

68th International Astronautical Congress, Adelaide, Australia, 25-29th September 2017

DECENTRALIZED CONTROL OF SWARM OF NANOSATELLITES WITH COMMUNICATION RESTRICTIONS USING AERODYNAMIC FORCES

Danil Ivanov¹, Uliana Monakhova², Mikhail Ovchinnikov¹ ¹ Keldysh Institute of Applied Mathematics ² Moscow Institute of Physics and Technology

Content

- Introduction
- Swarm Construction Problem
- Decentralized Control
- Clustering Effect
- Numerical Study on Control Parameters

Conclusion

Missions Involving Plenty of Nanosatellites

Nowadays much attention is being paid to missions involving many micro- and nanosatellites

QB-50 International Project

Launch of 88 3U CubeSats developed by PlanetLabs

IAC-2017, Adelaide, Australia, 23-29 September 2017

Swarm of Nanosatellites

Swarm features

- •A large number of satellites
- Decentralized control
- •Communication with limited number of swarm member
- Motion along occasional trajectories:
 - Random but bounded relative trajectories

control

centralized

control

decentralized

control

Autonomy in relative control

Previous Studies on Decentralized Control

Comparison of the fuel consumption between centralized and decentralized control

Sabatini M., Reali F., Palmerini G.B. Autonomous behavioral strategy and optimal centralized guidance for on-orbit self assembly // IEEE Aerosp. Conf. Proc. 2009. 12 p.

 Decentralized control using artificial potentials

Sabatini M., Palmerini G.B., Gasbarri P. Control laws for defective swarming systems // Adv. Astronaut. Sci. 2015. Vol. 153. P. 749–768.

Chen Q. et al. Virtual Spring-Damper Mesh-Based Formation Control for Spacecraft Swarms in Potential Fields // J. Guid. Control. Dyn. 2015. Vol. 38, № 3. P. 539–546. IAC-2017, Adelaide, Australia,

Decentralized Control Under Communication Restrictions

- •Each satellite has a communication area in the form of sphere
- •If the other satellites are inside the area theirs relative motion are known to the satellite
- •The size of the communication area is determined by relative determination system parameters or by intersatellite communication link

- •Consider the separation the satellites from the bus launcher
- •The initial conditions of the satellites after separation are random
- •Without control the satellites are flying apart
- •The problem of satellite swarm construction after their separation from the bus launcher is considered, i.e. the achievement of closed relative trajectories is required

Scheme of satellites launch

Equations of Relative Motion

Clohessy-Wiltshire model is

 $\begin{cases} \ddot{x} + 2\omega\dot{z} = u_x \\ \ddot{y} + \omega^2 y = 0 \\ \ddot{z} - 2\omega\dot{x} - 3\omega^2 z = 0 \end{cases}$

Earth y z

 $u_x = -$

Reference frame

In the case $u_x = const$ solution is :

$$\begin{cases} x(t) = -3C_1\omega t + 2C_2\cos(\omega t) - 2C_3\sin(\omega t) + C_4 + 4u_x / \omega^2 - 3t^2u_x / 2, \\ y(t) = C_5\sin(\omega t) + C_6\cos(\omega t), \\ z(t) = 2C_1 + C_2\sin(\omega t) + C_3\cos(\omega t) + 2tu_x / \omega, \end{cases}$$

 $-3C_1\omega t$ is relative drift. To set the drift to zero

Piecewise-Constant Decentralized Control Using On-board Thrusters

- •An example of decentralized control application
- •The simulation parameters: 20 satellites are launched in orbit with altitude of 400 km, the initial velocities are random with uniform distribution

Clustering Effect

- Occasionally decentralized control with communication restriction leads to dividing the swarm into sub-groups - clustering effect
- Monte-Carlo simulations was performed to study the effect

Time between the thrusts

10

Relative drifts

IAC-2017, Adelaide, Australia, 23-29 September 2017

0.5

0.4 0.3

0.2

0.1

500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Initial

- Consider 3U CubeSats launch in LEO (the same as PlanetsLabs satellites launch)
- Let the satellites be equipped with active ACS
- •So, each satellite can change the aerodynamic drag force using attitude control
- The differential drag relative force model is

$$\Delta F = -\frac{1}{2}C\rho V^2 S(\sin\alpha_1 - \sin\alpha_2)$$

•The force is bounded: $\max |\Delta F| = \frac{1}{2} C \rho V^2 S \implies \max u_x = \frac{1}{2} \frac{C \rho V^2 S}{m}$

Block diagram of control of each satellite in the swarm

•Monte-Carlo simulations was performed to study the dependence of the clustering effect probability on communication sphere size and the time between the CubeSats attitude change

IAC-2017, Adelaide, Australia, 23-29 September 2017

The ratio of the number of spacecraft in the largest group to the total number of satellites

12

Conclusions

- •Decentralized control of the swarm of satellites taking into account communication constraints makes possible to form closed relative trajectories of the satellites
- •Depending on the communication area and frequency of control, there is the possibility of clustering effect in the swarm
- •The paper studies the domains of control parameters under which this effect can occur when a fuelless control approach is used under an aerodynamic drag force. As the radius of the communication sphere is increased, the probability of clustering is expected to decrease

Thank you for attention!

The work supported by Russian Foundation for Basic Research, grant № 17-01-00449_a

IAC-2017, Adelaide, Australia, 23-29 September 2017