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This paper is devoted to the study of associative memory in the networks of N coupled nonlin-

ear oscillators interacting via complex-valued weights. Exact solutions relating to the structure

of attractors have been obtained. The complete solution to the systems of two oscillators and

the structural portrait of the governing dynamical system have been obtained. It is shown

that homogeneous closed chains of oscillators play important role in the context of phase as-

sociative memory problems. Qualitative description of the memory in the closed chains of

N oscillators is given for arbitrary N , and rigorous solutions for N � 6 are illustrated. The

networks considered admit electronic, nonlinear optical and optoelectronic implementations.

The background of some of them is under development.
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1. Introduction.

As shown in [1,2], the associative memory model can be designed in the networks of limit-cycle nonlinear

oscillators with complex matrix of connections W . In [3] the properties of this memory and also the

structure of attractors in such oscillatory networks with various matrices W were studied. It was found

out that in contrast with the phase oscillatory networks [4] the networks with Hermitian matrix W admit

Hebbian learning if applied to the phase basis, and demonstrate the properties that make them interesting

from the viewpoint of applications, in particular, rather high memory capacity: � N=2.

The present paper performs the new approach to study of associative memory in the oscillatory networks

considered. Our intention is to elucidate relations between architecture of the networks and their associative

memory properties. In the phase oscillatory systems [4] it was proved that the networks with tree-like

architecture of connections can not have more than one stable point. Computer modelling con�rms that

the same fact is valid for the networks considered here. Therefore, to design matrix W providing a rich set

of attractors, it is necessary to close the connections between oscillators into circles. The most simple of

such architectures is a homogeneous closed chain, which has been studied in detail, n.3. The new approach

is to represent the matrixW of oscillatory network with Hebbian connections as a sum of matrices of closed

chains and special unclosed architectures, and describe the memory in the whole network via the memory

in the separate items.

In addition to the main considerations relating to the chains, the results on two-oscillatory networks

are performed in n.4: exact solution and dynamics in regimes near synchronization.



2. General

The system [1,2] governing the dynamics of N coupled limit cycle oscillators is studied from the view-

point of associative memory modelling:

_zj = (1 + i!j � jzj j
2)zj +

NX

k=1

Wjk(zk � zj); j = 1; : : : ; N: (1)

Here the complex variable zj(t) = rj(t)e
i�j(t) de�nes the state of j-th oscillator (rj and �j are respectively

the amplitude and phase of its oscillations), !j is its natural frequency. The �rst term in the right-hand

side of (1) de�nes the intrinsic dynamics of free isolated oscillator, while the second one, responsible for

interaction, is speci�ed by Hermitian matrix of connections W .

At arbitrary parameters ff!jg;Wg the system (1) may demonstrate the variety of complicated dy-

namical regimes including dynamical chaos. In n.4.2. such regimes are illustrated in the systems of two

oscillators. To design the associative memory [1,2,3], we use synchronization regime in (1). The problem

of associative memory can be considered as an inverse problem for dynamical system , i.e., the problem

of calculation of the matrix W and frequencies !j providing the prescribed set of attractors. It should be

reminded that, due to the invariance of the solutions of (1) relative to a constant shift of the phases �j , the

attractors are not isolated points, but phase-locked states in (1). Below such attractors are also referred as

points or memories (so, �1 is always assumed to be equal to zero). Note that the sum
P
j !j is assumed to

be zero that can always be achieved by proper rescaling of the dynamical system. Moreover, in the major

part of the paper we assume !j = 0 for all j. The systems (1) satisfying this restriction are basic from

the viewpoint of design of associative memory in general case, when arbitrary Hermitian matrices W are

considered.

The memories with constant amplitudes for all indices j, which are named phase memories, play the

important role in the associative memory design. Hebb rule applied to the special phase basis de�ned

below permits to obtain associative memory with memory capacity approximately N=2, if N is a prime

number.

