ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ ИМ. М.В. КЕЛДЫША РОССИЙСКОЙ АКАДЕМИИ НАУК»

Утверждена

Ученым советом ФИЦ ИПМ им. М.В. Келдыша РАН, протокол № _____от «___» _____2018 г. Заместитель директора ______А.Л. Афендиков (подпись, расшифровка подписи) «__» _____2018 г.

РАБОЧАЯ ПРОГРАММА

УЧЕБНОЙ ДИСЦИПЛИНЫ Методы исследования математических моделей

Направление подготовки

09.06.01 Информатика и Вычислительная техника

Профили (направленности программы)

05.13.18- «Математическое моделирование. численные методы и комплексы программ»

Квалификация выпускника Исследователь. Преподаватель-исследователь

> Форма обучения очная

> > Москва, 2018

Направление подготовки: 09.06.01 – «Информатика и вычислительная техника»

Профиль (направленность программы): 05.13.18 – «Математическое моделирование. численные методы и комплексы программ»

Дисциплина: Методы исследования математических моделей

Форма обучения: очная

Рабочая программа составлена с учетом ФГОС ВО по направлению подготовки 09.06.01 – «Информатика и вычислительная техника», утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 875, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33685, и Программы-минимум кандидатского экзамена по специальности, утвержденной приказом Министерства образования и науки Российской Федерации от 8 октября 2007 года № 274 (зарегистрировано Минюстом Российской Федерации 19 октября 2007 года № 10363).

РЕЦЕНЗЕНТ: Галанин Михаил Павлович, Институт прикладной математики им. М.В.Келдыша РАН, заведующий отделом, доктор физико-математических наук, профессор

РАБОЧАЯ ПРОГРАММА РЕКОМЕНДОВАНА

Ученым советом ФИЦ ИПМ им. М.В. Келдыша РАН, протокол № ____ от «____» _____ 2018 г.

ИСПОЛНИТЕЛЬ (разработчик программ): Аристова Е.Н., ИПМ им. М.В. Келдыша РАН, зав. сект., д.ф.-м.н.

Заведующий аспирантурой _____ / Меньшов И.С. /

Оглавление

АННОТАЦИЯ	4
1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ	4
2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	6
3.1. Структура дисциплины	6
3.2. Содержание разделов дисциплины	
3.3. Семинарские занятия	8
4. ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	9
5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	13

АННОТАЦИЯ

Дисциплина «Методы исследования математических моделей» реализуется в рамках Блока 1 Основной профессиональной образовательной программы высшего образования – программы подготовки научно-педагогических кадров в аспирантуре Федерального государственного учреждения Федерального исследовательского центра Института прикладной математики им. М.В. Келдыша РАН (ИПМ им. М.В. Келдыша РАН) по направлению подготовки 09.06.01 – «Информатика и вычислительная техника».

Рабочая программа разработана с учетом требований ФГОС ВО по направлению подготовки 09.06.01 – «Информатика и вычислительная техника», утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 875, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33685, и Программыминимум кандидатского экзамена по специальности, утвержденной приказом Министерства образования и науки Российской Федерации от 8 октября 2007 года № 274 (зарегистрировано Минюстом Российской Федерации 19 октября 2007 года № 10363).

Основным источником материалов для формирования содержания программы являются: материалы конференций, симпозиумов, семинаров, Интернет-ресурсы, научные издания и монографические исследования и публикации.

Общая трудоемкость дисциплины по учебному плану составляет 2 зач.ед. (72часа), из них лекций – 4 часа, семинарских занятий – 10 часов, практических занятий – 0 часов и самостоятельной работы – 94 часов. Дисциплина реализуется на 1-м курсе, во 2-м семестре, продолжительность обучения – 1 семестр.

Текущая аттестация проводится не менее двух раз в соответствии с заданиями и формами контроля, пердусмотренные настоящей программой.

Промежуточная оценка знания осуществляется в период зачетно-экзаменационнной сессии в форме экзамена.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели и задачи дисциплины «Методы исследования математических моделей»

Цель: освоение фундаментальных знаний и компетенций, которые позволят использовать и разрабатывать эффективные алгоритмы и методы численного решения задач математической физики, а также овладение математическим аппаратом, позволяющим выбрать наиболее эффективный алгоритм сточки зрения численной реализации, согласно критериям проблемной области.

