupling strength of network oscillators (j,m) and (j'm'), 
were designed in the form nonlinear functions dependent on 
oscillation amplitudes  (limit cycle radii) of oscillator pair 
and  spatial distance between oscillators in the network. 
Namely, ' 'jm j mW  are defined in the form:    
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The cofactors ' 'jm j mP , providing the dependence of network 

connectivity on oscillation amplitudes, were specified as  
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where  ( )H x  is a continuous step-function ,     
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and 0w  is a constant, defining total strength of network 

interaction. The cofactors ' ' (| ' |)jm j mD r r− , providing 

dependence of network coupling on oscillator spatial 
locations, can be specified by any function of ' '| |jm j mr r− , 

vanishing at some finite distance. For instance, it is 
convenient to choose D in the form  

' ' ' ' *|1 (| ),jm j m jm j mD H r r r= − − −    where *r  is a chosen 

radius of spatial interaction. Accordingly to connectivity 
rule (4), any network oscillators are proved to be coupled if 
they both possess sufficiently great oscillation amplitudes 
and are separated by a distance not exceeding the prescribed 
radius of spatial interaction. Otherwise the connection is 
absent.  

III. MODEL SEGMENTATION CAPABILITIES    

A. Sequential brightness image segmentation 
The oscillatory network performance consists of two steps: 

1) preliminary tuning of oscillator dynamics by pixel 
brightness values of an image to be segmented (after the 
tuning operation  own limit cycle size has been specified to 
each network oscillator);   2) network relaxation into the 
state of cluster synchronization, corresponding to image 
decomposition into the whole  set of its fragments.  

In the first version of our model (see [17], [18]), a 
modified version of single oscillator dynamics was used 
instead of  (2)-(3). It was characterized by the fixed 

monotone function ( )Iρ  of ρ dependence on pixel 
brightness I, that was not sufficiently sensitive to provide 
high segmentation accuracy at network coupling accordingly 
to  connectivity rule (4). To increase segmentation accuracy 
special method of network interaction adjustment has been 
introduced.   It permitted to realize the procedure of 
sequential image segmentation via gradual increasing of 
total network interaction, combined with “switching off” of 
synchronized clusters from common network interaction. 
The sequential segmentation consists of L steps, (L being the 
number of  image fragments), and requires   L   procedures 
of network relaxation into different synchronization states. 
During the procedure exactly one synchronized cluster 
arises at l-th step of segmentation. Eventually all the 
network is turned out to be decomposed into the set of 
internally synchronized but mutually desynchronized 
clusters, corresponding to complete set of image fragments. 
Synchronized clusters oscillate with slightly different 
frequencies, and so all the fragments are clearly 
distinguishable. Surely, the sequential segmentation delivers 
additional tools for segmentation result analysis.    

 
B.  Texture image segmentation 
In the framework of our model texture images with 

simplest texture types, represented with collections of 
oriented bars, can be processed. Texture image segmentation 
is realized via introduction of the additional cofactor in the 
connectivity rule (4): 
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where angle β  defines  orientation of elementary bar, 
prescribed to each pixel. As it turned out, the oscillatory 
network with connectivity rule *(4 ) is capable to provide 
texture image segmentation even in the case when all the 
texture segments are of the same brightness level. In 
particular, the network is capable to provide solving of some 
contour integration tasks (see [18]).    
  

C.   Segmentation of real brightness images   
Two model developments are proved to be crucial for 

significant improvement of segmentation capabilities. These 
are:  1) enlargement of admissible image pixel array size and 
2) design of new version (2)-(3) of single oscillator 
dynamics.  New code ONN was created for computer 
experiments. An adaptive 5th-order Cash-Karp Runge-Kutta 
scheme has been incorporated for the ODE system 
integration. The maximum size of processed  image is now   
limited only by  the computation time. For example, it takes 
about 10 minutes  for processing of  an   image  with pixel 
array size about 250000 pixels on an Intel Pentium 4  3GHz  
processor.  Optimization of the program code and  
utilization of  faster ODE integration  algorithm are expected 
to provide acceleration of processing procedure. 



 
 

 

 A series of computer experiments on real image 
segmentation have demonstrated a key role of new 
dynamics, that is characterized by analogy type of oscillator 
response to pixel brightness. An example of segmentation of 
real gray-level photograph is shown in   Fig. 3. Here the 
segmented image is depicted in the picture 3a. Segmentation 
results obtained via network model with previous version of 
oscillator dynamics (picture 3b) and with new version  
(picture 3c) are presented. A noticeable improvement of 
segmentation quality is just the consequence of monotonic 
continuous dependence of oscillator limit cycle size  on 
pixel brightness. A number of  various natural types of  
monotonic functions ( )Iρ  is now included into current 
segmentation code ONN.   

