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Abstract

Oscillatory networks defined in 3D lattice are designed
for modelling of synchronization-based performance of the
brain visual cortex. Spatio-temporal dynamics of 1D and
2D oscillatory media, representing continual analogy of the
designed networks at some extreme situations, is studied.

Confirming computer experiments are in progress.

Introduction

Oscillatory network model initiated in [1] belongs
to the class of neuromorphic models exploiting the
onset of synchronization of oscillations in oscilla-
tory system.

Synchronous oscillations play essential role in the
performance of various brain structures: visual
and auditory cortices, olfactory bulb, hippocam-
pus. The ideas concerning possible role of syn-
chronization in visual processing were discussed
since 80-th.(C.von der Malsburg, 1985; W.Singer,
1988). After the experimental discovery of syn-
chronous oscillations in the brain visual cortex
(VC) in 1988-1989 the evidence exists that syn-
chronization arises in VC due to long-range dy-
namical connections that are strongly dependent
on orientations of the receptive fields (RF).
Series of models was designed to propose biolog-
ically motivated synchronization-based versions
of VC functioning. There were used both net-
works consisting of oscillators [2,4] and that ones
of spiking neurons [3]. Usually 2D single- and
multi-layered architectures with local exitatory
and global inhibitory connections were designed.
The model proposed aims at elucidation of the
role of synchronization in the visual cortex func-
tioning. We mainly concentrated on the problem
of visual image contour detection.

Developing the model, proposed by Z.Li [5], we
have designed 3D oscillatory network of columnar
architecture that simulates the columnar struc-
ture of the VC. It is assumed that single oscilla-
tor in VC is formed by a pair of neurons inter-
connected via excitatory and inhibitory connec-
tions. Biologically plausible versions of the os-
cillator was previously proposed by W.Freeman
(1987) and Z.Li & J. Hopfield (1989) in odor seg-
mentation problem.

In our model more symmetrical limit-cycle oscil-
lator in the vicinity of Hopf bifurcation is used
as network oscillator. The bifurcation parame-
ter is appropriately controlled by visual stimu-
lus properties — local contrast and bar orien-
tation. As a result the oscillator demonstrates
sharp stimulus-dependent intrinsic dynamics —
stable oscillations (limit cycle of sufficient size) or
silence” (stable focus, providing quickly damp-
ing oscillations). Self-organized dynamical inter-
action of oscillators has been constructed in fac-
torized form, including the dependence of thresh-
old character on product of instantaneous oscilla-
tor activities, orientations of receptive fields and
spatial distance between the oscillators in the net-
work. The network dynamics imitates collective
behavior of simple cells of VC in visual image con-
tour detection task.

For flexible performance of the model in a wide
variety of situations proper tuning of all network
parameters is necessary. For the purpose, qualita-
tive mathematical analysis of the main properties
of the model is started. The reduced oscillatory
network defined in 2D spatial lattice and obtained
from 3D one by special kind of inter-column ave-



raging [1], deliver the appropriate object for
mathematical study. The averaged network is fur-
ther reduced to 2D homogeneously locally con-
nected oscillatory network consisting of standard
limit-cycle oscillators in the vicinity of Hopf bi-
furcation. Spatio-temporal dynamics of these
networks is closely related to the dynamics of
spatially continual nonlinear media governed by
nonlinear diffusion equations (reaction-diffusion
equations).

The present study concerns the analysis of spatio-
temporal regimes in 1D and 2D oscillatory media
corresponding to the reduced locally connected
oscillatory networks.

Oscillatory Network Model of the VC. The
2D Reduced (Averaged) Network

The oscillatory network model of the VC is de-
signed as the network of columnar architecture
consisting of N? columns of K oscillators each
(N2 . K is the total number of oscillators). The
bases of the columns are located at the nodes of
2D square lattice G 2, whereas oscillators of each
column are located at the nodes of 1D lattice
L% oriented normally with respect to the plane
of G 2. So the oscillators of the whole network
are located at the nodes of 3D lattice G y2 x LK.
The location of a single oscillator is specified by a
radius-vector rf = (mfm,yjm, Jm) The state of
the network is specified by (N x N x K)-matrix
of oscillator states [ufm] For each oscillator the
orientation of its RF is specified by 2D unit vector
n},,, which is an important internal parameter of
network oscillator. The retina is modelled by 2D
square lattice similar to G x2. So, a continuous vi-
sual image arising in real retina is represented by
its discretization in the retina lattice, that is, by
a collection of pairs (Ijm,8jm),j = 1,...,N,m =
1,..., N, where I, is local image contrast and s;y,
— local orientation of image elementary bar.
We do not discuss so far the way of extracting
the data (I, sjm) from visual images of contin-
uous spatial structure. It should be related to the
methods of hierarchical spatial filtering of multi-
scale visual patterns. In the initial stage we in-
stead restrict our consideration by simple images
of single-scale spatial structure. Further some
versions of pattern processing methods providing
spatial filtering are planned to be included.

