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Abstract.

An oscillatory network of columnar architecture located in 3D spatial lattice was recently de-

signed by the authors as oscillatory model of the brain visual cortex. Single network oscillator

is a relaxational neural oscillator with internal dynamics tunable by visual image characteris-

tics | local brightness and elementary bar orientation. It is able to demonstrate either activity

state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized

nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations

of cortical receptive �elds. Network performance consists in transfer into a state of clusterized

synchronization. At current stage grey-level image segmentation tasks are carried out by 2D os-

cillatory network, obtained as a limit version of the source model. Due to supplemented network

coupling strength control the 2D reduced network provides synchronization-based image segmen-

tation. New results on segmentation of brightness and texture images presented in the paper

demonstrate accurate network performance and informative visualization of segmentation results,

inherent in the model.

Keywords: neural oscillators, oscillatory networks, synchronization, self-organizing systems,

distributed visual image processing.

1. Introduction

As well known, synchronization of neural activity was found in various brain structures

such as olfactory bulb and cortex, visual cortex, hippocampus, neocortex, thalamo-cortical

system, and hypotheses on its functional signi�cance in brain information processing

were induced since 80th. (Freeman, 1978; Malsburg, 1981). Experimental discovery of

synchronous oscillations in the brain visual cortex (VC) in 1988-1989 (Eckhorn et al.,

1988; Gray and Singer, 1989) reinforced the attention to oscillatory aspects of visual
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information processing. Numerious network models with various types of oscillators

as processing units and synchronization-based performance were designed since 90th in

attempt to elucidate synchronization abilities in visual processing (Schuster and Wagner,

1990; K�onig and Schillen, 1991; Sompolinsky et al., 1991; Gerstner et al., 1993; Malsburg

and Buchmann, 1994; Wang and Terman, 1995). The discussions on a role of dynami-

cal binding in visual processing and elaboration of oscillatory network models and related

neuromorphic dynamical algorithms for visual processing are actively continued nowadays

(Kreiter and Singer, 1996; Gray, 1999; Li, 1998-2001; Wang et al., 1999 -2001; Kuzmina et

al., 1999-2001). We mention further only those models where relaxational oscillators with

two degrees of freedom, imitating real neural oscillators, were used as network processing

units. First of all it is worth mentioning a series of deep and detailed papers by Z.Li (Li,

1998-2001), where a biologically motivated network model of the primary visual cortex

was designed and developed. Active network unit is neural oscillator formed by a pair of

interconnected cortical neurons | an excitatory pyramidal cell and inhibitory interneu-

ron. Similar model of neural oscillator was previously proposed by W.Freeman (Freeman,

1978), when prominent the 40-60 Hz synchronous oscillations had been reported in the

rat and rabbit olfactory bulb and cortex. Following W.Freeman, Z.Li and J.Hop�eld

suggested oscillator model, closely imitating real cortical neural oscillator, and used it in

modelling of olfactory brain system, where oscillations and synchronization play a key role

in odor recognition task (Li and Hop�eld, 1989). Cortical oscillator model proposed fur-

ther in (Li, 1998), reects orientation-selective response of simple cells of VC. Besides, 3D

oscillatory network of columnar architecture was �rst designed in (Li, 1998). Excitatory

and inhibitory connections for network oscillators were constructed based on experimental

neurobiological data on horisontal intra-cortical connections in VC. The model was tested

in problems of pre-attentive image processing, including contour integration and texture

segmentation tasks. It demonstrated successful synchronization-based performance.

The second remarkable oscillatory network model for visual image segmentation is

oscillatory network LEGION, designed �rst in 1995 (Wang and Terman, 1995; Wang and

Terman, 1997; Wang, 1999; Chen, Wang and Liu, 2000; Cesmeli and Wang, 2001). The

model cannot be viewed as directly related to modelling of the brain visual processing.

