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Ван Ч., Жданов А.Д., Дерябин Н.Б., Жданов Д.Д. 
Методы и алгоритмы организации системы автопилота транспортных 

средств: обзор 

Технология автономного вождения направлена на повышение безопасности и 
эффективности дорожного движения за счет снижения рисков, присущих транспортным 
средствам, управляемым человеком. Однако передовые системы (L3–L5) по-прежнему 
сталкиваются со значительными техническими проблемами. Текущие исследования в 
основном сосредоточены на трех основных модулях: восприятие (охватывающее слияние 
нескольких датчиков и обработку облаков точек на основе глубокого обучения), 
планирование (использование обучения с подкреплением и метаэвристических алгоритмов 
для оптимизации пути) и управление (использование Model Predictive Control (MPC) и 
нечетких моделей принятия решений). Несмотря на эти достижения, ограничения, такие как 
недостаточная интеграция подсистем, ограниченная адаптивность к динамическим средам и 
отсутствие этической структуры принятия решений, препятствуют дальнейшему прогрессу. 
В этой статье предлагается оптимизированный организационный алгоритм для улучшения 
взаимодействия в реальном времени между несколькими модулями. Он проверяет 
безопасность и эффективность с помощью имитационных тестов и исследует легкие модели 
и стандартизированные структуры тестирования. Двигаясь вперед, важно развивать 
многоагентную координацию, усиливать возможности обобщения в сложных сценариях и 
создавать надежную этическую структуру для содействия широкому внедрению технологии 
автономного вождения. 

Ключевые слова: автономное вождение, восприятие, планирование, 
мультисенсорное слияние, сотрудничество подсистем. 

 
Zhan Wang, Andrei Dmitrievich Zhdanov, Deryabin Nikolay Borisovich, 

Dmitry Dmitrievich Zhdanov 
Methods and algorithms for organizing a vehicle autopilot system: a review 

Autonomous driving technology aims to enhance road safety and efficiency by reducing the 
risks inherent in human-driven vehicles. However, advanced systems (L3-L5) still face substantial 
technical challenges. Current research predominantly focuses on three core modules: perception 
(encompassing multi-sensor fusion and deep learning-based point cloud processing), planning 
(employing reinforcement learning and meta-heuristic algorithms for path optimization), and 
control (utilizing Model Predictive Control (MPC) and fuzzy decision models). Despite these 
advancements, limitations such as insufficient subsystem integration, limited adaptability to 
dynamic environments, and the lack of an ethical decision-making framework hinder further 
progress. This paper proposes an optimized organizational algorithm to improve real-time 
collaboration among multiple modules. It verifies security and efficiency through simulation tests 
and investigates lightweight models and standardized testing frameworks. Moving forward, it is 
essential to advance multi-agent coordination, strengthen generalization capabilities in complex 
scenarios, and establish a robust ethical framework to promote the widespread adoption of 
autonomous driving technology. 

Key words: autonomous driving, perception, perception, planning, multi-sensor 
fusion, subsystem collaboration. 
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      Introduction 

The three key components of transportation are currently vehicles, roads, and 
people. Among these, a vehicle is a complex machine with all its movements 
traceable, while the road serves as the environment in which both the vehicle and the 
person operate, acting as an entirely static element. Therefore, these two factors are 
not the primary causes of traffic accidents. In contrast, human behavior, characterized 
by subjective consciousness and unpredictability, tends to fluctuate under the 
influence of emotions such as fatigue, tension, and anger. According to a survey 
previously released by the World Health Organization (WHO), 95% of traffic 
accidents are attributed to drivers. Consequently, removing the driver as an unstable 
factor from the transportation system not only alleviates the burden on drivers but 
also contributes to reducing traffic accidents and enhancing road safety. Automated 
driving systems can be classified into five levels, as illustrated in Fig. 1, with the 
driver progressively being replaced by the automated system from level one to level 
five. Currently, the highest level of autonomous driving systems in mass production 
is level 2, while levels 3, 4, and 5 remain in limited experimental stages. Thus, 
advanced autonomous driving systems remain the focal point of ongoing research. 