The example of map fragment segmentation (of 492×475 
pixels) is presented in Fig. 4. The segmentation has been 
carried out at  ( )I Iρ α=  and  network connectivity rule  
(4)-(6).  

 
D.   Selective image segmentation 
 
        Current network model version with oscillator 

dynamics (2)-(3) provides also selective image 
segmentation. Namely, one should introduce new function 

( )Iρ  instead of ( )Iρ  in  (2), putting   
                              

( ) ( ) (7)I F Iρ ρ=  
 
where F(I) is a "filtering" function. If it is necessary to select 
only image fragments of brightness levels * *

][ ,I I I∈ , we 

choose F(I)  to be equal 1 inside the interval * **[ ],I I  and 
vanishing outside the interval. For example, one can use 
 

(1) * **( ) 0.5 { [ ( )] [ ( )]}, 1. (8)F I th I I th I Iγ γ γ= ⋅ − − −  
 
Indeed,  in  the case   only  the oscillators, corresponding to 
image fragments with brightness values **

],[ ,I I I∈  will be 
"active". The rest oscillators will drop out of network 
interaction because of   zero oscillation amplitudes. 
   For selection of arbitrary collection of image fragments of 
brightness levels 1 ( )( ) , ... mllI I  it is sufficient to use 
"filtering" function in the form    
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Obviously, the introduction of function ( 2)F  corresponds to 
selective brightness filtering.  An example of selective 
image segmentation (where two most bright image 
fragments and two least bright ones were selected) was 
given in  [20].  

 
        
         Fig. 3. Segmentation of gray-level  photograph  (657× 432 pixels). 
 
 

IV. NEW VERSION OF  CONNECTIVITY  RULE 
   In a number of situations the biologically motivated 
network connectivity rule (4) does  not provide sufficient  
segmentation accuracy. It was just the reason for 
introduction a method of sequential brightness image 
segmentation. Although the method applied in  [16]-[20]  
guaranteed an acceptable segmentation accuracy, it was 



 
 

 

computationally expensive. So,   new connectivity rule 
versions are needed to be developed. One of the versions, 
that is expected both to guarantee high segmentation 
accuracy (without utilizing the procedure of sequential 
segmentation) and to provide flexible control of noise 
reduction, is currently under testing. The rule,  based  on 
prescribing to each oscillator of some “mask”, restricting its 
coupling “response”, can be defined by adding a proper  
cofactor to ' 'jm j mP  in  rule  (4),  namely, one should define     

' ' ' ', ; , ' , , ' , ; , '' ' ' 9( ) ( ) ( ) ( ), ( )jmj m jmj mP T T Pρ ρ ρ ρ ρ ρ∆ ∆ ∆ ∆ ∆ ∆=
 
where 
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Here ( , )T ρ ∆  defines a “mask” for the oscillator with limit 
cycle radius ρ , the parameter ∆  specifies the size of 
interaction vicinity for the oscillator and constant σ  defines 
the form of “mask” ,( )T ρ ∆ : at 1σ the mask is of 
approximately rectangular form. 
    Accordingly to new connectivity rule (4) with P P=  any 
pair of network oscillators is turned out to be coupled, if 
mask supports ,[ ]−∆ ∆  and ', '[ ]−∆ ∆  of both the oscillators 
are intersected. Otherwise the oscillator pair does not 
interact. The advanced feature of new connectivity rule is 
that highly “active” oscillators (with large ρ  values) do not 
now influence on spatially neighboring weakly active ones. 
So, such type of coupling permits to prevent a “parasitic” 
smoothing of image fragment boundaries in the situations 
with contrasting neighboring image fragments.  
   As computer experiments show, the new connectivity rule 
provides good segmentation accuracy for  images of “sharp 
contrast” (with a dense net of thin contours and sufficiently 
low noise level, like maps).  On the contrary, for soft  
contrasting images (for instance, portraits) the old 
connectivity rule (4)-(6) leads to good segmentation quality.      

V. SUMMARY 
    Oscillatory network model for dynamical 
synchronization-based image segmentation is presented. The 
following features are inherent to current improved model 
version:    
          a) advanced version of single oscillator dynamics,  

that permits to specify the dependence of  limit 
cycle radius ρ  on pixel brightness I by an 
arbitrarily chosen  monotone continuous  function 

( )Iρ ; 
          b) new version of network connectivity rule, 

providing  “selectivity’’ of oscillator coupling (that 
is, coupling  only the oscillator pairs with 
intersecting mask supports  ,[ ]−∆ ∆  and  ', '[ ]−∆ ∆ ,  

where ∆  and  '∆  are predefined  small values, are 
coupled ). 

The new model version demonstrates improved 
segmentation capabilities, providing good segmentation  
accuracy for real  images of different types.  The additional 
capability of selective image segmentation could be 
considered as a contribution into tools of active visual scene 
analysis.       
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Fig.  4. The example of map fragment segmentation  (492× 475 pixels). 