But nevertheless its most perfect version (Chen, Wang and Liu, 2000) delivers highly

e�ective dynamical image segmentation algorithm based on synchronization in oscilla-

tory network. Active network unit is a relaxational (limit-cycle) oscillator with internal

dynamics dependent on image pixel brightness. Network oscillators are located in 2D

spatial lattice being in one-to-one correspondence with image pixels. In addition to sta-

tionary local excitatory connections and global inhibitor a dynamical coupling has been

designed in the network. Besides, an algorithm of dynamical coupling adaptation was

developed, what allowed to essentially improve the network performance e�ciency. As a

result the model version (Chen, Wang and Liu, 2000) provides successful segmentation

of real grey-level images containing more than 400 000 pixels. The comparisons of the

oscillatory algorithm with several modern e�ective traditional algorithms demonstrated

real advantages of the dynamical algorithm.

Our oscillatory model of VC (Kuzmina, Manykin, Surina, 2001) was in fact inspired



by the model (Li, 1998). However, our intention was to model just dynamical type of

image processing typical to low level (pre-attentive) vision, that includes only bottom-up

processes (with no feedback loop). So our network model performance simulates a single

step of bottom-up VC performance in the task of image reconstruction (without recogni-

tion). The model can be considered as a coupled system of 2D lattice ("retina"), where

pixel image representation is de�ned, and oscillatory network of columnar architecture,

located in associated 3D spatial lattice. There is one-to-one correspondence between

image pixels and oscillator columns: one oscillator column corresponds to single pixel.

Network processing unit is a limit-cycle oscillator. Designing its internal dynamics we

took into account and preserved the main features of dynamics of cortical neural oscilla-

tor used in (Li, 1998). As a result the dependence of single oscillator dynamics on two

image characteristics | pixel brightness and elementary bar orientation | is essentially

exploited in our model performance. Besides, following (Li, 1998), we also preserved the

columnar architecture of oscillatory network. But there is an essential distinction be-

tween our model and that one by Z.Li. First of all it concerns the level of modelling.

Our model is entirely formulated in terms of oscillatory system and oscillator interaction.

Self-organized oscillator coupling has been constructed, and the idea of dynamical bind-

ing on proximity of oscillator activity levels and their receptive �eld orientations has been

reected in the form of network connectivity rule. The oscillatory network performance

consists in relaxation into a stable stationary state. In the case of our model it is a state

of clusterized synchronization. Internally synchronized network assemblies (clusters) cor-

respond to fragments of processed image. The simpli�ed 2D limit version of oscillatory

network has been extracted from the initial 3D model. As it turned out, the reduced

2D network is capable to provide a synchronization-based brightness image segmentation

via supplemented network interaction strength control. Besides, the reduced network is

capable to texture image segmentation in the case of textures, representable by collections

of oriented bars.

2. 3D Oscillatory Network Model of VC

Before description of the 3D network architecture and explanation the method of image

segmentation that it provides we would like to remind the traditional statement of image

segmentation problem. Let I(x; y) be continuous brightness function of an ideal image,

de�ned in a rectangular domain V = [0; L1]� [0; L2] in the plane. Segmentation problem

includes: 1) discretization, that consists in pixel decomposition of V (pixels Vjm being

squares of side h so thatM �h = L1, N � h = L2)), speci�cation of square lattice GM�N

with the nodes (xj ; ym) at pixel centers and calculation of matrix [Ijm] = [I(xj; ym)]

of brightness values at the lattice nodes; 2) "quantization", that is realized with the

help of some discrete scale I = fI(l)g, (I(1) > I(2) > : : : > I(L)) of brightness levels:

elements of matrix [Ijm] are approximated by the values from I. As a result we getM�N

matrix [Id
jm
] which elements receive discrete values from I. Now image fragments can be

de�ned as subdomains V (l) = fx; y j Id(x; y) = I(l)g. Thus, image segmentation

problem consists in the decomposition of the domain V , in which brightness function

I(x; y) is de�ned, into a set of subdomains | image fraqments : V =
S
lV

(l).



Now we are going over to the model explanation. More short and formal model

description is given in (Kuzmina, Manykin, Surina, 2001).

