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Abstract 

 
      We develop a biologically motivated oscillatory 
network model and related dynamical synchronization-
based method of image segmentation. The first version 
of successive segmentation algorithm was based on 
coupling adaptation in the oscillatory network. New 
model developments, presented in the paper,  include: 
1) a modified version of single oscillator dynamics; 2) 
new network connectivity rule. These modifcations 
permit to significantly improve the oscillatory method 
capabilities, providing image processing with 
significantly larger pixel array sizes and ensuring 
higher segmentation accuracy. In addition the 
improved network model allows to perform selective 
image segmentation tasks (extraction of prescribed 
subset of image fragments). New method capabilities 
have been demonstrated in computer experiments. 
 
1. Introduction 
 
We present further development of a neuromorphic 
dynamical method of synchronization-based gray level 
image segmentation, provided by oscillatory neural 
network. Although a great variety of traditional   
methods of image  processing has been developed in 
the field of computer vision, there is a significant 
interest in neuromorphic methods, based on imitation  
of neurobiological processes in the brain neuronal 
structures. Since synchronized oscillations of neural 
activity of 40-60 Hz frequency were experimentally 
discovered in the brain visual cortex (VC) in 1988-
1989 (and confirmed in later experiments) the attention 
to oscillatory aspects of  visual  information processing 
was reinforced. A series of oscillatory network models 
for image processing, demonstrating synchronization 
capabilities,  has been created. Two of them are most 
closely related to our model.  The first one, developed 

by D.Wang with coauthors [1-4],  delivers effective 
oscillatory method of brightness and texture image 
segmentation, that is capable to process real multipixel 
images. The dynamical method demonstrates real 
advantages compared with modern computational 
methods of image segmentation. The second 
biologically motivated oscillatory neural network 
model was developed by Z.Li  [5-8] for contour 
integration tasks and texture image segmentation.  
Relation of our model to those by D.Wang and Z.Li 
was discussed in  detail  in  [15].  
Our network, providing dynamical method of image 
processing, was obtained by reduction from more 
general oscillatory neural network model that can be 
viewed as an oscillatory model of the brain visual 
cortex. Namely, the starting model simulates self-
organized collective behavior of orientation selective 
cells of the primary visual cortex at low (preattentive) 
level of visual information processing. Active network 
unit is  neural oscillator, formed by a pair of 
interconnected cortical neurons. It is a limit cycle 
oscillator with dynamics, controlled by image 
characteristics. Network oscillators are located at the 
nodes of 3D spatial lattice. Spatial network architecture 
imitates the columnar structure of VC: one oscillator 
column corresponds to each image pixel. Network 
connectivity rule defines self-organized nonlocal 
dynamical coupling of network oscillators, nonlinearly 
dependent on oscillator states. The hypothesis on 
existence of synchronization-based dynamical binding 
in VC during visual information processing [9-11] has 
been just reflected in the construction of network 
connectivity rule. The reduced 2D oscillatory network, 
providing a workable segmentation method, was 
obtained as a limited case of initial 3D model, [12-16]. 
      A number of advantages is inherent to dynamical  
methods of image segmentation. These are: parallel 
distributed way of information processing, "automatic" 
performance, noise reduction, possibility of extention 



to analog methods with real-time performance. Natural 
and easy way of introduction of filtering, resulting in 
capability of selective image segmentation, can be  
considered as additional advantage of our dynamic 
method. 
      It is also noteworthy that our method have 
something in common with computational approach 
based on normalized graph cuts [17]. The 
segmentation method, developed in [17], is based on 
processing of graph, related to image pixel array. The 
information on spatial and brightness proximity of 
image pixels is used to specify the graph edge weights. 
Image segmentation is then reduced to recurrent 
procedure of graph cuts into two  subgraphs, using 
information on internal connectivity of subgrapghs and 
their mutual connectivity. Connectivity rule in our 
network model shows a resemblance with graph 
connectivity principle used in [17]. 
  
