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Abstract. Recurrent oscillatory network with tunable oscillator dy-

namics and nonlocal dynamical interaction has been designed. Two ver-

sions of the network model have been suggested: 3D oscillatory network

of columnar architecture that reects some image processing features in-

herent in the brain visual cortex, and 2D version of the model, obtained

from the 3D network by proper reduction.

Image segmentation algorithm developed is based on cluster synchroniza-

tion of the reduced network that is controlled by means of interaction

adaptation method. Our approach provides successive separation of syn-

chronized clusters and �nal decomposition of the network into a set of

mutually desynchronized clusters corresponding to image fragments with

di�erent levels of brightness. The algorithm demonstrates the ability of

automatical gray-level image segmentation with accurate edge detection.

It also demonstrates noise reduction ability.

1. Introduction.

Since the experimental discovery of synchronous oscillations in the brain

visual cortex (VC) of cat and monkey [1,2] the viewpoint was expressed that

synchronization-based performance is inherent in VC. Series of attempts was

enterprised to elucidate the role of cortical oscillations and synchronization in

visual image processing. The hypothesis on the role of dynamical link archi-

tecture was initiated since 80th. (C. von der Malsburg, 1983 ; W.Singer et al.,

1988). A series of models with various types of oscillators as processing units

were designed in the 90th and studied in the context of visual image segmenta-

tion problems [3-9] and contour integration task [10].

Bearing in mind a key idea to develop a version of image processing method

that would exploit dynamical (instantly rearrangable) connections and synchro-

nization similarly to VC, we designed 3D oscillatory network of columnar archi-

tecture [13,14]. Processing units of the network are oscillators formed by pairs of

neurons. Internal dynamics of single oscillator is parametrically tunable by two

visual image characteristics - local brightness and elementary bar orientation.

Besides, there is an important internal parameter of oscillator dynamics| recep-

tive �eld orientation. Resembling stimulus-dependent response of simple cells of

VC, the oscillator can demonstrate either stable oscillatory activity (undamped

auto-oscillations) or silence (quickly damped oscillations). Dynamical connec-



tions in the network are de�ned in terms of oscillator interaction. They are

nonlinearly dependent both on oscillator activities and on receptive �eld (RF)

orientations. Network performance is based on self-controlled synchronization

of oscillator ensembles (clusters) encoded by visual image fragments.

3D columnar network has been further reduced to 2D network of idealized

oscillator-columns, and image-segmentation algorithm based on clusterized syn-

chronization of the reduced network has been developed. The results of computer

simulations demonstrate workability of the algorithm.

2. Statement of the Problem. 3D Columnar Network

We try to imitate one step of "top-down" performance of VC: given a visual

image in the retina VC provides image processing via network performance. In

our case the performance consists in transfer of recurrent oscillatory network into

stable state of clusterized synchronization encoded by visual image fragments.

2.1 Network Architecture

Imitating columnar structure of VC and following [10] we design oscillatory

network of columnar architecture consisting of N2 columns of K oscillators each

so that N2 � K is the total number of oscillators. The bases of the columns

are located at the nodes of 2D square lattice GN2 , whereas oscillators of each

column are located at the nodes of 1D lattice LK oriented normally with respect

to the plane of GN2 . Thus, the oscillators of the whole network are located at

the nodes of 3D lattice GN2 � LK . The state of the 3D network is de�ned by

(N �N �K)-array of oscillator states [ukjm]. For each oscillator RF orientation

is speci�ed by 2D unit vector nkjm. Vectos nkjm are supposed deterministically

uniformly distributed over the column. The retina is modeled by 2D square

lattice similar to GN2 so that each retina node corresponds just to one oscillator

column.

It is assumed that using continuous distribution of brightness I(x; y) correspond-

ing to retinal image some discretization of I(x; y) is de�ned in the retina lattice.