2.1 Spatial Architecture of the Network

We suppose that pixel representation of an image to be segmented is given in a lat-

tice ~GM�N . The 3D oscillatory network is located in 3D spatial lattice consistent with
~GM�N . The network contains of M �N oscillator columns of K oscillators each so that

M � N � K is the total number of oscillators. The bases of the columns are located at

the nodes of 2D lattice GM�N similar to ~GM�N , whereas oscillators of each column are

located at the nodes of 1D lattice LK oriented normally with respect to the plane of

GM�N . Thus, the oscillators of the whole network are located at the nodes of 3D lat-

tice GM�N � LK . Therefore, any oscillator column corresponds to proper image pixel

(see Fig. 1). We prescribe further to each network oscillator an internal parameter

| the receptive �eld (RF) orientation, speci�ed by two-dimensional unit vector nk
jm
,

nk
jm

= (cos k
jm
; sin k

jm
), located in the plane orthogonal to column direction. Based

on neurobiological data (Hubel, 1988), vectors nk
jm

are assumed uniformly distributed

over each column:  k
jm

=  0
jm

+ k � �=K; k = 1; : : : ; K.

The next step consists in inclusion into consideration of the additional set of image

characteristics | the set of unit vectors fsjmg, de�ning elementary image bar orientations

at the nodes of ~G. Vectors fsjmg can be naturally related to brightness nonhomogeneity

inside pixels. Namely, they are obviously orthogonal to the direction of brightness gradi-

ent at pixel centers, and so obtaining of fsjmg can be reduced to the problem of brightness

gradient estimation. We suppose that the set fsjmg has been extracted via proper prepro-

cessing, and theM�N matrix of pairsM = [(Ijm; sjm)]; j = 1; : : : ;M ; m = 1; : : : ; N ,

is de�ned. The matrixM �gures in the model as the set of tuning parameters for internal

dynamics of network oscillators.

2.2 Single Network Oscillator

Network processing element is a neural oscillator. Instead of biologically motivated

model of cortical oscillator designed in (Li, 1998) we used in our model a version of familiar

Ginzburg-Landau limit-cycle oscillator with properly modi�ed dynamics. The reason was

that Ginzburg-Landau oscillatory systems are widely used for modelling of various types

of collective behavior and phase transitions inherent in macroscopic physical systems and

so are studied very well. The authors of the paper also dealt with Ginzburg-landau

oscillators previously. Internal dynamics of our neural oscillator has been designed based

on preliminary mathematical study of main features of oscillator dynamics (Li, 1998).

If one de�nes oscillator state by a pair of real-valued variables (u1; u2), the system

of two coupled ODE, governing oscillator dynamics, can be written in the form of single

equation for complex-valued variable u = u1 + i � u2:

_u = f(u; �);

f(u; �) = (�20 + i! � ju� cj2)(u� c) + �; � = g(I; s;n) = p(I) + q(s;n): (1)



Here �0; c; ! are constants, de�ning the parameters of limit cycle of system (1) at � = 0:

the cycle is the circle of radius �0, its center is located in the plane (u1; u2) at the point

u0 = (c1; c2), c = c1 + ic2, ! being cycle frequency. At � > 0 the size and location of

the limit cycle are controlled by (I; s) via properly selected functions p and q:

p(I) = 1� H(I � h0); H(x) = 1=(1 + e�2�x); (2)

q(s;n) � q(j� �  j) = 1� �(j� �  j); �(j�j) = 2e��j�j=(1 + e�2�j�j): (3)

Here H(x) is a sigmoidal function depending on threshold h0; �(j�j) is a symmetrical

peak-shaped function, nonzero only at small vicinity of � = 0 (delta-like function); � =

� �  is the angle between elementary bar orientation s = (cos�; sin �), and RF

orientation n = (cos ; sin ).

The parameter � = g(I; s;n) is a bifurcation parameter of dynamical system (1).

The limit cycle radius �(�) (oscillation amplitude), maximal at � = 0 (�(0) = �0),

monotonically decreases at � increasing and then bifurcates into stable focus at some

� = ��; �� 2 (0; 1): Due to the designed dependence � on (I; s) the cycle size is su�-

ciently great if two following conditions are satis�ed simultaneously:

a) I essentially exceeds the threshold value h0;

b) the angle between s and n is su�ciently small.

Otherwise, either the cycle size is very small, or it degenerates into stable focus (quickly

damping oscillations). The bifurcational character of single oscillator dynamics is essen-

tially exploited in image processing realized by oscillatory network.

The response of network oscillator to variation of pixel brightness is shown in Fig.

