
OSCILLATORY NETWORKS

WITH

GUARANTEED MEMORY CHARACTERISTICS

Margarita Kuzmina

Russian Academy of Sciences,

Phone: 7(095)972-3491,

Fax: 7(095)972-0737

kuzmina@applmat.msk.su

Eduard Manykin, Irina Surina

RRC \Kurchatov Institute",

Phone: 7(095)196-91-07,

Fax: 7(095)196 59 73

edmany@nlodep.kiae.su

The paper continues our investigation of associative memory structure in recurrent

oscillatory networks with Hebbian matrix of connections. The suggested new ap-

proach is aimed at elucidation of algebraic and geometric properties of the memory.

The main result is that oscillatory networks with guaranteed memory characteristics

can be designed only for prime numbers of oscillators N . Extraneous memory exists

in the networks, as a rule. Cyclical group of order N related to oscillatory system

acts on extraneous memories. Examples of discrete and continuous sets of stable

equilibria of network dynamics have been presented.

As it has been shown in [1], the systems of synchronized coupled oscillators admit the design
of associative memory networks with Hebbian matrix of connections. Here the properties of
associative memory of oscillatory networks and also of related phasor networks have been
studied in more detail. The methods of dynamical system theory combined with algebraic

analysis have been used for the further treatment of the associative memory structure.
Relations exist between the considered oscillatory networks and discrete Hop�eld-like mod-

els, and also other continuous-time models (refs. in [1]). So, the results obtained earlier in

that �elds can be interpreted from the new point of view. Besides, the oscillatory networks are
attractive objects from the following viewpoints:

� biological modelling: studies of well-known synchronization phenomena,

� mathematics: as nonlinear dynamical systems with compact phase space that are
close to linear,

� physics: for understanding and interpretation of phenomena in laser systems, charge-

density waves, Josephson junctions etc.

Phasor networks [1] represent the most symmetrical type of the oscillatory networks and

can be interpreted as magnetic systems. They are close to well known \clock" neural networks.
The results obtained on memory structure are exact for the phasor networks.

The associative memory model based on systems of coupled oscillators is worthy of physical

implementation. For instance, an implementation in semiconductor laser systems with optical

feedback is possible.



To conclude introductory notes, it should be mentioned that surely the idea suggested in

[5] about utilization of extraneous memory could be realized in the oscillatory systems, for the

structure of the extraneous memory becomes transparent in these systems.

1. OSCILLATORY NETWORKS ANDRELATED PHASORNETWORKS

Recurrent associative memory networks we are dealing with are designed basing on coupled

limit cycle oscillators in synchronization regimes. The dynamical system governing oscillatory

network dynamics, derived in [1], can be represented in the form:

_z = (D0 �Dz + �W )z (1)

Here z(t) is a complex-valued N -dimensional vector representing the states of oscillators as

functions of independent variable t, zj = rjexp(i�j). Complex-valued N�N matrixW = [Wjk]

speci�es the weights of connections between pairs of oscillators in the network. In our present

studies we are assuming it to be Hermitian. (In development of physical implementations of
the networks, matrices of connections close to Hermitian should be studied.)

Nonnegative parameter � de�nes the absolute value of interaction strength in oscillatory
system. Matrix W satis�es the natural restrictions:

W = W+; jWjkj � 1;
NX

k=1

jWjkj = 1: (2)

MatrixW is constant in the phase space CN . Also the diagonal matrixD0 = diag(D01; : : : ;D0N ),

D0j = 1 + i � !j � ��j; �j =
NX

k=1

Wjk;

is constant. Conversely, the diagonal matrix Dz = diag(jz1j
2; : : : ; jzN j

2) depends on absolute

values of zj.
Thus, the equilibrium points of eq.(1) are de�ned by the linear system with constant coef-

�cients:

(D0 �Dz + �W )z = 0;

if one considers �xed absolute values of z. Stability of the points is de�ned by eigenvalues of
Jacobian:

J(z) = D0 � 2Dz + �W (3)

Consequently, all equilibriumpoints with constant absolute values of z are simultaneously stable
or unstable, for their Jacobian is the same.