For our model an matrix of pairs (Ijm; sjm); j;m = 1; : : : ; N , should be ex-

tracted, where Ijm is local value of brightness and sjm | local orientation of

image elementary bar. The N � N matrix of pairs M = [(Ijm; sjm)] serves

further as the set of tuning parameters for oscillatory network.

2.2 Single Oscillator.

Following [10], we suppose that single oscillator is formed by a pair of VC neu-

rons interconnected through excitatory and inhibitory connections. Bearing in

mind biologically motivated model of such oscillator, previously proposed by

W.Freeman (1987)[11] and Z.Li & J.Hop�eld (1989)[12], we designed limit cy-

cle oscillator with qualitatively similar dynamics and appropriate response to

local values (I; s). If oscillator state is de�ned by a pair of real-valued vari-

ables (u1; u2), the system of ODE for u1; u2 can be written in the form of single

equation for complex-valued function u = u1 + i � u2:

_u = (�20 + i! � ju� cj2)(u � c) + g(I) + q(s;n): (1)



Here �0; c; ! are constants de�ning asymptotic parameters of the limit cycle of

dynamical equation (1). The size (radius �) and location of the limit cycle in

the plane (u1; u2) are controlled by (I; s) via properly constructed functions g

and q. The following functions g and q are used in eq.(1):

g(I) = 1� h(I � h0); h(I � h0) = 1=(1 + e�2�(I�h0)); (2)

q(s;n) = 1� �(j�j); �(j�j) = 2e��j�j=(1 + e�2�j�j): (3)

Here h(x) is a continuous step function depending on threshold h0, and �(j�j)
is narrow symmetrical peak-shaped function depending on the angle � = � � ,
ehere � and  are the angles de�ning orientations of vectors s and n respectively:

s = (cos �; sin �), n = (cos ; sin ).

The limit cycle size (�) is su�ciently great if two conditions are satis�ed simul-

taneously: a) I essentially exceeds the threshold value h0; b) the angle between

s and n is su�ciently small. Otherwise, either the limit cycle size is very small,

or it degenerates into stable focus.

2.3 Dynamical Interaction

Dynamical system governing the dynamics of the network can be written as:

_ukjm = f(ukjm; �
k
jm) + Skjm; j;m = 1; : : : ; N; k = 1; : : : ;K: (4)

Here f(u; �) = (�2 + i! � ju� cj2)(u� c) + �; �kjm = g(Ijm) + q(j kjm � �jmj)

are the controlling parameters for oscillator dynamics and the term Skjm speci�es

oscillator interaction. It has been designed in the form:

Skjm =
X

j0;m0;k0

W kk0

jj0mm0 (ukjm; u
k0

j0m0 )(uk
0

j0m0 � ukjm); (5)

where the elements of the matrix of connections W are:

W kk0

jj0mm0 (u; u0) = P kk0

jj0mm0 (u; u0)Qkk0

jj0mm0 (n;n0)Dkk0

jj0mm0 (jr� r0j); (6)

where n and n0 are RF orientations, r and r0 are radius-vectors, de�ning

spatial locations of oscillators (j;m; k) and (j0;m0; k0) in the network. Three

cofactors introduced in the expression forW kk0

jj0mm0 provide the following features

of dynamical interaction: a) dependence on oscillatory activity; b) dependence

on RF orientations; c) dependence on spatial distance between the oscillators in

the network.

The cofactors P kk
0

jj0mm0 providing the dependence of oscillator interaction on

oscillatory activity are chosen in the form:

P kk0

jj0mm0 = w0 � h(�
k
jm�

k0

j0m0 � h); (7)

where �kjm is limit cycle radius of the oscillator de�ned by indices (j;m; k),

h(x) is continuous step function similar to that one in eq.(2), h is a threshold,



w0 is a constant of interaction. The cofactors Q
kk0

jj0mm0 providing the dependence

on RF orientations are de�ned as Qkk0

jj0mm0 = �(j kjm �  k
0

j0m0 j), where �(j�j) is

introduced in eq.(3). At last, the cofactors Dkk0

jj0mm0 , providing spatially nonlocal

character of network interaction, can be de�ned by any function vanishing at

some �nite (variable) spatial distance.