2. As one can see, the oscillator demonstrates almost momentary response to sudden

decreasing of pixel brightness via oscillation amplitude reduction.

2.3 Self-organized Dynamical Connections

Let the state of the 3D network be de�ned by (M �N �K)-array of oscillator states

[uk
jm
]. Then dynamical system governing the network dynamics can be written as:

_ukjm = f(ukjm; �
k

jm) + Skjm; j = 1; : : : ;M; m = 1; : : : ; N; k = 1; : : : ; K: (4)

Here f(uk
jm
; �k

jm
) is de�ned accordingly (1), and �k

jm
= p(Ijm) + q(sjm;n

k

jm
).

The term Sk
jm

specifying interaction between oscillators is chosen as:

Skjm =
X

j0 ;m0;k0

W kk
0

jj0mm0(ukjm; u
k
0

j0m0)(uk
0

j0m0 � ukjm): (5)

Here the values W kk
0

jj0mm0 , de�ning the connection of network oscillators (j;m; k) and

(j;0m0; k0), are nonlinear functions of their states: W kk
0

jj0mm0 = W kk
0

jj0mm0(ukjm; u
k
0

j0m0). Obvi-

ously, the form of the dependence of connection strength of network oscillator pair on their

states (network connectivity rule) inuence crucially both on network dynamics and on its

performance. We have constructed functions W kk0

jj0mm0(ukjm; u
k0

j0m0) based on results of our



previous mathematical study of synchronization in oscillatory networks governed by dy-

namical equations (4), (5) in more simple special case at c = 0; �k
jm

= 0;W kk
0

jj0mm0 = const

(Kuzmina, Manykin and Surina, 1995; 1996; 1997).

The following form for elements of matrix of connections W has been chosen:

W kk
0

jj0mm0(u; u0) = P kk
0

jj0mm0(�; �0)Qkk
0

jj0mm0(n;n0)Dkk
0

jj0mm0(jr� r0j); (6)

where � and �0 are limit cycle radii for oscillators de�ned by indices (j;m; k) and (j0; m0; k0),

n and n0 are RF orientations for these oscillators, r and r0 are radius-vectors de�ning

their spatial locations in the network.

The cofactors P kk
0

jj0mm0 , providing connectivity rule dependence on oscillator activities,

are chosen in the form:

P kk0

jj0mm0 = w0 � H(�
k

jm�
k0

j0m0 � h); (7)

where H(x) is a sigmoidal function depending on threshold h, w0 is a constant, de�ning

total strength of network interaction. As it is clear from (7), the connection (6) is negligible

if at least one of interacting oscillators is in the state of low activity. The cofactors

Qkk0

jj0mm0 , providing the connection dependence on RF orientations, are de�ned in terms

of delta-type function � dependent on orientation di�erence of n and n0:

Qkk
0

jj0mm0 = �(j k
jm
�  k

0

j0m0 j): (8)

So Q is nonzero only if n and n0 orientations are su�ciently close. At last, the cofactors

Dkk0

jj0mm0 permit to control spatial radius of oscillator interaction. Surely, only spatially

�nite-range types of connections can exist in VC. Therefore, the cofactors Dkk
0

jj0mm0 can be

de�ned by any function vanishing at some �nite distance. For example (Kuzmina et al.,

2001), D can be chosen in the form Dkk
0

jj0mm0 = 1� H(jrk
jm
� rk

0

j0m0 j � r�), where r� is

a given radius of spatial intraction.

Thus, accordingly to connectivity rule (6), any two network oscillators are proved to

be su�ciently strongly dynamically connected if they both are active, possess close RF

orientations and are located at the distance not exceeding the prescribed radius of spatial

interaction.

3. 2D Reduced Oscillatory Network

The 3D oscillatory network can be naturally reduced to its limit version | 2D network

which oscillators are located in the nodes of lattice GN�N and can be interpreted as

idealized oscillator-columns. The reduced network can be obtained in the following way.

