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Abstract. The recurrent associative memory networks with complex-

valued Hebbian matrices of connections are designed from interacting limit-

cycle oscillators. These oscillatory networks have peculiarities and advan-
tages as compared to Hop�eld neural network model. In particular, the

class of networks with high memory characteristics (the capacity close to 1,

low extraneous memory) exists. At zero values of oscillator frequencies the
designed networks are closely related to the known "clock" neural networks

(networks from complex-valued neurons). Pattern recognition of colored

images and recognition of objects with complicated topological structure
look quite natural in the context of such models. Exact solutions have

been obtained for a few types of the networks considered, in particular, for

homogeneous closes chains.

1. Introduction.

During more than twenty years the systems of coupled oscillators are used

for modelling of various phenomena in physics, chemistry, biology. Recently the

studies on arti�cial neural-like oscillatory networks were started. In the �rst

series of publications, using phase approximation of oscillatory dynamics (so-

called phase model), the phenomenon of clasterization of oscillatory population

into the state of synchronization in the vicinity of phase transition was exploited

[1]. Later the attempt to design oscillatory networks of associative memory

resembling Hop�eld networks was made with the use of Ginzburg-Landau oscil-

latory system and its phase approximation [2]. However, in this study the design

has not been completed with a clear construction of the weight matrix. Another

attempt based on the special case of phase model, was made recently [3], but

this approach leads to some di�culties caused by the speci�c properties of the

model chosen.

In [4-6], the recurrent oscillatory networks of associative memory with comp-

lex-valued generalization of Hebbian matrix of connections were designed using

amplitude-phase dynamical model. Although the networks consist of oscillators,

the relaxational dynamics in synchronization regime is used in the design of the

associative memory.

The attractive feature of the designed networks is that they admit electronic

and optical implementations based on optoelectronic and nonlinear optics prin-

ciples. The background of the implementations is currently under development.



2. Dynamical Equations. The Problem of Design of Associative

Memory Network.

The system [4-6] governing the dynamics of N coupled limit cycle oscillators

is studied from the viewpoint of associative memory modelling:

_zj = (1 + i!j � jzj j2)zj + �

NX

k=1

Wjk(zk � zj); j = 1; :::; N: (1)

Here the complex variable zj(t) = rj(t)exp(i�j(t)) de�nes the state of j-th os-

cillator (rj and �j are respectively the amplitude and phase of oscillators), !j
is its natural frequency. The �rst term in the right-hand side of (1) de�nes the

intrinsic dynamics of free isolated oscillator, while the second one, responsible

for interaction, is speci�ed by the matrix of connections �W . Non-negative pa-

rameter � de�nes the absolute value of interaction strength in oscillatory system

and the matrixW = [Wjk] , which in the case of symmetrical interaction is Her-

mitian one, speci�es the weights of connections. As a weight matrix,W satis�es

the natural restrictions: Wjj = 0; jWjkj � 1;
PN
k=1jWjkj � 1:

The system (1) can be rewritten in the vector form:

_z = (D(z) + �W )z; (2)

where the column-vector z = (z1; : : : ; zN )
> is a state vector of the oscillatory

system and D(z) is the diagonal matrix,

D(z) = diag(D1(z); : : : ; DN (z)); Dj(z) = 1 + i!j � jzjj2 � �

NX

k=1

Wjk:

At arbitrary set ff!jg; �;Wg of the parameters the system (1) demonstrates

the variety of complicated dynamical regimes including dynamical chaos. The

regime of synchronization, used in associative memory modelling, is quite simple

from the viewpoint of nonlinear dynamics: if
P
j !j = 0 (this restriction on the

frequencies can be always satis�ed by proper rescaling of the dynamical system),

this is relaxation to stable equilibria.

The problem of design of associative memory network can be formulated

as combination of two (independent) subproblems for the governing dynamical

system:

1) the inverse problem for the dynamical system, i.e., design of the system

possessing the prescribed set of stable equilibria with large enough basins of

attraction;

2) a kind of control problem for the designed dynamical system, i.e., the

choice of an adequate learning algorithm.