 
Fig.1 Criteria for Evaluating the Rating of Autonomous Driving Systems 

The introduction of autonomous vehicles (AVs) is revolutionizing the way we 
perceive transportation. AVs hold the potential to significantly reduce accidents, 
alleviate traffic congestion, and offer mobility solutions for individuals unable to 
drive. Nevertheless, as AVs are deployed and tested in real-world settings, they 
encounter numerous challenges. These encompass navigating complex traffic 
scenarios, effectively interacting with other road users, and making decisions that 
balance safety and ethical considerations. 

Autonomous driving systems (ADS) consist of various components, including 
perception, planning, decision-making, and control systems. These components 
collaborate to enable the vehicle to drive safely, respond effectively to environmental 
changes, and make optimal decisions. However, while these systems are typically 
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developed independently, their seamless integration into a cohesive and fully 
functional system remains a challenge. 

Organizational algorithms are crucial for integrating the various subsystems of 
autonomous vehicles (AVs) and ensuring their seamless collaboration. These 
algorithms allow the vehicle to adapt to abrupt environmental changes and make real-
time decisions. By coordinating the interactions among system components, 
organizational algorithms enable AVs to make safe and efficient decisions. As AVs 
become increasingly prevalent, the demand for robust organizational algorithms is 
growing. This study focuses on designing and enhancing these algorithms to improve 
the efficiency, safety, and ethical decision-making capabilities of AVs. 

Perception in the vehicle Autopilot system 
This component is tasked with aggregating data from multiple sensors to 

construct a comprehensive understanding of the vehicle's surroundings. Advanced 
algorithms analyze the raw sensor data to detect, classify, and track objects in real-
time, while also determining distances. Collectively, the integrated functions of 
sensors, sensing, and localization form the environment-awareness module, as these 
components are interdependent and collaborate to acquire information about the 
vehicle's surroundings and its precise position within the environment. 

In summary, to address the complexities of diverse road environments, the 
sensing process frequently employs multi-sensor fusion detection solutions. Modern 
high-level autonomous driving systems are equipped with a variety of sensors, 
including LiDAR, millimeter-wave radar, cameras, and GPS, forming an 
interconnected network akin to a small-scale Internet of Things (IoT) among these 
sensors. If the vast amounts of sensor data are not processed accurately or effective 
collaboration between sensors is lacking, substantial amounts of unusable data will be 
generated. This can lead to false perceptions within the autonomous driving system, 
thereby posing risks to vehicle operation. Consequently, sensor fusion is critical for 
integrating data from various types of sensors located in different positions to 
generate a unified and precise representation of the environment. As depicted in Fig. 
2, the IoT requires the fusion of multiple data sources alongside analytics to enhance 
understanding of hidden data patterns, eliminate uncertain data, and ultimately 
facilitate rapid decision-making.In an automated vehicle driving system, the 
environment perception module serves as the foundational component. If this module 
produces incomplete or ambiguous results, subsequent processes such as data fusion, 
semantic segmentation, and object tracking will also be compromised, potentially 
posing significant risks to both drivers and vehicles. Consequently, achieving stable 
and efficient target detection and recognition is a critical task in the vehicle 
environment perception phase. This process directly influences the planning, 
decision-making, and path control stages of intelligent vehicles. Currently, widely 
adopted methods for vehicle target detection include machine vision, millimeter-
wave radar, LiDAR, and others. 
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Fig. 2. IoT data analytics model 

Machine vision remains the earliest and most extensively utilized sensor for 
vehicle detection [3]. These sensors are capable of capturing a wealth of perceptual 
information, including color, grayscale, texture, and semantics, from the traffic 
environment, demonstrating a robust ability to represent detailed vehicle targets. 
With the continuous improvement in performance and reduction in cost of machine 
vision systems, an increasing number of companies and researchers are adopting 
various types of cameras as fundamental solutions for environmental sensing in smart 
vehicles, exemplified by Mobileye [4] and Tesla [5]. 