Let us �x parameters (I; �); I � h of some pixel of su�cient brightness and consider

the response of oscillator column, corresponding to the pixel. Obviously, only several

neighboring oscillators in the column will be active | those that possess RF orientations

close to �. Let the number of oscillators in the column is gradually increasing and the

width of function � at the same time is respectively reduced. Then the number of active

oscillators of the column will be gradually decreased, and in the limit of in�nitely long



column and in�nitely narrow � we would get the single active oscillator in each column,

namely that one which RF orientation coincides with �. So the response of the idealized

column (in�nitely long one with in�nitely narrow function �) is reduced to the response

of single oscillator in the column. Its dynamics is governed by eq. (1) with function

G(I) � g(I; s; s) = 1�H(I � h0). The 2D reduced network of these oscillator-columns is

located in GM�N lattice, which is in one-to-one correspondence with retina lattice ~GM�N ,

that is, one oscillator corresponds to one image pixel. The network state is de�ned by

M �N matrix û = [ujm], and network dynamical equations are:

_ujm = (�20 + i!jm � jujm � cj
2)(ujm � c) + G(Ijm) =

NX

j0;m0=1

Wjmj0m0(uj0m0 � ujm); (9)

where

Wjj0mm0 = Pjj0mm0(�; �0)Qjj0mm0(s; s0)Djj0mm0(jr� r0j); (10)

The cofactors Pjj0mm0 and Djj0mm0 in eq. (10) are calculated in the same manner as in

the case of 3D network, but the cofactor Q is now depends on image bar orientations.

As it turned out, the presence of cofactor Q(s; s0) in network connections provides the

network capability to perform some texture segmentation tasks.

4. Brightness Image Segmentation via Controlled Synchronization in

the Reduced Network

As one could naturally expect, the reduced network is capable to provide segmen-

tation of pure brightness images for which information on elementary bar orientations

is absent. For brightness images we can simply suppose that bar orientations are the

same for all the pixels and put �jm = const. Then the dependence on bar orientations

disappears, because Q = 1 in eq. (10). Due to one-to-one correspondence between image

pixels and oscillators of the 2D network at the initial network state the distribution of

oscillator activities exactly corresponds to pixel brightness distribution. But association

of pixels into a whole image fragment is achieved via synchronization of oscillators with

close activities. For high performance in brightness image segmentation task (accurate

detection of image fragment boundaries) we included an additional procedure of synchro-

nization control. It is a simple algorithm of gradual increasing of total network coupling

strength that permits to realize successive selection of synchronized assemblies (clusters),

corresponding to image fragments of di�erent brightness levels.

For the purpose a matrix N = [jm] of additional control parameters has been

introduced, and we put �rst jm � 0. A modi�ed matrix ~W of network connec-

tions, depending on fjmg, has been further introduced instead of W : ~Wjj0mm0 =

Wjj0mm0�(jjm � j0m0 j).

At the beginning of interaction strength control stage we specify initial interaction so

weak that the network is completely desynchronized. We realize it by a choice of su�-

ciently high initial threshold value h in cofactor P (see eq. (7)). Further we gradually

increase ~W via decreasing h up to the moment of synchronization of the �rst network



cluster. It happens at some h = h1. The �rst cluster, formed by oscillators of maximal

activity, corresponds to image fragment of maximal brightness. Under further decreasing

h inside some interval (h2; h1); h2 < h1, the �rst cluster remains to be the single

synchronized cluster of the network. This fact is a consequence of monotonic dependence

of oscillator limit cycle size on brightness I . Being convinced that the single cluster is

synchronized whereas the rest network is desynchronized, we separate the �rst cluster

via excluding it from interaction with all the rest network oscillators. It is achieved by

means of the matrix N modi�cation: we prescribe some nonzero value  = 1 to those

components of N that correspond to spatial locations of oscillators, belonging to the

synchronized cluster. After that the above process of interaction strengthening can be

continued until the second cluster will be synchronized and excluded from mutual interac-

tion, and so on. Finally all the clusters will be sequentially synchronized and separated.

Thus, the network will be decomposed into a set of internally synchronized, but mu-

tually desynchronized clusters, corresponding to image fragments of di�erent brightness

levels. Moreover, in �nal state the desynchronized clustes oscillate with slightly di�erent

frequencies what just provides additional tool for analysis of segmentation result.