Задачи:

 освоение теоретиеских основ численных методов в различных областях математического моделирования;

 практическая реализация накопленных по дисциплине теоретических знаний на решении ряда характерных тестовых задач;

– стимулирование к самостоятельной деятельности по освоению дисциплины и формированию необходимых компетенций.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Методы исследования математических моделей» направлен на формирование компетенций или отдельных их элементов в соответствии с ФГОС ВО по направлению подготовки 09.06.01 – «Информатика и вычислительная техника», утвержденного приказом Министерства образования и науки Российской Федерации от 30

июля 2014 г. N 875, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33685

а) универсальные (УК): не предусмотрено

б) общепрофессиональных (ОПК): владение методологией теоретических и экспериментальных исследований в области профессиональной деятельности (ОПК-1), владение культурой научного исследования, в том числе с использованием современных информационно-коммуникационных технологий (ОПК-2).

в) профессиональных (ПК): способность разрабатывать новые математические методы моделирования объектов и явлений (ПК-1), способность самостоятельно разрабатывать и тестировать эффективные вычислительные методы с применением компьютерных технологий (ПК-2), способность самостоятельно решать научные проблемы с применением технологии математического моделирования вычислительного эксперимента (ПК-3).

В результате освоения дисциплины обучающийся должен:

Знать:

- Основные понятия теории разностных схем;
- основные методы численного решения и аппарат исследования разностных схем на сходимость для численного решения систем обыкновенных дифференциальных уравнений (ОДУ), в том числе жестких систем ОДУ;
- основные методы построения разностных схем для решения уравнений математической физики;
- основные методы численного решения и аппарат исследования разностных схем на сходимость для численного решения основных типов уравнений в частных производных: гиперболических, параболических, эллиптических;
- методы расщепления для решения задач большой размерности; методы регуляризации некорректно поставленных задач.

Уметь:

- разрабатывать новые математические методы моделирования объектов и явлений.
- Разрабатывать и тестировать эффективные вычислительные методы с применением компьютерных технологий;
- Использовать етод лебеговского осреднения спектров излучения.

Владеть:

- численными методами решения основных задач математической физики;
- умением оценивать эффективность и точность численного метода для выбора наиболее эфективного алгоритма согласно критериям проблемной области;
- навыками моделирования прикладных задач численными методами.

Приобрести опыт:

- построения численных алгоритмов решения задач математичсекой физики и оценки их эффективности;
- практической реализации ряда изченных алгоритмов на ряде тестовых задач.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Структура дисциплины

Распределение трудоемкости дисциплины по видам учебных работ

Вид учебной работы	Трудоемкость общая	
	зач.ед.	час.
ОБЩАЯ ТРУДОЕМКОСТЬ по Учебному плану	2	72
Лекции (Л)		4
Практические занятия (ПЗ)	_	—
Семинары (С)		10
Самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к семинарским и практическим занятиям) и самостоятельное изучение тем дисциплины		22
Вид контроля: экзамен		36

3.2. Содержание разделов дисциплины

Наименование Форма текущей № Содержание раздела раздела аттестации раздела 1. Основные понятия Уравнения в частных производных О, ДЗ различных типов и задачи, описываемые теории разностных схем. этими уравнениями. Основные понятия теории разностных схем: сходимость, аппроксимация, устойчивость. Основные методы построения разностных схем: конечно-разностный, конечно-объемный, интерполяционно-характеристический, интегро-интерполяционный. Исследование аппроксимации и устойчивости разностных схем. 2. Линейное Линейное уравнение переноса, О, ДЗ уравнение характеристики, простейшие разностные Диссипативная и дисперсионная переноса схемы. ошибки разностных схем. Схема "кабаре" и бикомпактная схема Рогова. Монотонные разностные схемы и TVD схемы. Теорема о необх. и достат. условии монотонности двухслойной разностной схемы. Теорема Годунова. 3. Системы уравнений в частных производных Системы О, ДЗ гиперболического типа. Инварианты Римана. уравнений гиперболического Корректная постановка краевых условий. типа Волновые Волновое уравнение. Переход от волнового 4. О, ДЗ уравнения. уравнения к системе уравнений акустики. Двухслойные разностные схемы лля акустической системы, аппроксимация И