The internal dynamics of a single oscillator
is designed in a manner to imitate stimulus
orientation-dependent response of simple cell in
the VC. Suitable type of dynamics can be de-
livered by oscillator with two degrees of free-
dom which state is defined by two-component
real-valued vector function u = (uy,u3)'. The
designed system of two coupled ODE for wuq,us
can be written in the form of single equation for
complex-valued function u = u; + fuo:

u—c|?)(u—c)+po(g(I—h)+q(s, n))

(1)
Here p, ¢,w are constants defining asymptotic pa-
rameters of limit cycle of dynamical equation (1):
at po = 0 the limit cycle is the circle of radius p
with center location at the point ¢ = |c[e!® in
the complex w-plane, w is the cycle frequency.
The constant pg is some complex (tuning) con-
stant. Suitably constructed functions g and g
provide controlling of bifurcation parameter y =
(9 + q): the Hopf bifurcation occurs at some
= [, € (0,1) (at p = ps limit cycle is
converted into stable focus located in the vicinity
of the origin). The dynamical system governing
the dynamics of the oscillatory network can be
written in the form:

i = (p®+iw—

m=1,...,N, k=1,...,K. (2)

Here f(up) = (o + iw — |u — o2)(u — o) +
pott, = (g(I —h)+q(s,n)) and the term S;-“m
specifies interaction between oscillators in the net-
work. It can be written as
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(3)
where the elements of matrix of connections W
are represented in the factorized form:

! !
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r and r’ are radius-vectors, defining spatial loca-
tions of oscillators (j,m, k) and (5, m', k').

The 2D reduced network corresponding to the
columnar one is defined in lattice G2 and con-
sists of idealized oscillator-columns. It can be de-



rived as a result of inter-columnar averaging of
columnar network and special limit analogous to
well-known thermodynamical limit in statistical
physics. Its state is defined by N x N matrix
[ujm]. The RF orientation nj,, of its single os-
cillator coincides with the stimulus bar orienta-
tion 8j,,. The internal dynamics of the oscillator
is governed by eq.(1) with ¢(s,n) = 1. Further
reduction can be achieved in the case of the aver-
aged network response on special visual stimulus
— homogeneous field of sufficient contrast with
monodirected bar orientations. Then we have
g(I — h) = 1. In addition, if we consider the net-
work with pure local interaction, we should put
ineq.(4) P=Q=1,D¥ . —d-&jbmm ",
where d = const and (j*,m*, k*) € Nf,, Nf,
denotes the set of closest neighbors of the oscil-
lator located at the site (j,m, k). As a result we
obtain the system of dynamical equations for lo-
cally connected oscillatory network of idealized
columns defined in G .

Finally, we can relate the obtained system to the
following transformed system:

’djm = ()\ + tWjm — \ujm|2)ujm +

+d
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m=1,...,N, (5)

where )\ is bifurcation parameter and d = ke'X =
dy1 + ids is local coupling strength in the network.
Here the normal form of oscillator dynamics in
the vicinity of Hopf bifurcation is used.

Spatio-Temporal Dynamical Regimes in
Oscillatory Media Related to Locally Con-
nected Oscillatory Networks

While studying the dynamics of locally connected
networks it is quite helpful to attach their con-
tinual analogies — nonlinear media governed by
reaction-diffusion equation (RDE) because there
is very rich experience of their qualitative mathe-
matical analysis. In our case we should replace
the matrix [u;m,] by a complex-valued function
u(z,t) = u; + tue depending on spatial variable
z, z € [0,I] x [0,]] C R?. Then RDE govern-
ing the dynamics of oscillatory media correspond-
ing to oscillatory networks with dynamics (5) can
be written in terms of real-valued two-component
vector-function u = (uq, u2)T:

u; = F(u)u + DAu, (6)
where
A A —u? —u2 )
F(u):[ ulj ’ A—u%—u%]
s | di —dy
D = [d2 d ] (7)