Consider N phase points in N -dimensional complex space CN :

zk = (r; rei k; re2i k ; : : : ; re(N�1)i k);  k = 2�k=N; k = 0; : : : ; (N � 1): (2)

This set of points gives phase basis in CN .

If we apply Hebb rule to the phase basis, i.e., take the matrixW as a weighted sum of outer-products of

the basic vectors, then only cyclic matrices can be obtained. If we assume N to be a prime number, then,

considering only non-diagonal part of the matrixW , one can represent it as a sum of matrices corresponding

to a set of closed chains. The analysis shows that the associative memory in Hebbian systems produced

from the phase basis is closely related to the memories in the corresponding closed chains. Therefore, the

study of the structure of attractors in homogeneous closed chains is very useful for solution of the general

problem of associative memory design as well as interesting by itself.

Noteworthy is that if N is not a prime number, then the system (1) is degenerated. In particular, in

addition to isolated point attractors the attractors of greater dimensions exist. In this case the matrix W

can be represented as a sum of matrices corresponding to homogeneous closed chains of sizes equal to the

divisors of N , and speci�c unclosed architectures.

3. Homogeneous Closed Chains

Homogeneous closed chain governed by eq.(1) is determined by one complex number (b+ ic) = uei� ,

which is the weight between two successive oscillators (!j are assumed to be zero for all j). The weight

in the backward direction is determined by the complex conjugate. This architecture of connections is



fundamental in the problem of oscillatory associative memory design. The homogeneous closed chains have

been studied both analytically and numerically. Here the results of this study are briey described.

Note that all the points of the phase basis are equilibrium points of the closed chains. It is convenient

to denote an equilibrium point by k from (2). The squared amplitude r2 can be easily calculated: r2 =

1 + 2(b cos(� +  )� b).

To determine stability of each point in the chain weight (b + ic), it is su�cient to analyze the roots

of the characteristic polynomial D(�) of Jacobin calculated in the corresponding point. At N = 3; 4; 6

these roots can be calculated analytically, so the exact description of associative memory in such chains is

available. Fig.1a,b,d,e,f shows the solution.

It can be seen that synchronization occurs at any weight (b+ ic), Fig.1e,f (since !j � 0). At u > 1 the

curves separating the domains of stability for di�erent k are practically linear. Naturally, the domains are

symmetrical relatively to the x-axis.

At N = 5, Fig.1c, the irreducible cofactor of degree four is present in D(�), and the roots of D(�) can

not be calculated analytically. So, in this case the asymptotic result has been calculated. Here the criterion

of Raus-Hurvitz describing stability of polynomials has been applied. According to this criterion, the signs

of the functions depending on coe�cients of D(�) were analyzed at u tending to in�nity, and the values

of �, satisfying the criterion were calculated. These values of � deliver the slopes of the lines separating

di�erent domains. The shifts of these lines relative to origin of coordinates were calculated numerically.

The shift of the lines corresponding to overlap of k = 0; 1 and k = 0; 4 is non-zero, but very small. The

other shifts in Fig.1c are practically zero. Apparently, the shifts of the lines separating domains of stability

are practically zero at prime numbers exceeding N = 5.

It can be seen from Fig.1 that with the increase in N the domains of stability become more narrow

and the overlap becomes larger. For example, the angles between the straight lines bounding the domains

for k = 0 are 120�; 90�; 72�; 60� for N = 3; 4; 5; 6, respectively. The results of computer modelling con�rm

that for N � 7 the behavior is similar.

In the chains of three oscillators only two stable points can exist. Moreover, the domains of simultaneous

stability for k = 0; 1 and k = 0; 2 are rather narrow in�nite strips. In contrast, the domain for k = 1; 2

is large enough. So, the points of the phase basis as well as the pairs, triples etc. of these points are not

equivalent in the chains. The same is valid for all N . The homogeneous closed chains for N = 3 are fully

connected networks, so the rigorous results obtained are very useful for understanding of the dynamics of

the general system (1) at N = 3.

Fig.1e,f shows the exact solutions for N = 4; 6 in the vicinity of zero. Computer modelling con�rms

that for larger N such behavior is typical.