Общее содержание дисциплины

		условие устойчивости.	
5.	Квазилинейное уравнение переноса	Квазилинейное уравнение переноса (уравнение Хопфа). Понятие о сильном и слабом разрыве. Градиентная катастрофа. Консервативность разностной схемы. Схемы типа "предиктор-корректор" для решения квазилинейного уравнения переноса: схемы Лакса-Ведроффа и Мак-Кормака. Разностные схемы переменного порядка аппроксимации. Ограничители потоков. Принцип замороженных коэффициентов исследования устойчивости разностных схем для нелинейных уравнений.	О, ДЗ
6.	Многомерное уравнение переноса	Многомерное уравнение переноса. Интерполяционно-характеристические методы. Бикомпактная схема и ее факторизация. Системы уравнений гиперболического типа. Инварианты Римана. Корректная постановка краевых условий. Уравнения газовой динамики. Разностные схемы для уравнений газовой динамики.	О, ДЗ
7.	Уравнения в частных производных параболического типа.	Уравнения в частных производных параболического типа. Элементы теории Самарского исследования устойчивости двухслойных разностных схем для нестационарного уравнения теплопроводности. Монотонность разностных схем для уравнения теплопроводности.	О, ДЗ
8.	Уравнения в частных производных эллиптического типа.	Уравнения в частных производных эллиптического типа. Аппроксимация. Сеточный принцип максимума. Доказательство устойчивости схемы "крест". Методы решения системы сеточных уравнений, основанные на методе установления.	О, ДЗ
9.	Решения системы разностных уравнений, полученных при аппроксимации уравнений эллиптического типа.	Вычислительная линейная алгебра для решения системы разностных уравнений, полученных при аппроксимации уравнений эллиптического типа. Обусловленность задачи. Метод верхней релаксации. Трехслойное чебышевское ускорение. Крыловские методы. Сравнение эффективности различных итерационных методов решения уравнений эллиптического типа. Понятие о медленных, средних, быстрых и сверхбыстрых методах решения.	О, ДЗ
10.	Методы расщепления для решения многомерных уравнений	Методы расщепления для решения многомерных уравнений параболического типа. Приближенная факторизация.	О, ДЗ

	параболического типа.		
11.	Интегральные уравнения.	Интегральные уравнения. Уравнения Фредгольма и Вольтерры первого и второго рода. Корректность постановки задачи решения интегральных уравнений. Методы решения интегральных уравнений: сеточный метод, Бубнова-Галеркина, Петрова- Галеркина, метод наименьших квадратов, метод коллокации. Метод Тихонова регуляризации некорректных задач.	О, ДЗ
12.	Интегро- дифференциальное уравнение переноса и методы его решения	Интегро-дифференциальное уравнение переноса и методы его решения. Метод квазидиффузии. Метод лебеговского осреднения спектров излучения.	О, ДЗ

Примечание: О – опрос, Д – дискуссия (диспут, круглый стол, мозговой штурм, ролевая игра), ДЗ – домашнее задание (эссе и пр.). Формы контроля не являются жесткими и могут быть заменены преподавателем на другую форму контроля в зависимости от контингента обучающихся. Кроме того, на занятиях семинарских может проводится работа с нормативными документами, изданиями средств информации и прочее, что также оценивается преподавателем.

3.3. Лекционные занятия

№ занятия	№ Раздела	Краткое содержание темы занятия	Кол-во часов
1.	1-6	Основные понятия теории разностных схем. Уравнения в частных производных эллиптического, гтперболического типа.	2
2.	7-12	Уравнения в частных проихводных параболического типа. Интегро-дифференциальное уравнение переноса и методы его решения.	2
	ВСЕГО		4