The described procedure of interaction control has been ful�lled so far manually in

current version of computer code. However, its automatic performance can be realized

and is in progress. One of the ways consists in that appropriate dynamical equations for

time evolution of both network interaction strength w0 and controlling parameters jm
could be joined to dynamical system (9), governing 2D network dynamics. A version of

the equations can be schematically written in the form:

_w0 = F1(�t); _jm = F2(jj _ujmj� < j _uj > j); (11)

where F1 is a slowly varied function of time (� � 1), F2 is a sharply varied function in

the vicinity of zero, j _uj � ( _u21 + _u22)
1=2, < _u > is a mean value (over the network)

of instantaneous oscillator frequency, < _u >� (MN)�1
P

jm _ujm. Under w0 slow growing

the fast variables jm are changed in a jump-like manner at the moments of successive

cluster synchronization, what just results in automatic synchronized cluster exclusion

from network interaction.

In a series of computer experiments on synthetic brightness image segmentation good

network performance has been demonstrated. The visualization of segmentation process

has been realized in the following manner. The network state is depicted in computer

screen in the form of pixel array (one pixel | one oscillator), what exactly reproduces pixel

representation of the image. The brightness Îjk(t) of each pixel in the array is directly

related to state variable ujk(t) of corresponding oscillator: Îjk(t) = jujkj(t), juj �

(u21 + u22)
1=2. Besides, the phases �jk(t) = arg(ujk)(t) of current oscillator states are

depicted by time-dependent vectors of proper length, localized inside pixels. As a result

one can see in the screen the whole set of network states, arising in the process of network

dynamics, and select any desirable subset to analyze. It should be noted, that oscillatory

character of segmentation results proves to be very informative. First of all, as far as

synchronized clusters, corresponding to image fragments of di�erent brightness levels,

oscillate with slightly di�erent frequences, all the fragments are clearly distinguishable.



Besides, the whole set of network states, obtained in the process of image segmentation,

is available. A large number of di�erent "versions" of segmented image is contained in

this set, what is quite helpful in the situations when some ambiguous image fragments

exist (for instance, contours of low contrast).

The example of processing of the synthetic image containing 2460 pixels is presented

in Fig. 3. A noisy image version was given as the initial network state, the noise being

imposed via network oscillator frequency dispersion. Three stages of network performance

during interaction strengthening procedure are shown: a) initial state of total desynchro-

nization; b) the state of partial synchronization (several clusters are already synchronized

and excluded from network interaction whereas the rest part of the network is desynchro-

nized); c) the state of complete clusterized synchronization. In each case an example of

instantaneous network state (left) and time dependence curves rjk(t) = jujkj(t) and

�jk(t) = arg(ujk)(t) for all network oscillators (right) are shown.

It is remarkable that there is an evidence on sequential type of image segmentation

performed by the visual cortex. Namely, image fragments of di�erent brightness are

processed not simultaneously. Instead there is some time delay in fragment reproduction:

the most bright fragments are reproduced faster than the less bright ones (W�org�otter,

2001). Probably it is achieved via additional image processing ful�lled in high cortical

areas.

5. Texture Image Segmentation

The processing of texture visual images is usually regarded as special class of problems

in the �eld of traditional computer vision algorithms. In particular, there exist special

methods of texture representation and synthesizing. There are also catalogues of arti�cial

textures. In the frames of our approach we are able to include into consideration only the

simplest texture types, representable as collections of oriented bars.

The 2D reduced network is capable to process texture images because of the depen-

dence on bar orientations preserved in its connectivity rule (10). In the case of texture

images one has to deal with brightness-texture image fragments instead of pure bright-

ness ones. In the �rst series of computer experiments on texture image segmentation

we processed images with monodirected textures and concentrated attention on texture

images with homogeneous mean brightness. In the task the network performance is based

on desynchronization of clusters corresponding to di�erent texture fragments. Unlike the

case of pure brightness image segmentation, network coupling control is unnecessary here.

Two examples of the texture image segmentation are shown in Fig. 4, 5. Here texture

structures of processed images are presented in the left squares in the form of oscillator

phase distribution at initial network state. Two instantaneous states of synchronized

network, in which the segmentation is clearly observed, are shown in the middle and

right squares. Desynchronized clusters, corresponding to di�erent texture fragments, are

in di�erent phases of oscillation and therefore are accurately segmented. In Fig. 5 the

segmentation of texture-marked contour of complicated form ("fractal"-like) is shown. In

the case it is necessary to choose a su�ciently great radius of spatial coupling.