2. The oscillatory network model for 
image segmentation:  main model 
characteristics  
 

      Oscillators of the reduced network located at the 
nodes of 2D spatial square lattice being in  one-to-one 
correspondence with pixel array of segmented image. 
Image segmentation is carried out by the oscillatory 
network via successive synchronization of network 
assemblies (clusters), corresponding to image 
fragments of various brightness levels. If an image to 
be segmented is defined by M N× -matrix [ ]jmI  of 
pixel brightness, the  network state is defined by 
M N× - matrix ˆ [ ]jmu u=  of complex-valued 
variables, defining  states of all network oscillators. 
System of ODE, governing oscillatory network 
dynamics, can be written as  
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Here functions ( ; )jm jmf u I  define internal 
dynamics of isolated network oscillators whereas 
the second terms  define oscillator coupling. 
Single network oscillator is a limit cycle oscillator, the 
limit cycle size (oscillation amplitude) being dependent 
on pixel brightness I of corresponding pixel.  In the 
first model version the  parametric dependence of 
oscillator dynamics on I has been chosen in the  form 
[15]: 
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being a continuous step-function dependent on  
threshold 0h .This provided in the following dynamical 

behavior of isolated oscillator: a) at 0I h≤  oscillator is 
in "passive" state (quicly damping oscillations); b) at 

0I h>  oscillator is in "active" state (stable oscillations 

of amplitude ( ),Iρ  0( )Iρ ρ≤ , ( )Iρ  being 
monotonically increasing function of I ).  
The values ' 'jj mmW , defining coupling strength of 
network oscillators (j,m) and (j'm'), were designed in 
the form nonlinear functions dependent on oscillation 
amplitudes of oscillator pair and  spatial distance 
between oscillators in the network. Namely,   ' 'jj mmW  
are defined in the form:    
                                             

' ' ' ' ' '( , ') (| ' |). (4)jj mm jj mm jj mmW DP r rρ ρ ⋅= −  

The cofactors ' 'jj mmP , providing the dependence of 
network connectivity on oscillation amplitudes, are 
specified as  

' ' 0 ' '( , ') ( ), (5)jj mm jm j mP w H hρ ρ ρ ρ= ⋅ −  
 

where  ( )H x  is a continuous function  of the same 

type as that one in eq. (3), and 0w  is a constant, 
defining total strength of network interaction. The 
cofactors  ' ' (| ' |)jj mmD r r− , providing dependence of 
network coupling on oscillator spatial locations, can be 
specified by any function  ' '| |jm j mr r− , vanishing at 
some finite distance. For instance, it is convenient to 
choose D in the form  

' ' ' ' *|1 (| ),jj mm jm j mD rH r r −= − −    where *r  is a 
prescribed radius of spatial interaction. As a result, 
accordingly to connectivity rule (4), any network 



oscillators are proved to be coupled if they both 
possess sufficiently great oscillation amplitudes and 
are separated by a distance not exceeding the 
prescribed radius of spatial interaction. Otherwise the 
connection is absent. 

Oscillatory network performance consists of two 
steps: 1) preliminary network tuning by an image to be 
segmented;  2) multi-step process of successive image 
segmentation. Network tuning consists in parametric 
tuning of network oscillator dynamics. After tuning 
one of two possible dynamical regimes is prescribed to 
each network oscillator:  either auto-oscillation regime 
with amplitude value ( )Iρ  or relaxation into stable 
equilibrium state. The stage of successive segmentation 
consists of  L  steps,  L  being the number of fragments 
of segmented image). It requires L procedures of 
network relaxation into synchronization state under 
different configurations of network connections. 
Special simple method of interaction adaptation 
(gradual increasing of total network interaction),  
combined with "switching off" of synchronized 
clusters from network interaction just provides 
successive image segmentation: exactly one 
synchronized cluster, corresponding to l-th image 
fragment, arises at l-th step of segmentation stage. 
Eventually all the network is turned out to be 
decomposed into the set of internally synchronized but 
mutually desynchronized clusters, corresponding to 
complete set of image fragments. Synchronized 
clusters oscillate with slightly different frequencies, 
and so all the image fragments are clearly 
distinguishable. As a result, oscillatory network 
delivers very informative visualization of segmentation 
result:  a number of different "versions" of processed 
image can be extracted from the whole set of 
synchronized network states(see Fig. 1). It is especially  
helpful in the case of  ambiguous image fragment 
existence (for instance, contours of low contrast). 
 