3.4. Семинарские занятия

№ занятия	№ Раздела (темы)	Краткое содержание темы занятия	Кол-во часов
3.	1-2	Основные методы построения разностных схем: конечно- разностный, конечно-объемный, интерполяционно- характеристический, интегро-интерполяционный. Исследование аппроксимации и устойчивости разностных схем.	2
4.	3-4	Двухслойные разностные схемы для акустической системы, аппроксимация и условие устойчивости. Корректная постановка краевых условий.	2
5.	5-6	Элементы теории Самарского исследования устойчивости двухслойных разностных схем для нестационарного уравнения теплопроводности.	2
6.	7-9	Методы решения системы сеточных уравнений, основанные на методе установления.	2
7.	10-12	Корректность постановки задачи решения интегральных уравнений. Методы решения интегральных уравнений:	2

	сеточный	метод,	Бубнова-Галеркина,	Петрова-Галеркина,	
	метод наим	меньших	квадратов, метод колл	юкации.	
ΒСΕΓΟ					10

4. ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Текущая аттестация аспирантов. Текущая аттестация аспирантов проводится в соответствии с локальным актом ФИЦ ИПМ им. М.В. Келдыша РАН — Положением о текущей, промежуточной и итоговой аттестации аспирантов ФИЦ ИПМ им. М.В. Келдыша РАН по программам высшего образования – программам подготовки научно-педагогических кадров в аспирантуре, — и является обязательной.

Текущая аттестация по дисциплине проводится в форме опроса, сдачи ряда учебных программ по всем разделам курса, а также оценки вопроса–ответа в рамках участия обучающихся в дискуссиях и различных контрольных мероприятиях по оцениванию фактических результатов обучения, осуществляемых преподавателем, ведущим дисциплину. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины см. ниже.

Объектами оценивания выступают:

- учебная дисциплина активность на занятиях, своевременность выполнения различных видов заданий, посещаемость занятий;
- степень усвоения теоретических знаний и уровень овладения практическими умениями и навыками по всем видам учебной работы, проводимых в рамках семинаров, практических занятий и самостоятельной работы.

Оценивание обучающегося на занятиях осуществляется с использованием нормативных оценок по 4-х бальной системе (5 – отлично, 4 – хорошо, 3 – удовлетворительно, 2 – неудовлетворительно).

Форма контроля знаний	Вид аттестации	Примечание
проверочные работы в течение всего курса, прием домашних заданий в форме практической реализации изученных методов	текущая	Ниже приведены перечени рекомендуемых задач и контрольных вопросов
экзамен	итоговая	

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Примерный перечень рекомендуемых контрольных вопросов для оценки текущего уровня успеваемости аспиранта:

- 1. Основные источники погрешности в вычислительной математике. Машинное представление числа.
- 2. Обусловленность системы линейных алгебраических уравнений.
- 3. Метод Гаусса решения систем линейных алгебраических уравнений. Схема и свойства. Количество операций.
- 4. Метод прогонки. Алгоритм. Устойчивость. Количество операций.
- 5. Решение скалярных нелинейных уравнений. Метод Ньютона.

- 6. Интерполирование в одномерном случае. Полиномиальная интерполяция. Погрешность интерполяции.
- 7. Простейшие квадратурные формулы. Примеры. Погрешность квадратурных формул.
- 8. Численное дифференцирование. Варианты методов.
- 9. Численное решение задачи Коши для обыкновенных дифференциальных уравнений. Постановка задачи и простейшие методы. Разностный порядок метода.
- 10. Понятие о методах решения жестких систем. Пример метода.
- 11. Аппроксимация разностной схемы. Условная и безусловная аппроксимация.
- 12. Устойчивость разностной схемы. Условная и безусловная устойчивость.
- 13. Сходимость разностной схемы. Примеры сходящейся и расходящейся схем.
- 14. Корректность разностной схемы. Сходимость как следствие аппроксимации и устойчивости, теорема.
- 15. Консервативные (дивергентные), однородные и монотонные разностные схемы. Примеры.
- 16. Линейное одномерное уравнение теплопроводности с постоянными коэффициентами. Разностная схема с весами.
- 17. Линейное одномерное уравнение переноса с постоянной скоростью. Явные разностные схемы с левой разностью, с правой разностью, с центральной разностью.
- 18. Линейное одномерное уравнение колебаний (волновое). Однопараметрическое семейство разностных схем.
- 19. Линейное двумерное уравнение Пуассона. Схема крест.
- 20. Экономичные разностные схемы для решения многомерного уравнения теплопроводности. Продольно поперечная схема.
- 21. Корректно поставленные задачи для интегральных уравнений. Пример.
- 22. Некорректно поставленные задачи для линейных интегральных уравнений. Пример.
- 23. Понятие о методе конечных элементов. Пример.
- 24. Понятие о методе Монте-Карло. Пример.