At N = 6 the bounded domains of simultaneous stability of three points are present, Fig.1f, but at

u > 1 only straight lines determine associative memory in these closed chains as well.

This is very likely that in homogeneous closed chains only the points of phase basis can be stable.

Neither extra phase points, nor amplitude memories (i.e., the points with di�erent amplitudes rj at di�erent

j) can exist. This hypothesis has been con�rmed by computer modelling of the system (1).

4. Two Coupled Oscillators

4.1. Complete Solution for the System of Two Coupled Oscillators

Equilibrium and stable points of the system (1) for arbitrary weight W12 = b+ ic = uei� and !1 = �!2
have been completely analyzed in the case of two oscillators, N = 2. It was found out that depending on



Fig.1. The domains of stability for the points of the phase basis in homogeneous

closed chains (k indicates the point; b and c are the real and imaginary parts of the

weight determining a chain);

(a,b,c,e) - maximum two points can be stable at N = 3; 4; 5;

(d,f) - maximum three points can be stable at N = 6. The boundaries separating

the regions of stability for di�erent k are practically linear at u > 1

.



parameters, two or four equilibrium points can exist, and only one of them can be stable. The conditions

of stability for the only stable point coincide with the conditions of its existence, and they look as follows:

1) u � (! � c)2;

2) (1� b) > 0 OR (1� b)2 + h2 < u;

here h = !� c. Note that at ! = 0 these conditions are satis�ed, so the system of two oscillators with zero

frequencies always has a stable point.

If these conditions are satis�ed, then the equilibrium point with coordinates fr; rei�2g, where r =

(1�b+(u�h2)1=2)1=2, �2 = �i ln(b� ic)=(ih+(u�h2) is stable. It should be noted that only phase stable

points can exist in the systems of two oscillators, whereas in general systems of three oscillators non-phase

points can also be stable.

4.2. Structural Portrait of Two-Oscillator Dynamical System

The parametric space of the dynamical system represents three-dimensional domain in R3, that can

be speci�ed by parametric set f�; !; �g, where ! = !1 = �!2, �W12 = �ei�, �1 < ! < 1; 0 <

� < 1; ��=2 � � � �=2. The parameter �, de�ning the absolute value of interaction strength in

oscillatory system, is relevant to be extracted from matrix of connections W due to purely phase character

of interaction in the system (without any inuence on the amplitudes of oscillations).

Structural portrait is the decomposition of the whole parametric domain into subdomains corresponding

to essentially di�erent types of the dynamical behavior. The boundaries between the subdomains are

bifurcation surfaces. There exist three subdomains for two-oscillator system:

S - the domain of synchronization,

D - the domain of so-called "amplitude death",

O - the domain of multi-frequency oscillations.

The dynamical system (1) can be represented in the form

_z = (D(z) + �W )z; (3)

where z = (z1; z2; : : :zN )
> is a vector of state, D(z) = diag(D1(z); : : :DN (z)) is the diagonal matrix,

Dj(z) = 1 + i!j � jzj
2, �W is matrix of connections.

As one can see from (3), the whole set of equilibria consists of two subsets:

z = 0 and (D(z) + �W )z = 0; z 6= 0.

In the domain D the point z = 0 is the single stable equilibrium of the dynamical system. It is useful to

know the boundaries of D, because this domain is obviously not suitable for associative memory modelling.

The domain S is just of interest: a set of isolated stable �xed points can exist there. Complicated

equilibria of various kinds can also exist in S under various degenerations.

The domain O is not a "working" domain in the case of modelling of associative memory networks

with relaxational dynamics. However, it could be quite suitable in modelling of the networks with more

complicated dynamics (for example, the networks for dynamical process recognition).

For two-oscillator dynamical system the inequalities, specifying the domains S;D and O are calculated

analytically. Besides, the expressions for �xed points, located in S, and the character of their stability (the

Jacobian eigenvalues) also have been calculated exactly. Thus, we have the following results.