3.  Modified model version  
3.1. Modified single oscillator dynamics  

 
      Function  g(I), contained  in  eq. (2), can be viewed 
as controlling function, providing the following  
behavior of  attractors of dynamical system of single 
oscillator:  a) at 0I h>    the dynamical system 
possesses a stable limit cycle of radius ( )Iρ , where  

( )Iρ  is monotonically increasing function of  I  

0( 0 )ρ ρ≤ ≤ :  b)  at  0I h≤  bifurcation of the limit 
cycle into stable focus occurs. Although function g(I), 
defined by (3), ensures qualitatively correct  response 
of oscillator dynamics to pixel brightness variations, it 

does not allow to flexibly  regulate the oscillator 
response (because in the first model version  ( )Iρ  is 
some fixed  monotonic function). So the problem was 
to design new control of oscillator dynamics by I, 
satisfying the following requirements: 1) dependence 
of limit cycle size on I would be defined by arbitrary 
monotonic function ( )Iρ ; 2) bifurcation of limit cycle 
into stable focus would occur at some given threshold 
value I = h. The solution to the problem has been 
obtained in variables | |, arg( )r u uθ= = . (Then the 
problem  has been reduced to analysis of  fixed  points 
of  the equation  for  r-variable).  The  final  dynamical 
system, delivering the solution in variables ( , )r θ , can 
be written as 

2 2/ ( ) ( ), / , (6)dr dt r r g I d dtρ θ ω= − + =  
where 
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Parameter ρ   in eq. (6) is just the  limit cycle radius. 
Now it figures as a free parameter and so can be 
specified by any monotonically increasing function ρ . 
Constant β  in eq. (7) is an explicitly calculated one 
( ( ) )β β ρ=  and  σ  is a constant, satisfying the 
condition  1.σ �  Thus, now we have the following 
behavior of stable limit cycle of system (6): a) stable 
limit cycle is the circle of arbitrarily prescribed radius 

( )Iρ   at   * ;I h>  b) at **, .I h h h= ≈  the limit 
cycle bifurcates into a stable focus. Returning to 
variable exp( ),iu r θ= ⋅  we obtain the required new 
version of oscillator dynamical system: 
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where function   g(I)   is defined by formula  (7). 
       The limit cycle collection at different  I  ( at  

( )I Iρ α=  ) is shown in  Fig. 2. 
 

3.2. Modified connectivity rule and new 
method of successive image segmentation 
 
      New version of network connectivity was designed, 
being guided by the requirements: 1) it should provide 
oscillator coupling in accurate relation to brightness 
scale, defining image pixel decomposition; 2) it should 
be recurrently defined at the stage of successive 
segmentation. More sensitive dependence of 
connectivity rule on oscillation amplitudes is necessary 



to provide accurate fragment detection in the case of 
small fragment brightness difference. This  condition 
can be formulated as requirements to new cofactor 

( , ')P ρ ρ , defined by eq. (4).    Let the scale ( ){ }lI  of 
brightness levels be given. It is required to design the 
cofactor ( , ')P ρ ρ , providing the following features of 
network connectivity rule:   a) oscillator with 
amplitude ( )Iρ , where I satisfies the conditions  

( )
* *{ }, ,lI I I h h∈ ≥ being a current threshold, 

would be coupled with all the oscillators which 
amplitudes ( )Iρ ′  satisfy  the same conditions 

( )
*{ }, ;lI I I h′ ′∈ ≥   b) the oscillator would not be 

coupled with those oscillators, which amplitudes are 
defined by sub-threshold values  