and A is 2D Laplacian. We also assumed here (at
the initial stage of study) that w(z) = w = const.
As well known, numerous investigations are de-
voted to various models of nonlinear active me-
dia. A considerable scope of studies concerning
oscillatory media also exists, including strict re-
sults of qualitative analysis, results of physical
level and those of computer modelling. In various
situations the media demonstrate familiar collec-
tion of spatio-temporal regimes: wave trains, ro-
tating spiral waves, standing waves, targets and
shock structures, stripe patterns, cluster states.
From the viewpoint of proposed oscillatory net-
work model the media defined in compact spa-
tial domains (finite interval in 1D case, square
in 2D case) are of the main interest. The eluci-
dation of conditions leading to arising of spatio-
inhomogeneous regimes in the oscillatory media
is quite helpful for consistent choice of all the pa-
rameter ranges providing correct performance of
the oscillatory network.

Mention the features of oscillatory networks to be
analyzed: a) local oscillatory dynamics is consid-
ered in the vicinity of Hopf bifurcation; b) the
interaction is complex-valued (nondiagonal diffu-
sion operator).

The natural initial step of analysis of the types
of spatio-temporal dynamics of RDE (6) consists
in consideration of bifurcations of spatially ho-
mogeneous solution. As well known [7,10], the
condition of destabilization of trivial steady-state
solution is defined by the spectrum of the opera-
tor G'(/\ o) = L — 07D, where L is the lineariza-
tion of F" around steady-state (the Jacobi matrix)
and {—o}} is the spectrum of 1D scalar diffusion
operator (op = wk/l, k = 0,1,2...). The eigen-
values vy, of G(), o) for RDE (6) in 1D case can
be easily calculated in explicit form:

ve(G) = X — oid; +i(w — oidy). (8)



As it follows from (8), the diffusion provides sta-
bilizing effect at di > 0 and leads to destabiliza-
tion at di < 0; the value dy influences only the
frequency of oscillations w.

The analysis of diffusion destabilization can be
performed by using different approaches devel-
oped [6-9]. In particular, the method developed
in [10] can be used as one of reliable methods. It
consists in the expansion of RDE solutions into
the series on orthonormalized system of eigen-
functions { X, (z)} of scalar diffusion operator:

up(2,8) 3 Xon(2)Q(t). 9)

The functions X,, are defined by boundary con-
ditions for RDE: X,,(z) = sin(opx) at u1(0,t) =
ug(l,t) = 0 and X,,(z) = cos(omz) at u15(0,t) =
ugg(l,t) =0, op = wm/l. The system of coupled
ODE for {P,,(t), Qm(t)}, similar to that one de-
rived in [10] for the case A = 1, can be obtained
for RDE (6) at arbitrary A. Using the expansion
(9) one can extract the ODE defining time behav-
ior of k-th spatial harmonics.

The system of ODE for {P,,(t), Qm(t)} provides
also the analysis of existence of standing waves
in 1D oscillatory media (special RDE solutions
with separated variables z and t). In the case
of boundary conditions u1,(0,t) = ugz(l,t) = 0
standing waves are the solutions of the form

u(z,t) = Uge ™ + Upe @) cos(kz)  (10)
The existence of standing waves can be estab-
lished by direct substitution of (10) into the RDE.
In this way one can obtain four equations: two
equations for |[UZ|, |U?%|, the dispersion equation
reflecting the relation between w and k and the al-
gebraic equation for tan(vy). Analysis of the alge-
braic equation shows the existence of real-valued
solutions for tan(vy). Therefore, standing wave so-
lutions to RDE (6) in 1D case exist. The para-
metric domain of their existence still remains to
be revealed.

Cluster states are RDE solutions with separated
variables of another type: they correspond to
medium decomposition into synchronously oscil-
lating subdomains (clusters). The own amplitude,

phase shift and frequency of oscillations are inher-
ent to each cluster. These regimes are of special
interest in the context of the network model.

At last it should be noted that in 2D case RDE
(6) with scalar diffusion operator (do = 0) be-
longs to the class of (A — w)-systems studied in
[7,8]. Therefore, all the regimes obtained in [7,8]
(target patterns, spiral waves, shock structures)
are inherent in RDE (6) in 2D case.

Computer experiments on unclosed oscillatory
chains and 2D lattice networks that could confirm
the results on the oscillatory media are currently
in progress.
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