1. The domain S.

a) ! > 0: � � f1(!; �) at 0 < ! � !
�
; � � f2(!; �) at ! � !

�

b) ! < 0: � � f3(!; �) at 0 < j!j � !
��
; � � f4(!; �) at j!j � !

��

2. The domain D.

a) ! > 0: f5(!; �) � � < f2(!; �) at ! � !
�
;

b) ! < 0: f5(!; �) � � < f4(!; �) at j!j � !
��
;

3. The domain O.



a) ! > 0: � < f1(!; �) at 0 < ! � !
�
; � < f5(!; �) at ! � !

�

b) ! < 0: � < f3(!; �) at 0 < j!j � !
��
; � < f5(!; �) at j!j � !

��

Here it is denoted:

f1(!; �) =
!

1 + sin�
; f2(!; �) =

!2 + 1

2(!sin� + cos�)
;

f3(!; �) =
!

1� sin�
; f4(!; �) = f2(�j!j; �);

!
�
=

1 + sin�

cos�
; !

��
=

1� sin�

cos�
:

Two examples of structural portrait projection are shown in Fig.2. The �rst one corresponds to

coupling via W12 = � (all the curves of the projection are marked by zero superscript). This projection,

symmetrical with respect to axis �, is quite similar to structural portrait of N -oscillator system with

Wjk = N�1(1 � �jk), obtained in [5]. However, there is the di�erence: in the case of N -oscillator system

the narrow layered domains in the vicinity of curves f01 ; f
0
3 exist. They corresponds to great collection of

complicated multi-frequency oscillatory regimes, including chaos. Similar domains are absent in the case

of two-oscillator system.

The exact analysis shows that there exist from one to four �xed points in the domain S. Only single

of them is always stable (stable node), the others are saddles.

The collection of di�erent dynamical regimes provided by two-oscillator dynamical system in parametric

domain O is presented in Figs.3,4.

Two-oscillator dynamical system for complex-valued variables z1; z2 is equivalent to four-dimensional

dynamical system for real-valued variables xj = Re(zj); yj = Im(zj); j = 1; 2. In Figs.3,4 all six two-

dimensional projections of phase trajectory of the dynamical system in four-dimensional phase space are

presented. The following notations are used: x1 = x; y1 = y; x2 = z; y2 = u. In addition the examples

of time-behavior of one of the variables (usually x(t) or u(t)) are shown in the lower long window. The

values of parameters !1; !2; �; � are given in the captions to Figs.3,4.

5. On Structural Stability of the Oscillatory Dynamical System

Strict results obtained for closed chains of small number of oscillators permit to clarify the character

of structural stability (robustness) of oscillatory dynamical system under perturbations of matrix W .

In the case of networks of three oscillators with Hebbian matrix it is possible to obtain complete exact

answer on structural stability basing on the results for the chains of three oscillators. Indeed, all Hebbian

matrices of connections WH , corresponding both to storing of arbitrary single memory vector and to storing

of any combination of pair of memory vectors, always represent the matrices of homogeneous closed chains

W c, which are de�ned by single parameter - the value of chain coupling a = b+ ic: W c = W c(a).

Namely, we have the following relations between WH and the corresponding W c.

1) Three-oscillator network with memory containing a single memory vector:

U (0) = �(0)V (0); V (0) = (1; 1; 1) =) WH = �W c(1)

U (1) = �(1)V (1); V (1) = (1; ei2�=3; e�i2�=3) =) WH = �W c(e�i2�=3)

U (2) = �(1)V (2); V (2) = (1; e�i2�=3; ei2�=3) =) WH = �W c(ei2�=3)

2) Three oscillator network with memory containing two memory vectors:

U (0) = �(0)V (0) and U (1) = �(0)V (1) =) WH = �W c(e�i2�=6)

U (0) = �(0)V (0) and U (2) = �(0)V (2) =) WH = �W c(ei2�=6)

U (1) = �(1)V (1) and U (2) = �(1)V (2) =) WH = �W c(�1)