Примерный перечень рекомендуемых контрольных задач для оценки текущего уровня успеваемости аспиранта:

1. Одномерная система уравнений газовой динамики (уравнений Эйлера) в дивергентном виде имеет вид:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0, \\ \frac{\partial u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = 0, \\ \frac{\partial \rho E}{\partial t} + \frac{\partial (\rho E + p)u}{\partial x} = 0. \end{cases}$$

Здесь ρ – плотность, u – скорость, p – давление, $E = \varepsilon + u^2 / 2$ – полная удельная энергия, ε – удельная внутренняя энергия, (T – температура).

Если не рассматривать температуру как отдельную переменную, то можно считать, что для замыкания системы уравнений достаточно одного уравнения состояния, заданного в виде: $p = p(\rho, \varepsilon)$. Например, для идеального газа уравнение состояния имеет вид: $p = (\gamma - 1)\rho\varepsilon$.

A) Показать, что:
$$\frac{\partial \varepsilon}{\partial t} = -u \frac{\partial \varepsilon}{\partial x} - \frac{p}{\rho} \frac{\partial u}{\partial x}$$

Б) С учетом п. А) и введения скорости звука по формуле $c^2 = \frac{\partial p}{\partial \rho} + \frac{p}{\rho^2} \frac{\partial p}{\partial \epsilon}$ вывести

характеристическую форму уравнений Эйлера:

$$\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0,$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \frac{1}{\rho} \frac{\partial p}{\partial x} = 0,$$
$$\frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + \rho c^2 \frac{\partial u}{\partial x} = 0.$$

В) Найти выражение скорости звука для идеального газа.

Г) Показать, что система уравнений Эйлера является гиперболической. Найти инварианты Римана и уравнения для них.

Д)* Можете привести решение задачи о распаде произвольного разрыва – основу схемы Годунова для решения одномерных уравнений газовой динамики.

- 2. Вывести схему Лакса-Вендроффа для неоднородного линейного уравнения переноса, т.е. при наличии правой части.
- **3.** Найти условие монотонности схемы Кранка–Николсон для решения уравнения теплопроводности с постоянным коэффициентом теплопроводности.
- 4. Дано разностное уравнение

$$\frac{y_m^{n+1}-y_m^{n-1}}{2\tau} = a \frac{y_{m+1}^n-y_m^{n+1}-y_m^{n-1}+y_{m-1}^n}{h^2}.$$

 а) Какое дифференциальное уравнение приближается данным разностным уравнением?
б) Какова погрешность аппроксимации? Исследовать это уравнение на аппроксимацию при т/h² = const.

в) Исследовать на устойчивость решение разностного уравнения (схема Дюфорта-Франкела).

5. Исследовать на сходимость трехслойную разностную схему для уравнения теплопроводности (схема Ричардсона)

$$\frac{y_m^{n+1}-y_m^{n-1}}{2\tau} = a \frac{y_{m+1}^n-2y_m^n+y_{m-1}^n}{h^2} + f_m^n \,.$$

Сравнить ответ с результатом предыдущей задачи.

6. Для уравнения переноса $u'_t + cu'_x = 0$, c > 0, применяется схема "кабаре". Получить первое дифференциальное приближение для этой схемы. Исследовать схему на дисперсионную и диссипативную ошибку.

Указание: Искать решение разностной задачи в виде $y_m^n = e^{\lambda n\tau} e^{ikmh}$. При подстановке в разностное уравнение получится квадратное уравнение относительно $p = e^{\lambda \tau}$. Решать уравнение с использованием т. Виета и замены $p_1 = e^{-i\varphi_1}$, $p_2 = -e^{-i\varphi_2}$. Дополнительно можно посмотреть на асимптотику решения при числе Куранта, стремящемуся к нулю.

7. С помощью интегро-интерполяционного метода получите схему, аппроксимирующую линейное стационарное уравнение теплопроводности с диссипацией

$$-p\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + ku = f(x, y)$$
 на пространственной сетке, состоящей из

центров правильных треугольников.