Based on the underlying algorithmic principles, machine vision-based vehicle 
detection methods can be categorized into three distinct types: prior knowledge-
based, machine learning-based, and deep learning-based 

Perception based on prior knowledge. An approach based on prior knowledge 
considers that, in contrast to the complex and dynamically changing traffic 
environment, vehicles on the road possess fixed appearances and characteristics. 
These features can be leveraged for vehicle detection through the Hypothesis 
Generation (HG) and Hypothesis Verification (HV) phases. Specifically, the 
algorithm first generates a region of interest (ROI) based on the results of vehicle 
detection during the HG phase, and then verifies the presence of a vehicle within the 
ROI during the HV phase. This two-step process not only significantly enhances the 
efficiency of vehicle recognition but also reduces the likelihood of erroneous 
identifications. In this study, five distinct vehicle features are defined: The presence 
of shadows beneath the vehicle, with a significantly lower grayscale value compared 
to the surrounding road [6],[7]; the color of the headlights appears bright red, and 
information extracted from the red channel can accurately locate the position of the 
taillights of the preceding vehicle [8],[9]; the edges of vehicles exhibit distinct linear 
characteristics in contrast to the surrounding environment [10],[11]; the color of 
vehicles demonstrates continuity and aggregation within the image, which can be 
effectively extracted using different color channels combined with threshold 
segmentation [12],[13]; nearly all vehicles possess symmetry, allowing for easy 
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segmentation from the environment via symmetry-based judgment, which also aids in 
refining vehicle boundaries [14],[15]. Based on these five features, recognition can 
comprehensively cover vehicles in any scene environment. Additionally, the 
symmetry feature of vehicles is frequently utilized for verification in the HV link. 

Perception based on machine learning. Although feature engineering based on 
prior knowledge can effectively capture the static attributes of vehicles, it still 
encounters challenges such as sudden lighting changes and occlusion in dynamic 
traffic scenarios. To improve the generalization capability of the model, researchers 
have integrated machine learning approaches to adaptively learn more discriminative 
vehicle representations through data-driven strategies, thereby addressing the 
limitations of manually designed features. 

Machine learning is employed in vehicle detection tasks to encode vehicle 
image information using manually designed features. Through specific algorithms, 
high-dimensional vehicle information is mapped into low-dimensional 
representations that are more suitable for training machine learning models. 
Subsequently, the model is optimized through iterative training to achieve the desired 
performance [16]. Feature extraction and classifier training constitute the core of 
machine learning-based vehicle detection methods. Vehicle feature extraction shares 
many commonalities with face recognition and pedestrian detection. Commonly used 
features such as Haar/Haar-like features, Histogram of Oriented Gradients (HOG) 
features, and Deformable Parts Model (DPM) features have been validated in vehicle 
detection. In addition, other feature extraction algorithms like wavelet features, 
Principal Component Analysis (PCA), Scale-Invariant Feature Transform (SIFT), 
Speeded-Up Robust Features (SURF), and Local Binary Patterns (LBP) are also 
widely applied. Sometimes, combining these features can yield richer representations 
for vehicle detection [17]-[19]. Classifier training involves further processing of the 
extracted features to distinguish between vehicle and non-vehicle targets. Common 
classifiers in machine learning include K-nearest neighbors (KNN), Support Vector 
Machines (SVM), Decision Trees, and AdaBoost. Different combinations of feature 
extraction techniques and classifiers can lead to various vehicle detection algorithms, 
as illustrated in Table 1. 

Table 1 
Different combinations of feature extraction and classifiers 

Classifier Features Advantage 

SVM HOG  
[20],[21] 

Excellent performance in target detection and 
pedestrian recognition, particularly in the efficient 

processing of edge and gradient information. 
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Classifier Features Advantage 

DPM  
[22]-[24] 

Strong robustness in complex deformation target 
detection, and is well-suited for handling occlusion 

and multi-attitude scenarios. 

