ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ ИМ. М.В. КЕЛДЫША РОССИЙСКОЙ АКАДЕМИИ НАУК»

Утверж	кдена	
Ученым	и советом ФИЦ И	1 ΠМ
им. М.Е	3. Келдыша РАН,	,
протоко	ол № от «»	2018_
Γ.		
Замести	тель директора	
		А.Л. Афендиков
	(подпись, расшифровка	подписи)
« »	2018 г.	,

РАБОЧАЯ ПРОГРАММА

УЧЕБНОЙ ДИСЦИПЛИНЫ Дифференциальные уравнения

Направление подготовки

01.06.01 – «Математика и Механика»

Профили (направленности программы)

01.01.03- «Математичекая физика»

Квалификация выпускника

Исследователь. Преподаватель-исследователь

Форма обучения

очная

Профиль (направленность программы) : 01.01.03 — «Математичекая физика»		
Дисциплина: Дифференциальные уравнения.		
Форма обучения: очная		
Рабочая программа составлена с учетом ФГОС ВО по направлению подготовки 01.06.01 — «Математика и Механика», утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 866, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33837, и Программы-минимум кандидатского экзамена по специальности, утвержденной приказом Министерства образования и науки Российской Федерации от 8 октября 2007 года № 274 (зарегистрировано Минюстом Российской Федерации 19 октября 2007 года № 10363).		
РАБОЧАЯ ПРОГРАММА РЕКОМЕНДОВАНА Ученым советом ФИЦ ИПМ им. М.В. Келдыша РАН, протокол № от «» 2018 г. Заместитель директора А.Л. Афендиков.		
ИСПОЛНИТЕЛЬ (разработчик программ): Веденяпин В.В., ведущий научный сотрудник ИПМ им. М.В.Келдыша РАН		
Заведующий аспирантурой/ Меньшов И.С. /		

Направление подготовки: 01.06.01 — Математика и Механика

Оглавление

AΗ	НОТАЦИЯ	4
	ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
	ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
	СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	
	.1. Структура дисциплины	
	.2. Содержание разделов дисциплины	
	.3. Семинарские занятия	
	ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	
5.	УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	9
	МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	

АННОТАЦИЯ

Дисциплина «Дифференциальные уравнения» реализуется в рамках Блока 1 Основной профессиональной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре Федерального исследовательского центра Института прикладной математики им. М.В. Келдыша РАН (ИПМ им. М.В. Келдыша РАН) по направлению подготовки 01.06.01 — математика и механика».

Рабочая программа разработана с учетом требований ФГОС ВО по направлению подготовки 01.06.01 — математика и механика», утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 866, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33837, и Программы-минимум кандидатского экзамена по специальности, утвержденной приказом Министерства образования и науки Российской Федерации от 8 октября 2007 года № 274 (зарегистрировано Минюстом Российской Федерации 19 октября 2007 года № 10363).

Основным источником материалов для формирования содержания программы являются: материалы конференций, симпозиумов, семинаров, Интернет-ресурсы, научные издания и монографические исследования и публикации.

Общая трудоемкость дисциплины по учебному плану составляет 2 зач.ед. (72 часа), из них лекций -4 часа, семинарских занятий -8 часов, практических занятий -0 часов и самостоятельной работы -60 часа. Дисциплина реализуется на 1-м курсе, во 2-м семестре, продолжительность обучения -1 семестр.

Текущая аттестация проводится не менее 2 раз в соответствии с заданиями и формами контроля, пердусмотренные настоящей программой.

Промежуточная оценка знания осуществляется в период зачетно-экзаменационнной сессии в форме зачета.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели и задачи дисциплины «Дифференциальные уравнения»

Цель: освоение фундаментальных знаний и компетенций, которые позволят представлять и разрабатывать методами дифференциальных уравнений модели физико-химических процессов и их дискретные модели в удобном виде, а также владеть математическим аппаратом, позволяющим выбрать наиболее правильную модель, аналитически исследовать и оценивать её свойства.