Указание: перейти к системе двух уравнений относительно температуры и теплового потока, при интегрировании воспользоваться формулой Остроградского-Гаусса.

- 8. Для квазилинейного уравнения теплопроводности $u'_t = (u^{5/2}u'_x)'_x$ интегро-интерполяционным методом построить аналог схемы Саульева, используя дивергентную запись уравнения. Исследовать получившуюся схему на устойчивость по принципу замороженных коэффициентов.
- 9. Найти приближенное решение интегрального уравнения

 $u(x) = \int_{-1}^{1} x\xi u(\xi)d\xi + x$

методом Бубнова–Галеркина, используя в качестве базисных функций три младших многочлена Лежандра $\psi_0(x) = 1$, $\psi_1(x) = x$, $\psi_2(x) = 0.5(3x^2 - 1)$.

Итоговая аттестация аспирантов. Итоговая аттестация аспирантов по дисциплине проводится проводится в соответствии с локальным актом ФИЦ ИПМ им. М.В. Келдыша РАН – Положением о текущей, промежуточной и итоговой аттестации аспирантов ФИЦ ИПМ им. М.В. Келдыша РАН по программам высшего образования – программам подготовки научнопедагогических кадров в аспирантуре и является обязательной.

Итоговая аттестация по дисциплине осуществляется в форме экзамена в период зачетноэкзаменационной сессии в соответствии с Графиком учебного процесса по приказу (распоряжению заместителю директора по научной работе). Обучающийся допускается к экзамену в случае выполнения аспирантом всех учебных заданий и мероприятий, предусмотренных настоящей программой. В случае наличия учебной задолженности (пропущенных занятий и (или) невыполненных заданий) аспирант отрабатывает пропущенные занятия и выполняет задания.

Оценивание обучающегося на промежуточной аттестации осуществляется с использованием нормативных оценок на зачете – зачет, незачет.

Список вопросов к экзамену:

- 1. Основные понятия теории разностных схем и связь между ними.
- 2. Основные методы построения схем для решения уравнений математической физики: конечно-разностные, конечно-объемные, интегро-интерполяционные, интерполяционнохарактеристические, метод прямых. Примеры на каждый из методов.
- 3. Основные методы исследования устойчивости разностных схем: спектральный признак устойчивости, элементы теории Самарского устойчивости двухслойных разностных схем, условие Куранта–Фридрихса–Леви. Области применимости методов.
- 4. Исследование устойчивости двухслойной разностной схемы с весами для уравнения теплопроводности на основании энергетических неравенств (по теории Самарского).
- 5. Монотонность двухслойных разностных схем. Исследование монотонности схемы с весами для уравнения теплопроводности с постоянными коэффициентами.
- 6. Основные схемы для численного решения уравнения переноса: явные и неявные уголки, схема с центральной разностью, схема Лакса и Лакса–Вендроффа. Их аппроксимация и устойчивость.
- 7. Монотонность двухслойных разностных схем для уравнения переноса. Теорема Годунова. Схемы переменного порядка аппроксимации. Гибридная схема Федоренко.
- 8. Бикомпактная схема Рогова для уравнения переноса.
- 9. Системы уравнений в частных производных гиперболического типа. Корректная постановка краевых условий.

- 10. Квазилинейное уравнение переноса (уравнение Хопфа). Сильные и слабые разрывы. Схемы для решения квазилинейного уравнения переноса. Понятие консервативности разностной схемы.
- 11. Трехслойная схема для волнового уравнения: аппроксимация и устойчивость. Система уравнений акустики. Схема с весами для системы уравнений акустики.
- 12. Линейное двумерное уравнение Пуассона. Схема крест. Сеточный принцип максимума для эллиптических уравнений.
- 13. Методы решения сеточных уравнений, полученных при аппроксимации уравнений Лапласа и Пуассона.
- 14. Классификация методов по числу требуемых итераций, необходимых для достижения заданной точности.
- 15. Трехслойное Чебышевское ускорение итерационных методов решения СЛАУ, полученных при аппроксимации уравнений Лапласа и Пуассона.
- 16. Многомерное уравнение теплопроводности. Экономичные разностные схемы для решения многомерного уравнения теплопроводности. Продольно поперечная схема.
- 17. Многомерное уравнение теплопроводности. Экономичные разностные схемы для решения многомерного уравнения теплопроводности. Попеременно треугольная схема.
- 18. Корректно поставленные задачи для интегральных уравнений. Пример. Методы решения интегральных уравнений.
- 19. Некорректно поставленные задачи для линейных интегральных уравнений. Пример.
- 20. Тихоновская регуляризация.