In the present study, the results on subproblem 1) for the system (1) in the

regime of synchronization are performed. Moreover, only phase memory (with

attractors located in the points of the phase space of (1) that have equal moduli

for all coordinates) is suggested. Computer modelling of non-phase associative



memory shows that in many cases non-phase memories can be obtained from

phase ones by relatively slight distortions, therefore the results on phase memory

are useful for solution of the general problem.

First the results of the analysis of equilibria of oscillatory networks with small

number of oscillators and of special interconnection architectures are performed.

3. The System of Two Coupled Oscillators. Structural Portrait.

Since the system (1) can be represented in the form (2), it has always the

equilibrium z = 0. So, in general case the whole set of equilibria of (1) consists

of two subsets: z = 0 and z 6= 0 & (D(z) + �W )z = 0.

In the case of the system of two coupled oscillators the parametrical space

of the dynamical system is (!; �; �), where ! = !1 = �!2, W12 = exp(i�),

�1 < ! <1, 0 < � <1, ��=2 < � � �=2.

Let D denotes the subdomain of the parametrical space where the equilib-

rium z = 0 is stable (this domain is usually regarded as "amplitude death" [7])

and S - the subdomain where stable equilibria (D(z) + �W )z = 0 are located

(S is the synchronization domain). The following results have been obtained

analytically for two-oscillatory system: (both the expressions for equilibria and

the eigenvalues of Jacobian de�ning the character of stability of the equilibria

have been calculated in the explicit form):

- there exist from one to four �xed points of (1) in di�erent domains of

parametrical space (the corresponding subdomains have been speci�ed);

- only one �xed point U1 is stable ( U1 2 S, U1 is a stable node; the other

�xed points are saddles);

- the structural portrait of the system (1) has been obtained in the whole

parametrical space; all the boundaries have been calculated in the explicit ana-

lytical form.

As an example we can give the projection of the structural portrait into the

quadrant (!; �; 0); ! � 0: This projection resembles the structural portrait of

the system (1) with Wjk = N�1(1� �jk) obtained in [7]:

D = f1 � � �
!2 + 1

2!
g; S = f� � ! at ! � 1 & � �

!2 + 1

2!
at ! > 1g;

The domain of unsteady dynamics is f� < ! at ! � 1 & � < 1 at ! � 1g:

4. Exact Solutions for Homogeneous Closed Chains.

Phase memory has been studied both analytically and with the use of mod-

elling for a few instructive types of matrices W , in particular, for closed chains

of oscillators with constant weight (b+ ic) and zero frequencies. It can be seen

that N phase points Pk, k = 0; : : : ; N � 1, with coordinates (r; r � exp(i ); r �
exp(2i ); : : : ; r �exp((N�1)i )), where  is 2�k=N , r = (1+2(b �cos( )�b�c �
sin( )))1=2 are equilibriumpoints for such closed chains. Their stability has been



studied by direct calculation of the corresponding spectra of Jacobian matrices.

For N = 3; 4; 6 the complete solutions have been obtained. The results can be

displayed in the plane c; b. For N = 3 P0 is stable if b > ((1+3c2)1=2�1)=3, P1 {

if b < c
p
3+1=6� (4c2=3+1=36)1=2, P2 { if b < �c

p
3+1=6� (4c2=3+1=36)1=2.

Thus, in two narrow unbounded strips two pairs of points, i.e., P0,P1 and P0,

P2 are stable, and in the expanding region one pair, i.e., P1,P2, is stable. For

N = 4 the plane (c,b) is divided into the regions in the following way: P0 is

stable if b > (�1+(1+4c2)1=2)=2, P1 { if (3c
2�b2+2bc�c > 0) & c < 0, P2 { if

b < (1� (1 + 20c2)1=2)=10, P3 - if (3c
2� b2� 2bc+ c > 0) & c > 0. Fig. 1 shows

the regions of stability for Pk, k = 0; : : : ; 5, in the chains from six oscillators

in two scales. Here the digits mean the values of k determining  . As one can

see, in three small bounded regions three points are simultaneously stable. It

looks likely that no extra (non-phase) stable points exist in homogeneous closed

chains. For N < 25 this hypothesis has been con�rmed using computer mod-

elling. For N � 7 the overlap of the stability regions increases and more points

can be stable simultaneously. Some strict solutions have been also obtained for

cyclic matrices W of low orders (N < 7) other than the closed chains

Fig. 1. Phase memories in the chains of six oscillators. Two scales.