Fig.2. Two projections of structural portrait

of two-oscillator system

a) � = 0:

The domain S0 is situated over the curves f03
and f04 at ! < 0, and over f01 and f02 at ! > 0;

The domain D0 - over f05 and under f04 at

! < 0 and over f05 and under f02 at ! > 0;

The domain O0 - under f03 and f05 at ! < 0

and under f01 and f05 at ! > 0:

b) � = �=6

The domain S is situated over the curves f3
and f4 at ! < 0 and over f1 and f2 at ! > 0;

The domain D - over f5 and under f4 at ! <

0 and over f5 and under f2 at ! > 0;

The domain O - under f5 and f3 at ! < 0

and under f1 and f5 at ! > 0:

These relations just permit to extract the exhaustive information on structural stability from the picture

of stability of the �xed points of the chain under variation of element a of matrix W c(a) (see the upper

left picture in Fig.1). We obtain the following results.

1. In the case of memory, containing a single memory vector, the domain of stability of this vector

in the complex a-plane really de�nes all admissible perturbations of a, preserving its stability. So, this

domain can be considered as robustness domain. For example, in the case of storing of U (0) the robustness

domain represents the symmetrical sector of angle 2� = 2�=3 around the negative part of the real axis.

The robustness domains in the case of storing U (1) and U (2) are also clearly seen.

2. The robustness degree is much lower in the case of storing two memory vectors. Especially it

concerns the case of storing the pairs U (0); U (1) and U (0); U (2): the robustness domains are narrow strips

around the rays, de�ned by the angles �2�=6 . In the case of storing of a pair U (1); U (2), the robustness

domain is slightly greater than the sector of angle 2�=3 around the negative part of the real axis.

The admissible perturbations �� of element a can be easily calculated. In the case of storing pairs

U (0); U (1) and U (0); U (2), �� is proportional to ��1; in the case of storing a pair U (1); U (2), �� � 2�=6.

These results for three-oscillator networks with Hebbian connections reect some general features of

structural stability of oscillatory networks - quite low robustness in some situations. However,as,shown [3],

the class of networks of high memory capacity is delivered by Hebbian oscillaory networks with prime N .

For N > 6 the situation when the robustness domains are just narrow strips around the de�nite straight

lines are quite exceptional. Moreover, they can be pointed out exactly.

6. Conclusion

The central issue of the present study is the elucidation of relations between phase associative memory

in oscillatory networks and associative memory in homogeneous closed chains of oscillators. Such chains of

oscillators may be considered as "basic building blocks" for oscillatory networks (1) with Hermitian matrix

of connections W . Moreover, the study of associative memory in the closed chains is also useful by itself,

since the results of computer modelling con�rm that only the points of phase basis can be stable in the

chains, and no extra attractors exist.

This study was partially funded by Russian FFR, grant n. 96-01-00084.
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Fig.3. The collection of dynamical regimes displayed by two-oscillator dynamical system.

(a) - !1 = :8;!2 = �:36;� = :5; � = 0
(c) - !1 = 1:2;!2 = �1:099;� = :76; � = :5236

(e) - !1 = 1:;!2 = �1:999;� = :53561; � = 1:0472

(b) - !1 = 1:;!2 = �1:99;� = :999495; � = 0
(d) - !1 = :95;!2 = 0;� = :46; � = 0

(f) - !1 = 8:;!2 = 0;� = 1; � = 0



Fig. 4. The collection of dynamical regimes displayed by two-oscillator dynamical system.

(a) - !1 = :8;!2 = �:4;� = :5; � = 0
(c) - !1 = 2;!2 = 0;� = :8; � = 0

e) - !1 = �:5;!2 = 8;� = 1; � = :25

(b) - !1 = 1:5;!2 = �1:499;�= :999665; � = :5236
(d) - !1 = :8;!2 = �:44;� = :5; � = 0 (

(f) - !1 = 3:5;!2 = �3:499;�= 1:87536; � = 1:0472