3 Reduced Oscillatory Network

The 3D columnar oscillatory network can be naturally reduced to its limit version

- 2D network de�ned in the lattice GN2 and consisting of idealized oscillator-

columns as processing units. The reduced network can be obtained via inter-

column averaging of oscillator response and special limit analogous to well-known

thermodynamical limit in statistical physics. As a result, RF orientations dis-

sapear from consideration at all, and internal dynamics of oscillator-column,

governed by eq.(1) with q(s;n) � 0, depends on single image characteristics

| local brightness I. The state of the network is de�ned by N � N matrix

û = [ujm], and network dynamical equations are:

_ujm = (�2+i!jm�jujm�cj
2)(ujm�c)+g(Ijm) =

NX

j0;m0=1

Wjmj0m0 (uj0m0�ujm);

(8)

where

Wjj0mm0 = Pjj0mm0 (u; u0)Djj0mm0 (jr� r0j); (9)

The cofactors Pjj0mm0 and Djj0mm0 in eq.(9) are calculated in the same manner

as in the case of 3D network, but the cofactor Q is now reduced to 1. We are able

to consider further the reduced network as independent 2D model and develop

an image segmentation algorithm based on clusterized synchronization of the

network.

4 Interaction Adaptation Method. Simulation Results

We introduce new additional controlling parameter  which will allow to improve

algorithm performance due to sequential excluding of synchronized clusters from

network interaction. Namely, we introduce modi�ed dynamical connections in

2D network
~Wjj0mm0 =Wjj0mm0�(jm � j0m0 ); (10)

where �( � 0) is the function de�ned in eq. (3), and use the following interac-

tion adaptation method. Let an image to be segmented be de�ned by piecewise

constant martrix [Ijm], where Ijm belong to some quantized scale of brightness

I = fI(l)g, I(1) > I(2) > : : : > I(L). Put at initial step jm � 0 in the matrix

of controlling parameters ~M = [Ijm; jm]. We realize a process of interaction

strengthening via gradual decreasing of threshold h in eq.(7), starting from suf-

�ciently high initial value at which the network is totally desynchronized. One

can observe the following sequence of network states. At some value of h = h1
the �rst synchronized cluster, corresponding to image fragment of brightness

I(1), arises whereas the rest network remains desynchronized. Such network



state is conserved at h 2 [h2; h1]. It provides the possibility of separation of

the �rst cluster via excluding it from network interaction. In view of eq. (10)

excluding from interaction can be achieved simply by prescribing some nonzero

value  = 1, 1 � b > 0, to those components of the matrix ~M that corre-

spond to spatial locations of oscillators belonging to the synchronized cluster.

Further continuation of interaction strengthening provides analogous separation

of the second synchronized cluster and so on. The process is repeated until all

the clusters corresponding to the scale I will be successively synchronized and

separated. In �nal state the network will be decomposed into the set of mu-

tually desynchronized clusters. The accurate detection of boundaries between

image fragments occurs. It is the direct consequence of the essential attribute

of oscillator dynamics | sharp dependence of limit cycle size on local image

brightness. Several synthetic images were used for testing the algorithm. Three

stages of algorithm performance are shown in Fig.1.

Summary

Recurrent oscillatory network of columnar architecture for visual image process-

ing has been designed. Internal dynamics of single oscillator is parametrically

tunable by visual image characteristics | local brightness and bar orientation.

Nonlocal dynamical connections are dependent on oscillatory activities and re-

ceptive �eld orientations. 2D reduced oscillatory network has been extracted.

Image segmentation algorithm has been developed based on interaction adapta-

tion for 2D network. The algorithm provides successive separation of synchro-

nized network clusters and demonstrates promising advantages: clearly observ-

able image segmentation, accurate edge detection and noise reduction.
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