A kind of contour integration task, ful�lled by the oscillatory network, is demonstrated



in Fig. 6. The image contains two closed contours marked solely be texture, de�ned by

oriented bars of continuously varied direction (approximating local contour tangent). As

one can see, the network provides accurate segmentation of the double contour via its

desynchronization with respect to background.

6. Comparisons with Another Oscillatory Models

There are two oscillatory network models for image segmentation that are closely

related to ours. The �rst one is the model by Z.Li, developed in the series of papers

(1998-2001). The following distinctions of our model from the model by Z.Li should be

marked:

1) two features of single oscillator dynamics | its bifurcational character and the

monotonic dependence of oscillation amplitude on pixel brightness | have been actively

exploited in our network model performance;

2) self-organized dynamical connections are designed in our model; they automatically

emerge after tuning of single oscillator dynamics by image characteristics (Ijm; sjm) (in

contrast, stationary excitatory and inhibitory connections, designed in the model by Li,

cannot be considered as self-organized ones);

3) the reduced network, extracted from our source network model of VC and sup-

plemented by the method of interaction strength control is capable for brightness image

segmentation (whereas image processing tasks related only to contour and texture seg-

mentation can be solved via the model by Li).

As compared with another oscillatory network model | the model by D.Wang et

al, (1995-2001) | our model require considerable improvement before being tested in

real image segmentation problems. First of all, essential enlargement of admissible image

lattice size is necessary. However, we could mention some advantages of our model with

respect to the model by Wang. These are:

1) there exist only dynamical connections in our model (stationary connections are

absent as unnecessary);

2) the connectivity rule, constructed in our model, leads to automatic formation of self-

organized network coupling and exibly controlled synchronization (in contrast, special

calculations are necessary in the model by D.Wang et al. to reveal for each network

oscillator the set of oscillators, interacting with the selected one);

3) our method of interaction strength control is de�nitely more simple as compared

to algorithm of interaction adaptation developed in the last version of the model (Chen,

Wang and Liu, 2000).

7. Summary. Discussion. Further Perspectives

An oscillatory network model of VC of columnar architecture has been designed by the

authors. Internal dynamics of single network oscillator is tunable by image pixel charac-

teristics | brightness and elementary bar orientation. The designed network connectivity

rule implies the emergence of nonlocal self-organized dynamical connections dependent

on oscillator activities and receptive �eld orientations. Accurate brightness and texture

image segmentations are provided by the 2D reduced oscillatory network by means of



simple method of network interaction adjustment.

Two basic cofactors P and Q, contained in network connectivity rule (6), are respon-

sible for di�erent aspects of image segmentation task. The construction of cofactor Q

reects neurobiologically evident fact of preferable connectivity of VC neurons with close

RF orientations. The network capability of texture detection and contour integration is

just the consequence of presence of cofactor Q in network connectivity rule. A general

idea on extraction of "coherent" objects in visual scenes via dynamical binding, expressed

by variouos well known VC researches, is reected in the construction of cofactor P , re-

sponsible for the network capability of brightness image segmentation. The example of

function P construction, given in our model, seems rather natural from neurophysiological

viewpoint. Namely, the connections de�ned accordingly the connectivity rule (7), could

be regarded as a spatial version of nonlinear Hebbian connections.

One could hardly expect to answer (in the frames of a single model) the question

whether or not the model captures the way the visual cortex works. A diversity of

investigations, including experiments, is necessary to elucidate the problem of whether or

not dynamical binding is exploited in VC. A version (biologically reasonable, as it seems)

of dynamical connectivity, suggested in our model, "force" dynamical binding to "work".

Maybe just this fact could be regarded as a small contribution into insight how the brain

visual system could in principle work.

We also would like to note that in addition to technical aspects of model improvement

(enlargement of pixel �eld size of processed image, automatization of the stage of network

interaction control) the following directions of further model extension are possible: 1)

design and testing of di�enent kinds of dynamical connectivity rules; 2) extension to

on-line segmentation of moving images; 3) extension to color image segmentation; 4)

development of active vision approaches.
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