( )
*( { }, ).lI I I I h′′ ′′ ′′∈ <  A version of 

connectivity rule, defined at each current step of 
successive segmentation procedure  has been designed. 
Let the scale  (1) (2) ( )( ) }{ , ... ,LlI I I I> > >  be 
given.  At the first step we put: 

1) (1) (2 ) (2 ) (1) ( 2 )

* **, , [ / ] ;I I h I h I I I= = =  

     2) (1)
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As one can verify,  (1)
* ( , ')P ρ ρ   does not vanish   

*
(1)( 1)P ≈ only for oscillators, satisfying the conditions   

( 2 ) (1)[ , ]I I I∈ and   ( 2) (1)[ , ].I I I′ ∈  So,   at   first  step  
of  segmentation  only oscillators, corresponding to the 
first, most bright image fragment, will be  coupled and 
synchronized. For going over to the next step  it is 
necessary to operate with two oscillatory network 
states − current and stored ones. After synchronization  
the first cluster is memorized in stored state and 
"switched off" in current state (via putting  0ρ =  for 
all  oscillators of the cluster). In this way the first 
cluster will be further uncoupled with the rest network. 
Then the second step of segmentation stage can be 
carried out via shifting down over the brightness scale 
and calculating ( 2 )

* , '( )P ρ ρ . It will provide 
synchronization of new network cluster, exactly 
corresponding to the second image fragment. Further 
the procedure should be repeated 1L −  times, where L 
is the number of brightness level in the scale  ( ){ }.lI  
      New version of network connectivity rule 
independently on new version of single oscillator 
dynamics is expected to provide much higher 
segmentation accuracy for images with weak 

brightness gradient. However,  as preliminary 
computer experiments show, the improvement of 
network performance due to  new version (8) of 
oscillator dynamics is so noticeable, that possibly 
more simple version of network connectivity rule 
will turn out to be acceptable.      

 
4.  Selective image segmentation. 
 
      Oscillatory network model with new version of 
single oscillator dynamics admits selective image 
segmentation. For the purpose one should introduce 
new function ( )Iρ%  in eq. (8), putting  
                              

( ) ( ) (9)I F Iρ ρ=%  
 

where F(I) is a "filtering" function. If it is necessary to 
select only image fragments of brightness levels 

* *
][ ,I I I∈ , we choose  F(I)  to be equal 1 inside 

interval * **[ ],I I  and vanishing outside the interval. For 
example, 
 

(1) * **( ) 0.5 { [ ( )] [ ( )]}, 1. (10)F I th I I th I Iγ γ γ= ⋅ − − − �  
 
Indeed, in the case of dynamics (8) only oscillators, 
corresponding to fragments with **

],[ ,I I I∈  will be 
"active". The rest oscillators, possessing zero 
oscillation amplitudes, will drop out of network 
interaction.  

   For selection of arbitrary collection of image 
fragments of brightness levels 1 ( )( ) , ... mllI I  it is 
sufficient to use "filtering" function in the form 
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Obviously, the introduction of function ( 2 )F  
corresponds to selective brightness filtering.  
          An example of selective image segmentation is 
demonstrated in Fig. 3. Segmented synthetic image is 
shown on the left. Extraction of two image segments of 
least brightness via filtering function (1) ( )F I  is 
demonstrated in the upper row, where three image 
versions are presented. Similarly, extraction of two 
most bright image segments is shown in lower row.  
 
5.   Conclusion  
 
Biologically motivated oscillatory network, based on 
preliminary oscillatory model of the brain visual 



cortex, is under development. The network is 
characterized by tunable oscillator dynamics and  
dynamical controllable coupling. It provides 
synchronization based dynamical image processing  
(adaptive image segmentation), demonstrating a 
number of advantages.  Presented new model 
developments enlarged its capabilities, admitting: 
1)  processing of images with much greater size of pixel 
array;       2) improved accuracy of  segmentation;                                                      
3) selective image segmentation. 
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