Wavelet 
Features  
[25],[26] 

Outstanding performance in image classification and 
multi-resolution analysis makes it particularly 

suitable for capturing both local details and global 
features effectively. 

PCA  
[27],[28] 

High efficiency in dimensionality reduction and data 
classification, making it suitable for processing high-

dimensional data and enhancing computational 
performance. 

LBP  
[29],[30]  

Excellent performance in texture classification and 
facial recognition makes it particularly suitable for 
extracting local texture features with high accuracy 

and reliability. 

SURF  
[31] 

Excellent performance in texture classification and 
facial recognition makes it particularly suitable for 
extracting local texture features with high accuracy 

and reliability. 

SIFT  
[32],[33] 

High-precision object recognition and matching in 
complex scenes, which is suitable for processing 

scale-invariant features. 

AdaBoost 

SIFT  
[32],[33] 

Excellent performance in target detection and feature 
matching, making it suitable for integrating local 

features to enhance classification accuracy. 

Haar /  
Haar-like  
[34-37] 

High efficiency in real-time target detection makes it 
suitable for quickly extracting simple features and 

constructing robust classifiers. 

KNN Haar-like  
[38] 

Performs effectively on simple classification tasks, 
making it suitable for small-scale datasets and real-

time applications. 

DecisionTree HOG  
[38],[39] 

Stable performance in object detection and image 
classification tasks, making it suitable for processing 

structured features and generating interpretable 
classification models. 
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Perception based on deep learning. Traditional machine learning approaches 
depend on the integration of manual feature extraction and classification algorithms, 
with their performance constrained by the capability of feature representation. As 
hardware computational power has advanced and data scales have expanded, deep 
learning has realized the joint optimization of feature extraction and target 
recognition via an end-to-end learning framework, offering a novel paradigm shift for 
perception. 

Deep learning-based methods, particularly target-level vehicle detection, serve 
as a general approach for object recognition. Almost all target-level models can be 
applied to vehicle detection. The diversity in algorithm architectures has led to 
various detection methods, which are primarily categorized into one-stage and two-
stage detection. One-stage detection demonstrates a significant advantage in real-time 
performance, while two-stage detection achieves higher accuracy due to the adoption 
of candidate region generation strategies, making it effective for detecting small 
target vehicles. However, with ongoing research, one-stage detection methods have 
gradually overcome issues related to low accuracy and difficulty in detecting small 
targets, achieving both speed and precision, thus becoming the mainstream algorithm 
today. Additionally, the choice of backbone network plays a crucial role in balancing 
real-time performance and accuracy. For instance, in the Faster R-CNN model, 
ZFnet, a 6-layer network, processes images at 17 FPS with an average accuracy 
(mPA) of 62%, whereas VGG16, a 16-layer network, processes images at only 5 FPS 
but achieves an mPA of 73% [40]. Compared with the two, ZFNet is 3.4 times faster 
but suffers an 11% drop in accuracy, indicating the importance of balancing real-time 
performance and accuracy [41]. The second approach involves vehicle semantic 
segmentation based on deep learning, which achieves better recognition of vehicle 
contours compared to target-level methods, thereby enhancing accuracy [42]. 
Semantic segmentation can be categorized into fully supervised algorithms and 
weakly supervised algorithms depending on the method of data labeling [43]. Fully 
supervised algorithms rely on manual labeling to achieve superior segmentation 
results, while weakly supervised algorithms reduce dependence on manual labeling at 
the cost of slightly lower segmentation quality. To achieve better autopilot outcomes, 
this paper focuses solely on the application of fully supervised algorithms. 
Representative semantic segmentation methods such as Mask R-CNN [44], 
DeepMask [45], and SharpMask [46] adopt a two-step process: first, the approximate 
vehicle candidate region is extracted using object detection, and then the pixels 
within the region are classified using a trained classifier. This process depends 
heavily on the extraction of the vehicle candidate region, resulting in relatively low 
real-time performance. Google Lab enhanced the fully convolutional network with 
greater computational power and proposed the DeepLab/V2/V3 models [47],[48], 
which extract as much image information as possible through techniques such as 
probability maps, image pyramids, and dilated convolutions, thereby improving the 
accuracy of vehicle semantic segmentation. However, due to the higher hardware 
requirements of semantic segmentation models, inference speed is often slower for 
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these models. Therefore, designing an efficient lightweight semantic segmentation 
model remains a critical task for future research. 