Therefore, the associative memory design is reduced to purely algebraic problem. For a

given set of vectors V 1; : : : ; V M , it is necessary to point out a matrix D0 + �W , possessing the
following property: the vectors belong to zero linear subspace of the matrix D0 �Dz + �W ,

and after subtraction of Dz from this matrix, its spectrum moves to the left in such a way that
its real parts become negative. Geometrically, to �nd the equilibrium points, it is necessary to

determine an intersection of torus TN , de�ned by the absolute values of vectors V m, with the

zero linear subspace. Usually, in addition to the desired vectors V m one obtains extra stable
points of eq.(1): extraneous, or so-called spurious memories.



It is worth noting that the eigenvalues of D0�Dz+�W can satisfy the resonance conditions

[3], chapter 5. But, as it turned out, this fact does not complicate our problem, because stability

in linear approximation occurs.

As it has been shown [1], under the condition !j = 0, the dynamical system (1) corresponds

to phasor network, which, in some sense, can be considered as basic for oscillatory networks

due to its maximum memory capacity. Besides, the phasor network governed by eq.(1) can be

viewed as natural generalization of the well known clock neural networks [2]. Indeed, phasor
networks admit mechanico-magnetic interpretation (as systems of heavy magnetic spins in

external gravitational �eld with purely magnetic interaction). This interpretation has proved

to be helpful for estimation of total number of equilibria in the systems.

2. THE CLASS OF NETWORKS WITH GUARANTEED MEMORY
CHARACTERISTICS

As it has been shown [1], the memory vectors, which can be imposed into oscillatory network

with Hebbian matrixW , are not arbitrary. They must be chosen from a special set of orthogonal
vectors in complex space CN , which may be called the \phase" basis:

B = f V m
j (V s)+V m = N�sm m; s = 1; : : : ; N:g

The phase basis is de�ned by one generating vector V 1. All other vectors are produced from it
with the use of recurrent transformation. The basis B is the eigenbasis of the weight Hermitian

matrix. That is, any W satisfying the conditions (2) can be represented in the form

W = N�1

NX

m=1

�mV m(V m)+:

The matrix WH of rank M ,

WH =
XM

m=1
V m(V m)+; M = rankW; (4)

is the matrix of the projection operator into M -dimensional subspace of CN spanned on
V 1; : : : ; V M .

All the cases are reduced to the vector basis with unit generating vector V 1 = (1; : : : ; 1)>,

because the arbitrary \phase" matrices (2) can be transformed into that one using an reversible

matrix. Below only this kind of basis will be kept in mind. An essential property of eq. (1) is
that it admits the cyclic group of symmetry - N -polygonal pyramid group. By this reason the

basis B and the matrices WH are cyclical. Two essentially di�erent cases exist.

1. The number of oscillators N is prime.

In this case the basis B, consisting of N vectors, is unique to numbering. All its vectors can

be obtained as the results of multiple acting of irreducible group representation operator

Tg = diag(1; exp(i�); : : : ; exp(i(N � 1)�); ; � = 2�=N

on the vector V 1.

The following results concerning the memory features of oscillatory and phasor network

with Hebbian matrix of connections (3) are valid.



� If M < N=2, then vectors V 1; : : : ; V M from B are memory vectors with an accuracy

of constant coe�cients, c1V 1; : : : ; cMV M , in the phasor network (!j = 0), with the

matrix W = WH de�ned by eq.(4). The coe�cients cm can be easily calculated.

� In a network with an arbitrary frequency distribution it is necessary to choose � to

provide the smallness of parameter  = 
=�, where 
 � maxjj!j j. If this is true,

then a similar set of vectors V 1; : : : ; V M from B de�nes perturbed M vectors with

perturbed coe�cients cm as memorized in oscillatory network with the matrix of
connections WH.