Задачи:

- освоить основной математический аппарат, позволяющий выводить дифференциальные уравнения физико-химических процессов;
- практическое освоение накопленных по дисциплине знаний при использовании и решении дифференциальных уравнений.
 - стимулирование к самостоятельной деятельности по освоению дисциплины.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины «Дифференциальные уравнения» направлен на формирование компетенций или отдельных их элементов в соответствии с ФГОС ВО по направлению подготовки 01.06.01 — математика и механика, утвержденного приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. N 866, зарегистрировано в Минюсте Российской Федерации 20 августа 2014 г. N 33837

а) универсальные (УК): не предусмотрено

- б) общепрофессиональных (ОПК): не предусмотрено
- **в) профессиональных (ПК):** Способность к исследованиям математическими методами математических проблем в области механики и электродинамики сплошных сред (ПК-1), Способность разработки соответствующего аппарата в механике (ПК-2), Способность решать математические проблемы статистической физики (ПК-3).

В результате освоения дисциплины обучающийся должен:

Знать:

- основные понятия дифференциальных уравнений, эргодической теории, динамических систем и уравнения Лиувилля.
- основные методы решения дифференциальных уравнений.
- основные математические методы качественного исследования поведения дифференциальных уравнений.

Уметь:

- решать линейные дифференциальные уравнения и исследовать нелинейные.
- уверенно проводить качественную оценку поведения дифференциальных уравнений.

Владеть:

- навыками асимптотической оценки поведения решений.
- основными понятиями эргодической теории.
- навыками исследования основных свойств моделей физико-химической теории.

Приобрести опыт:

- построения моделей физико-химических процессов;
- исследования поведения дифференциальных уравнений и их уравнений Лиувилля.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Структура дисциплины

Распределение трудоемкости дисциплины по видам учебных работ

Вид учебной работы		Трудоемкость	
		общая	
	зач.ед.	час.	
ОБЩАЯ ТРУДОЕМКОСТЬ по Учебному плану	2	72	
Лекции (Л)		4	
Практические занятия (ПЗ)		•	
Семинары (С)		8	
Самоподготовка (проработка и повторение лекционного материала и материала			
учебников и учебных пособий, подготовка к семинарским и практическим занятиям)		60	
и самостоятельное изучение тем дисциплины			
Вид контроля: зачет			

3.2. Содержание разделов дисциплины

Общее содержание дисциплины

№ раздела	Наименование раздела	Содержание раздела	Форма текущей аттестации
1.	Обыкновенные дифференцмальные уравнения.	Линейные и нелинейные дифференциальные уравнения. Примеры уравнений химической кинетики и марковских процессов.	О, ДЗ
2.	Законы сохранения и функционалы Ляпунова.	Функция Ляпунова. Примеры: Н-функция, эргодическая теория и асимптотическое поведение.	О, ДЗ
3.	Уравнения Гамильтона.	Элементы вариационного исчисления. Лагранжиан и уравнения Эйлера—Лагранжа. Гамильтониан и уравнения Гамильтона. Эргодическая теорема и экстремаль Больцмана.	О, ДЗ
4.	Линейные и нелинейные эллиптические уравнения	Уравнение Лапласа и эллиптические уравнения. Гармонические функции. Принцип максимума. Получение нелинейного эллиптического уранения из уравнений типа Власова и их свойства.	О, ДЗ
5.	Линеные и нелинейные параболичексие и гиперболические уравнения	Уравнение теплопроводности и параболические уравнения. Волновое уравнение и гиперболические уравнения. Фундаментальное решение. Задача Коши. Получение нелинейных параболичеких и гиперболических уравнений из кинетических уравнений Лиувилля, Больцмана и Власова и их свойства.	О, ДЗ

Примечание: О – опрос, Д – дискуссия (диспут, круглый стол, мозговой штурм, ролевая игра), Д3 – домашнее задание (эссе и пр.). Формы контроля не являются жесткими и могут быть заменены преподавателем на другую форму контроля в зависимости от контингента обучающихся. Кроме того, на занятиях семинарских может проводится работа с нормативными документами, изданиями средств информации и прочее, что также оценивается преподавателем.