Millimeter-wave radar represents a more mature vehicle detection technology 
compared to machine vision. Even before the advent of machine vision, millimeter-
wave radar was already widely used to assist in recognizing the peripheral 
information around vehicles. Millimeter-wave radar can detect obstacles within blind 
spots and measure the distance between the vehicle and the obstacle. It demonstrates 
excellent general adaptability under adverse weather conditions and is capable of 
obtaining both the depth information and motion status of targets. Despite the rapid 
development of various sensors today, millimeter-wave radar remains an 
indispensable component of the vehicle perception system. Depending on the 
accuracy of the millimeter-wave radar, it can be divided into target-level and image-
level. 

Target-level radar. Target-level radars are equipped with built-in chips and 
algorithms that directly convert the reflected signals received by the radar into target 
information, including but not limited to distance, angle, and reflection intensity. 
However, target-level radars can be easily confused by stationary targets and false 
targets. Stationary targets refer to objects such as streetlights, trees, and guardrails 
that consistently exist in the environment. These targets exhibit significantly different 
radar cross-sections and signal-to-noise ratios compared to vehicular targets, which 
can be effectively filtered out by setting appropriate thresholds. Additionally, 
machine learning methods such as Deep Belief Networks (DBN) [49] and Artificial 
Neural Networks (ANN) [50] can be employed to further categorize radar targets. 
False targets, on the other hand, arise due to factors like road bumps or signal 
interference and do not truly exist. Unlike stationary targets, false targets persist for a 
shorter duration and can be mitigated using techniques such as Kalman Filtering [51], 
Target Tracking Algorithms [52], and Life Cycle Algorithms [53]. 

Image-level radar. Target-level radar exhibits several limitations. As a 
millimeter-wave radar that was initially employed in vehicle perception systems, it 
demonstrates significant shortcomings when addressing complex environments. To 
address these challenges, researchers have initiated investigations into image-level 
radar. 

Image-level radar: As the frequency restrictions on radar in the civil field are 
gradually being lifted, millimeter-wave radar is achieving higher operating 
frequencies and evolving into image-level millimeter-wave radar. This type of radar 
can convert radar signals into image signals by generating radar projection maps and 
point cloud maps. High-frequency radar signals can be used to generate point cloud 
maps, which serve as the basis for applying machine learning and deep learning 
methods for vehicle detection. Zhao et al. extracted feature vectors from point clouds 
using the DBSCAN algorithm and combined them with an SVM classifier to 
characterize vehicles and capture targets [54]. Guan et al. utilized a GAN network 
and a point cloud segmentation algorithm to further improve vehicle detection 
accuracy [55]. Additionally, coherent imaging radar offers higher resolution and 
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generates SAR maps that are compatible with various image-based target detection 
algorithms such as YOLO [56], SSD [57], CNN [58], [59], among others. 

Overall, millimeter-wave radar is insufficient to meet the demands of an 
autonomous driving system on its own. However, it remains an essential component 
of the system and must be integrated with data from other sensors to create an 
accurate and comprehensive perception of the vehicle's surroundings. 

With the rapid advancement of sensor technology, LiDAR has become 
increasingly prevalent in vehicle target detection systems. By actively emitting and 
receiving laser signals, LiDAR is capable of detecting obstacles and operates 
effectively even in low-light conditions as an active sensing modality. Moreover, 
LiDAR can capture detailed three-dimensional environmental information with 
greater precision compared to image-level millimeter-wave radar, making it a critical 
component for achieving robust autonomous driving environment perception. LiDAR 
detection methods can be classified into traditional and deep learning-based 
approaches depending on the underlying algorithms. 