It is worth noting that matrices WH are always irreducible if N is prime.

2. The number of oscillators N is not prime.

In this case the basis B is not unique, the group representation is reducible, the matrices

WH are reduced into matrices of orders equal to divisors of N . As a rule, the dynamical system
(1) possesses continual set of stable equilibria. Physical sense of the phenomenon: spin system

splits into the set of spin pairs, in stable equilibrium state each, all the pairs are in neutral
equilibrium.

3. EXTRANEOUS MEMORY

The important problem is the analysis of extraneous memory in the networks - an addi-

tional set of stable equilibria, which arises in the phase space simultaneously with the memory

vectors. Basins of attraction of memory vectors decrease due to existence of extraneous mem-
ory. Therefore the network performance decreases as well. Under some conditions, in Hop�eld
neural networks the number of extraneous memories can grow exponentially as a function of
M (the number of imposed memory vectors), [4].

1. The situation is the most transparent for prime numbers N . The rigorous result is that
together with every extraneous vector N � 1 other, di�erent from this one, are present in the

memory. This fact is the direct consequence of cyclicity of W .
There is some evidence that memory capacity is [N=2]=N . If M is close to [N=2], then

extraneous memory exists as a rule. Con�rming computer experiments have been executed.
For every prime number N a value of M� exists and also M� vectors from B, de�ning the

network without any extraneous vectors. Computer experiments show that this value M� can
be rather large. An interesting moment is that this property essentially depends on speci�c

choice of the vectors. Some subsets of M� vectors of B can deliver networks with extraneous

memory, whereas other ones - without it. The valuesM� have been estimated for prime numbers

N � 29: for N = 5 and N = 7 M�

� 3, for N = 11 and N = 17 M�

� 4, for N = 19; N = 23
and N = 29 M�

� 5. It should be emphasized that these values are only lower bounds of
M�. An examples of 7 extraneous vectors for N = 7, M = 4 can be shown. The extraneous

vectors form a cycle of length N , they can be produced from one of them by rotations in CN .

Similarly, for N = 19, M = 5 an example with 38 extraneous vectors consisting of two cycles
of length 19 can be presented. Inside one cycle, all vectors can be produced from one, using

cyclical permutation of its coordinates.

Imposed memory vectors have the same amplitudes cm. Unlikely, the absolute values of the

components for extraneous vectors can be di�erent. It means that the corresponding points in

CN belong to tori with di�erent radii. This behavior is observed for N � 17. Beginning from



N � 17, the coordinates of extraneous vectors usually have di�erent absolute values.

2. For composite numbers N the system (1) has sets of degenerated equilibria. Examples

of networks with continuous sets of stable equilibria can be easily constructed. The whole set

of stable points consists of linear subvarieties combined with discrete points.

SUMMARY

The following results of the work are the most essential:

� The class of oscillatory and phasor networks with Hebbian matrix of connections

and guaranteed memory characteristics is pointed out - these are the networks of

N oscillators, where N is a prime number. In these networks M memory vectors,
M < N=2, can be stored. The networks with composite numbers have extremely

poor retrieval characteristics.

� The characteristic feature of the networks with prime N is that an existence of

extraneous memory depends not only on the number of stored vectorsM , but also on

the choice of the vectors themselves. For rather large M , the set of vectors de�ning
memory without extraneous memories can be found, as computer simulations has
con�rmed.

� The structure of extraneous memory of the networks has been clari�ed using the

group analysis. The approach permits an exhaustive study of total set of stable
equilibria for arbitrary Hermitian matrix of connections.

� From the viewpoint of associative memory design, the considered oscillatory systems
have still unrealized potentialities. For instance, \amplitude-phase" memory could
be designed.

Discrete models of neural networks consisting of multi-state neurons can be produced from
the considered phasor networks. The models can be viewed as the improved variant of the

networks, equivalent to systems of Potts magnetic spins. The models seem to be promising, for
instance, in some problems of object classi�cation.
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