5. Oscillatory Networks with Hebbian Matrices of Connections.

Related Phasor Networks.

Dynamical system (1) with !j � 0 represents the important special case of

oscillatory system which can be regarded as phasor networks and can be viewed

as natural generalization of the known "clock" neural networks.

The equilibria of oscillatory networks and corresponding phasor networks

proved to be closely related. The following proposition reects the relation.

� Let N (f!jg; �;W ) be an oscillatory network with arbitrary frequencies !j



satisfying the condition
P
j !j = 0.

Let the corresponding phasor network N (f0g; �;W ) possesses the collection

of M memory vectors fU1; : : :UMg. De�ne ~� > � satisfying the condition:

 � 
=~�� 1, where 
 = maxj j!jj.
Then oscillatory network N (f!jg; ~�;W ) has memory vectors ~U1; : : : ; ~UM ,

which represent perturbations of the corresponding U1; : : : ; UM .

The proof of this proposition has been obtained using the perturbation

method on small parameter . It was con�rmed by computer studies of phase

portraits of the dynamical system (1) at small N .

The most essential feature of oscillatory networks is that the memory vectors

to store cannot be chosen arbitrarily: they are completely de�ned be special

symmetrical set of orthogonal vectors in N -dimensional complex space CN |

"phase" basis BN :

BN = f V m j (V s)+V m = N�sm m; s = 1; : : : ; N:g

(Here V m is a column-vector (V m1 ; :::VmN )> and (V m)+ is the corresponding

conjugated row-vector: (V m)+ = (�V m1 ; :::; �V mN )).

The phase basis is de�ned by single generating vector V 0 = (1; :::1)> and

the single parameter ' = 2�=N . All other vectors are of BN can be calculated

with the help of recurrent process.

The basis BN is the eigenbasis of any Hermitian weight matrix W of size

N � N . At the same time the matrix WH of rank M ,

WH =
XM

m=1
V m(V m)+; M = rankW; (3)

is the matrix of the projection operator into M -dimensional subspace of CN

spanned on V 1; : : : ; VM .

The following results are valid for phasor networks with WH as the matrix

of connections.

� 1. Let N be a prime number.

De�ne basis BN and choose any subset of M � N vectors from this basis

fV 1; : : :VMg. Construct WH in accordance with (3).

Then the phasor network has memory vectors U1; : : :UM ; Um = cV m; where

c = 1 if V 0 2 fV 1; : : : ; VMg and c = (1 + �)1=2 if V 0 =2 fV 1; : : : ; VMg.
All memory vectors U1; : : :U

M have equal basins of attraction.

The sizes of the basins can be controlled if weighted Hebbian matrix ~WH =PM

m=1�
mV m(V m)+ is used.

� 2. Let the number of oscillators N be not prime.

The main feature of the network memory in this case is that the memory

is not completely controllable in distinction to the previous case. Namely, only

special odd numbers M of vectors from the basis BN can be imposed into the

network memory. If M is di�erent from the mentioned special numbers, the



recalling process is impossible at all: the dynamical system (1) has continual set

of degenerated equilibria.

It should be noted also that all matrices WH are irreducible if N is prime

and are reducible ones otherwise.

Conclusions.

The special class of recurrent oscillatory and the corresponding phasor net-

works of high performance is designed. It is characterized by completely control-

lable memory of high storage capacity: up to N � 1 memory vectors de�ned by

some speci�c set ("phase" basis) can be loaded into the memory of the network

consisting of N processing units. The weight matrix is designed in complex-

valued Hebbian form. Extraneous memory exists, but it can be easily separated

due to its non-phase character. The results of complete strict analysis of closed

homogeneous oscillatory chains are presented. Oscillatory networks are promis-

ing from many viewpoints, in particular, in view of possible of nonlinear optical

implementations.
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