3.3. Лекционные занятия

№ занятия	№ Раздела	Краткое содержание темы занятия	Кол-во часов
1.	1,2,3	Свойства линеных и нелинейных дифференциальных уравнений. Связь обыкновенного дифференциального уравнения и его уравнения Лиувилля, уравнение неразрывности. Эргодические теоремы фон Неймана и Рисса. Экстремаль Больцмана, функционал Ляпунова и асимптотоическое поведение.	2
2.	4,5	Линеные и нелинейные эллиптические, параболичексие и гиперболические уравнения, их вывод из кинетической теории и свойства.	2
	ВСЕГО		4

3.4. Семинарские занятия

№ занятия	№ Раздела (темы)	Краткое содержание темы занятия	Кол-во часов
3.	1	Задачи на тему линейные и нелинейные дифференциальные уравнения. Примеры уравнений химической кинетики и марковских процессов	2
4.	2,3	Задачи по темам: Функция Ляпунова. Примеры: Н-функция, эргодическая теория и асимптотическое поведение. Элементы вариационного исчисления. Лагранжиан и уравнения Эйлера—Лагранжа. Гамильтониан и уравнения Гамильтона. Эргодическая теорема и экстремаль Больцмана. Одномерные гамильтоновы системы.	2
5.	3	Задачи по темам: Уравнение Лапласа и эллиптические уравнения.	2

		Гармонические функции. Принцип максимума. Получение нелинейного эллиптического уранения из уравнений типа Власова и их свойства.	
6.	4	Задачи по темам: Уравнение теплопроводности и параболические уравнения. Волновое уравнение и гиперболические уравнения. Фундаментальное решение. Задача Коши. Получение нелинейных параболичеких и гиперболических уравнений из кинетических уравнений Лиувилля, Больцмана и Власова и их свойства.	2
	ВСЕГО		8

4. ТЕКУЩАЯ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Текущая аттестация аспирантов. Текущая аттестация аспирантов проводится в соответствии с локальным актом ФИЦ ИПМ им. М.В. Келдыша РАН - Положением о текущей, промежуточной и итоговой аттестации аспирантов ФИЦ ИПМ им. М.В. Келдыша РАН по программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре и является обязательной.

Текущая аттестация по дисциплине проводится в форме опроса, а также оценки вопросаответа в рамках участия обучающихся в дискуссиях и различных контрольных мероприятиях по оцениванию фактических результатов обучения, осуществляемых преподавателем, ведущим дисциплину. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины см. ниже.

Объектами оценивания выступают:

- учебная дисциплина активность на занятиях, своевременность выполнения различных видов заданий, посещаемость занятий;
- степень усвоения теоретических знаний и уровень овладения практическими умениями и навыками по всем видам учебной работы, проводимых в рамках семинаров, практических занятий и самостоятельной работы.

Оценивание обучающегося на занятиях осуществляется с использованием нормативных оценок по 4-х бальной системе (5-отлично, 4-хорошо, 3-удовлетворительно, 2-не удовлетворительно).

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Форма контроля знаний	Вид аттестации	Примечание
проверочные работы в течение	текущая	Ниже приведены перечени
всего курса	промежуточная	рекомендуемых задач и контрольных
		вопросов
зачет	итоговая	Прилагается список вопросов

Примерный перечень рекомендуемых контрольных вопросов для оценки **текущего контроля** успеваемости студента:

- 1. Нарисовать фазовый портрет уравнения двумерной системы дифф. уравнения и дать описание поведения уравнения Лиувилля.
- 2. Нарисовать фазовый портрет одномерной гамильтоновой системы, решить её и дать описание поведения уравнения Лиувилля.
- 3. Рост энтропии для уравнения Ливилля, энтропия по Пуанкаре.
- 4. Экстремаль Больцмана и эргодические теоремы Фон-Неймана и Рисса.