Оценка	Требования к знаниям и критерии выставления оценок					
2, неудовлетворительно	Отсутствие знаний					
3, удовлетворительно	Общие, но не структурированные знания методов критического анализа и оценки современных научных достижений, а также методов генерирования новых идей при решении исследовательских и практических задач					
4, хорошо	Сформированные, но содержащие отдельные пробелы знания основных методов критического анализа и оценки современных научных достижений, а также методов генерирования новых идей при решении исследовательских и практических задач, в том числе междисциплинарных					
5, отлично	Сформированные систематические знания методов критического анализа и оценки современных научных достижений, а также методов генерирования новых идей при решении исследовательских и практических задач, в том числе междисциплинарных					

Оценивание аспиранта на промежуточной аттестации в форме экзамена

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Самарский А.А. Теория разностных схем. 3-е изд., испр., М. Наука, 1989, 616с.
- 2. Бахвалов Н.С. Численные методы. М., Наука, 1975, 630с.
- 3. Зорич В. А. Математический анализ. Часть І. Изд. 4-е, испр. М.: МЦНМО, 2002. XVI + 664 с.
- 4. Зорич В. А. Математический анализ. Часть II. Изд. 4-е, испр. М.: МЦНМО, 2002. XIV + 794
- 5. Филиппов А.Ф., Введение в теорию дифференциальных уравнений, 2007.
- 6. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, Физматлит, 1978.-512 с.
- 7. Владимиров В.С. Уравнения математической физики. М.: Наука, 1971. 512 с.

- 8. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление, 1979.
- 9. Лебедев В.И. Функциональный анализ и вычислительная математика, М.: ФИЗМАТЛИТ, 2005. 296 с.
- 10. Годунов С.К.. Уравнения математической физики. М. Наука. Физматлит. 1979. 392 с.
- 11. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М.: Изд во МГТУ им. Н.Э. Баумана, 2010. 591 с.
- 12. Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- 13. Калиткин Н.Н., Альшина Е.А. Численный анализ. М., Академия, 2013, 299 с.
- 14. Калиткин Н.Н., Корякин П.В. Методы математической физики. М., Академия, 2013, 301 с.
- 15. Самарский А.А., Михайлов А.П. Математическое моделирование. Идеи. Методы. Примеры. М.: Наука. Физматлит, 1997. 320 с.

Дополнительная литература и Интернет-ресурсы

1. Деммель Дж. Вычислительная линейная алгебра. Теория и приложения. М.: Мир, 2001, 429с.

2. Аристова Е.Н., Завьялова Н.А., Лобанов А.И. Практические занятия по вычислительной математике в МФТИ. Часть І. М., МФТИ, 2014, 242с.

https://mipt.ru/education/chair/computational_mathematics/study/materials/compmath/other/Aristova_Zavyalova_Lobanov_2014.pdf

3. Хайрер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М.: Мир, 1990, 512с.

4. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие задачи и дифференциально-алгебраические задачи. М.: Мир, 1999, 685с.

5. Аристова Е.Н., Лобанов А.И. Практические занятия по вычислительной математике в МФТИ. Часть II. М., МФТИ, 2015, 308с.

6. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. Изд-во МГТУ им. Н.Э.Баумана, М., 2010, 590с.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для обеспечения интерактивных методов обучения для чтения лекций требуется аудитория с мультимедиа (возможен вариант с интерактивной доской) или белая доска под фломастеры.

Для проведения дискуссий и круглых столов, возможно, использование аудиторий со специальным расположением столов и стульев.

ИСПОЛНИТЕЛИ (разработчики программы):

Аристова Е.Н., ИПМ им. М.В. Келдыша РАН, зав. сект., д.ф.-м.н.