Результаты публичной защиты

Соискатель: Батхин Александр Борисович

Диссертация: «Семейства периодических и стационарных решений в гамильтоновой механике»

На заседании 14 июня 2022 г. присутствует 16 членов совета, специалистов по профилю рассматриваемой диссертации – 9.

ЯКОБОВСКИЙ М.В.	д.фм.н.	05.13.11
ГОРБУНОВ-ПОСАДОВ М.М.	д.фм.н.	05.13.11
ШИРОБОКОВ М.Г.	к.фм.н.	01.02.01
БОРОВИН Г. К.	д.фм.н.	01.02.01
ГОЛУБЕВ Ю.Ф.	д.фм.н.	01.02.01
ГРУШЕВСКИЙ А.В.	д.фм.н.	01.02.01
ИВАШКИН В.В.	д.фм.н.	01.02.01
КРЮКОВ В.А.	д.фм.н.	05.13.11
КУГУШЕВ Е.И.	д.фм.н.	01.02.01
ЛАЗУТИН Ю.М.	д.фм.н.	05.13.11
ЛАЦИС А.О.	д.фм.н.	05.13.11
ОВЧИННИКОВ М.Ю.	д.фм.н.	01.02.01
ПОЛИЛОВА Т.А.	д.фм.н.	05.13.11
САРЫЧЕВ В.А.	д.фм.н.	01.02.01
СИДОРЕНКО В.В.	д.фм.н.	01.02.01
ТУЧИН А.Г.	д.фм.н.	01.02.01

Диссертационный совет отмечает, что на основании выполненных соискателем исследований разработаны теоретические методы и реализованы соответствующие алгоритмы поиска и исследования семейств периодических решений плоской круговой задачи Хилла. Для системы Гамильтона, допускающей две симметрии расширенного фазового пространства, выявлена структура фазового потока в окрестности критических решений семейств двояко симметричных периодических решений. Предложено новое обобщение классической задачи Хилла, в котором центральное тело может иметь как ньютонианский потенциал притяжения, так и кулоновский потенциал отталкивания. Указанное обобщение позволяет рассматривать все

известные семейства периодических орбит задачи Хилла как единую сеть. Для исследования устойчивости стационарных решений многопараметрической системы Гамильтона дано полное описание дискриминатного множества в пространстве коэффициентов характеристического многочлена, на котором этот многочлен имеет кратные корни, разработан метод вычисления его полиномиальной параметризации. Методами компьютерной алгебры и степенной геометрии впервые аналитически вычислено множество устойчивости по Ляпунову статически неуравновешенной системы связанных гироскопов Лагранжа с шестью степенями свободы и пятью параметрами

К **наиболее значимым результатам работы**, представляющим научную новизну, относятся:

- 1. Применена техника сингулярных возмущений интегрируемой задачи для вычисления порождающих семейств периодических решений плоской круговой задачи Хилла, что позволило найти и численно исследовать новые семейства симметричных периодических решений этой задачи.
- 2. Применены современные алгоритмы компьютерной алгебры и теории исключений для анализа структуры фазового потока системы Гамильтона, допускающей дискретную группу симметрий.
- 3. Обобщена классическая задача Хилла, что позволило объединить все известные семейства периодических решений в единую сеть.
- 4. Разработана теория дискриминантных множеств, необходимая для реализации символьно-аналитических методов исследования устойчивости положения равновесия в многопараметрических системах Гамильтона.

Теоретическая значимость исследования обоснована разработанные методы позволяют эффективно находить порождающие решения семейств периодических орбит сингулярно возмущённых систем Гамильтона, выполнять бифуркационный анализ найденных семейств в окрестности критических периодических решений с дополнительными дискретными симметриями. Показано, что методами степенной геометрии, компьютерной алгебры и гамильтоновой нормальной формы могут быть решены задачи анализа устойчивости положения равновесия

многопараметрических гамильтоновых систем

Значение полученных соискателем результатов исследования для решения практических задач подтверждается тем, что:

- 1) Вычисленные в работе семейства периодических решений задачи Хилла могут быть продолжены до соответствующих семейств ограниченной или общей задач трёх тел. Периодические орбиты этих семейств могут быть использованы при планировании космических миссий к малым телам Солнечной системы.
- 2) Представленные в диссертации методы могут быть применены для исследования устойчивости инвариантных многообразий систем Гамильтона больших размерностей.
- 3) Метод сингулярных порождающих решений может быть применён для поиска и продолжения семейств периодических решений систем Гамильтона с большим числом степеней свободы.
- 4) Метод вычисления структуры дискриминантного множества многочлена может быть усовершенствован для определения условий существования двухчастотных резонансов в пространстве параметров системы.
- 5) Аналитическое описание множества устойчивости двух связанных волчков Лагранжа позволяет находить оптимальные режимы работы таких механизмов.

Оценка достоверности результатов исследования выявила, что представленные в диссертации научные результаты получены с применением современных численных и аналитических методов. Для вывода и проверки корректности аналитических выражений были использованы апробированные системы компьютерной алгебры. Полученные результаты по исследованию множества устойчивости сравниваются с частными случаями у других исследователей, даётся их механическая интерпретация для физических значений параметров. Результаты диссертации прошли широкую апробацию, были представлены па многих семинарах, всероссийских и международных конференциях и симпозиумах.

Личный вклад соискателя состоит в получении всех представленных в диссертации результатов, в подготовке всех публикаций и докладов по полученным результатам, личном представлении результатов на конференциях и семинарах.

Диссертация Батхина Александра Борисовича **отвечает критериям**, которым должна отвечать диссертация на соискание ученой степени доктора физико-математических наук, указанных в Положениях «О порядке присуждения ученых степеней», утвержденного постановлением Правительства РФ от 24.09.2013 N 842.

На заседании 14 июня 2022 г. диссертационный совет принял решение за разработку теоретических положений, совокупность которых можно квалифицировать как научное достижение, присудить Батхину Александру Борисовичу ученую степень доктора физико-математических наук по специальности 01.02.01 – «Теоретическая механика».

При проведении тайного голосования диссертационный совет в количестве 16 человек, из них 9 докторов наук по специальности рассматриваемой диссертации, участвовавших в заседании, из 21 человек, входящих в состав совета, проголосовали: «за» присуждение ученой степени — 16, «против» присуждения ученой степени — нет, недействительных бюллетеней — нет.

Ученый секретарь диссертационного совета Д 002.024.01 к.ф.-м.н. М.Г. Широбоков

«16» июня 2022 г.