- 5. Дискретное время для уравнения Лиувилля. Теорема Рисса.
- 6. Непрывное Время. Теорема фон Неймана.
- 7. Функционалы Ляпунова и Н-теорема.
- 8. Дискретная модель уравнения Больцмана: Н-функция как функционал Ляпунова.
- 9. Уравнения физико-химичекой кинетики: Н-функция как функционал Ляпунова
- 10. Самосогласованные поля. Уравнение Власова и нелинейные гиперболические и эллиптические уравнения..
- 11. Уравнение Власова-Пуассона и эллиптические уравнения в энергетической подстановке.
- 12. Уравнение Власова-Максвелла: нелинейные гиперболическте и эллиптические уравнения в энергетической под становке.
- 13. Энергетичекая подстановка в уравнение Лиувилля..
- 14. Гидродинамичекая подстановка в уравнение Лиувилля и в уравнение Власова: гиперболические уравнения.
- 15. Распределение Максвелла и получение систем гиперболических и параболических уравнений из кинетических уравнений Больцмана и Власова.

Примерный перечень рекомендуемых контрольных задач для оценки **текущего уровня** успеваемости студента:

Задача № 1.

Для системы уравнений

$$\begin{cases} \frac{dy}{dt} = y^{\alpha+1} (1-x)^{2\beta+1}, \\ \frac{dx}{dt} = x^{\gamma+1} (y-1)^{2\delta+1} \end{cases}$$

- 1. Построить фазовый портрет.
- 2. Найти закон сохранения.
- 3. Уточнить поведение фазовых траекторий в окрестности особых точек.
- 4. Придумать интерпретацию своей системы как взаимодействие объектов двух типов (например, хищник–жертва) x(t) число объектов первого типа, а y(t) второго. Что можно сказать про H-теорему для этой системы.
- 5. Выписать уравнение Лиувилля для этой динамической системы и приближение гидродинамического типа, взяв x за координату, а y за скорость.
- 6. Определить, будет ли в нулевой момент времени перехлест, если V(x,0) = x.

Для заданного студенту значения $\alpha, \beta, \gamma, \delta \in \mathbb{N}$:

Описать движение материальной точки с потенциальной энергией $U(x) = x^{2\beta}(x-3)^{\alpha}(x-5)^{\alpha+1}$.

- 1. Выписать соответствующую динамическую систему. Найти закон сохранения.
- 2. Построить фазовый портрет. Сколько различных фазовых траекторий соответствуют уровню энергии E=0 ?
- 3. Уточнить поведение фазовых траекторий в окрестности особых точек.
- 4. Выписать уравнение Лиувилля для этой динамической системы и приближение гидродинамического типа.
- 5. Определить, будет ли в нулевой момент времени перехлест, если $f(0,x,p) = \delta(p-x)$. Задача N_2 3.
- 1. Выписать систему, описывающую эволюцию концентраций частиц из n молекул: n = 1, 2, ..., N, при условии, что присоединяется и отлетает от частиц по одной молекуле.

Сечения коагуляции и частоты распада некоторые заданные функции n. Рассмотреть два случая: а) число молекул в системе постоянно, б) концентрация мономеров поддерживается постоянной за счет их ввода в систему. Выписать квантовый аналог уравнений.

- 2. Выписать закон сохранения. Выписать H-функции для случаев (a) и (б) и доказать H-теоремы.
- 3. Ввести непрерывную функцию распределения и получить уравнение на нее. Записать это уравнение в таком виде, чтобы в него входила функция распределения и производные (частные) от нее все в одной и той же точке. Для мономеров записать отдельное уравнение.
- 4. Ограничиться производными второго порядка и получить уравнение параболического типа.

Итоговая аттестация аспирантов. Итоговая аттестация аспирантов по дисциплине проводится проводится в соответствии с локальным актом ФИЦ ИПМ им. М.В. Келдыша РАН – Положением о текущей, промежуточной и итоговой аттестации аспирантов ФИЦ ИПМ им. М.В. Келдыша РАН по программам высшего образования – программам подготовки научно-педагогических кадров в аспирантуре и является обязательной.

Итоговая аттестация по дисциплине осуществляется в форме зачета в период зачетноэкзаменационной сессии в соответствии с Графиком учебного процесса по приказу (распоряжению заместителю директора по научной работе). Обучающийся допускается к зачету в случае выполнения аспирантом всех учебных заданий и мероприятий, предусмотренных настоящей программой. В случае наличия учебной задолженности (пропущенных занятий и (или) невыполненных заданий) аспирант отрабатывает пропущенные занятия и выполняет задания.

Оценивание обучающегося на промежуточной аттестации осуществляется использованием нормативных оценок на зачете – зачет, незачет.

Оценивание аспиранта на итоговой аттестации в форме зачетаа

Оценка	Требования к знаниям и критерии выставления оценок		
Незачет	основное содержание учебного материала не раскрыто; допущены грубые ошибка в определении понятий и при использовании терминологии;		
	не даны ответы на дополнительные вопросы. раскрыто содержание материала, даны корректные определения понятий;		
Зачет	допускаются незначительные нарушения последовательности изложения;		
	допускаются небольшие неточности при использовании терминов или в логических выводах;		
	при неточностях задаются дополнительные вопросы.		

Список воапосов к итоговому зачету.

1. Линейные и нелинейные дифференциальные уравнения.

- 2. Примеры уравнений химической кинетики и марковских процессов.
- 3. Функция Ляпунова.
- 4. Н-функция, эргодическая теория и асимптотическое поведение.
- 5. Элементы вариационного исчисления.
- 6. Лагранжиан и уравнения Эйлера—Лагранжа.
- 7. Гамильтониан и уравнения Гамильтона.
- 8. Эргодическая теорема и экстремаль Больцмана.
- 9. Уравнение Лапласа и эллиптические уравнения.
- 10. Гармонические функции.
- 11. Принцип максимума.
- 12. Получение нелинейного эллиптического уранения из уравнений типа Власова и их свойства.
- 13. Уравнение теплопроводности и параболические уравнения.
- 14. Волновое уравнение и гиперболические уравнения.
- 15. Фундаментальное решение.
- 16. Задача Коши.
- 17. Получение нелинейных параболичеких и гиперболических уравнений из кинетических уравнений Лиувилля, Больцмана и Власова и их свойства.

5. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература

- 1. Владимиров В.С., Жаринов В.В.. Уравнения математической физики., М., Наука, 2000.
- 2. Арнольд В.И. Обыкновенные дифференциальные уравнения. Ижевск: Ижевская республиканская типография, 2000. 368 с.

Дополнительная литература и Интернет-ресурсы

- 1. Больцман Л., Избранные труды., М., Наука, 1984.
- 2. Максвелл Д.К. Труды по кинетической теории. М., Бином, 2011.
- 3. Арнольд В.И. Математические методы классической механики.
- 4. Козлов В.В. Тепловое равновесие по Гиббсу и Пуанкаре. М., 2002.
- 5. Зельдович Я.Б., Мышкис А.Д., Элементы прикладной математики. М.,Наука, 1967.
- 6. Пуанкаре А. Замечания о кинетической теории газов. // Пуанкаре А. Избранные труды, М., Наука, 1974.
- 7. Веденяпин В.В. Кинетичекие уравнения Больцмана и Власова., М., Физматлит, 2001.
- 8. Рисс Ф., Сёкефальви-Надь Б. Лекции по функциональному анализу. М.: Мир, 1979.
- 9. Зельдович Я.Б., Мышкинс А.Д. Элементы математической физики. М.: Глав- ная редакция физико-математической литературы изд-ва «Наука». 1973.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для обеспечения интерактивных методов обучения для чтения лекций требуется аудитория с мультимедиа (возможен вариант с интерактивной доской).

Для проведения дискуссий и круглых столов, возможно, использование аудиторий со специальным расположением столов и стульев.

ИСПОЛНИТЕЛИ (разработчики программы):

Веденяпин В.В., ИПМ им. М.В. Келдыша, ведущий научный сотрудник, д.ф.-м.н.