LiDAR based on traditional methods. Constrained by the characteristics of 
lasers, traditional methods generate sparse and large-scale point cloud data using 
LiDAR, making it challenging to process raw data. Therefore, traditional methods 
typically transform point cloud data into 2D/2.5D representations, such as grid maps 
[60]-[62] and range images [63], [64]. Point cloud segmentation can significantly 
enhance the real-time performance of traditional methods while drastically reducing 
computational complexity. By leveraging road surface features such as reflection 
angle, reflection intensity, and continuity, road information in the point cloud can be 
efficiently segmented from vehicle and obstacle data when appropriate feature 
thresholds are set [65], [66]. However, the effectiveness of point cloud segmentation 
diminishes on uneven roads. To address this issue, some scholars have proposed a 
novel approach: first, fit the road surface to level it [67]-[70]; second, cluster point 
clouds with similar features using clustering algorithms; and finally, classify targets 
using pattern matching or machine learning algorithms [71]-[74]. This method 
resembles the prior knowledge-based approach used in machine vision, relying 
heavily on prior knowledge rather than focusing on intrinsic point cloud information, 
thus limiting its generalization capability. 

LiDAR based on deep learning. To address the limitations of traditional 
methods, especially their reliance on manually designed features and prior 
knowledge, deep learning-based methods have emerged as a powerful alternative, 
offering higher adaptability and detection accuracy. 

Deep learning methods have the capability to autonomously learn diverse 
information within point clouds, thereby enriching data features and enhancing 
detection accuracy. Deep learning-based vehicle target detection approaches can be 
classified into four categories: direct detection methods, projection-based methods, 
voxel-based models, and point cloud-based models. Direct detection methods utilize 
3D neural networks to process point cloud data directly, preserving as much raw data 
as possible. However, this approach tends to be computationally intensive, which 
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may hinder real-time system performance. Projection-based methods transform 3D 
point cloud data into 2D front or top views for feature extraction, significantly 
reducing computation time. Nevertheless, this transformation often results in the loss 
of depth information, leading to reduced accuracy in feature extraction [75]-[77]. 
Voxel-based models segment point cloud data into uniformly sized grids (voxels) to 
handle unordered point cloud data. For instance, reference [78] introduces the 
VoxelNet model, which first divides large-scale 3D grids using CNNs and 
subsequently employs a PointNet-like structure for constructing small-sized voxels. 
In this model, the voxel size critically impacts both system speed and accuracy, 
making it challenging to balance these factors. To address this issue, Ye et al. 
proposed a hybrid voxel model that integrates voxels of varying scales to improve 
performance [79]. Compared with the first three methods, the point cloud-based 
model is evidently more direct in processing data and thus better preserves depth 
information, which plays a crucial role in constructing the environment around the 
vehicle. Qi et al. [80] introduced the PointNet model, which adjusts the state of the 
point cloud via feature and spatial transformations and subsequently extracts features 
from the entire point cloud using maximum pooling. This approach effectively 
addresses the issue of feature disorder but simultaneously constrains the model's 
generalization ability at a fundamental level. Building upon this, researchers 
enhanced the capture of local features and proposed the PointNet++ model [81], 
which successfully tackles the problem of uneven data density and further enhances 
the performance of vehicle detection. 

In summary, environment sensing for autonomous driving systems demands a 
substantial amount of experimental data to ensure their reliability and robustness. 
Traditional real-vehicle testing is expensive, time-consuming, and limited in test 
scenarios, making it incapable of covering the countless complex and dynamic road 
conditions worldwide. Therefore, simulation is essential for modeling the 
performance of autonomous driving systems under real-world road conditions. 
Simulation does not rely on the availability of physical sensors, vehicles, or drivers, 
and its scalability improves with advancements in computing power. This approach 
enables the investigation of rare yet critical road situations [82],[83]. Although 
autonomous driving system simulations are widely used, they often fall short in 
simultaneously ensuring both accuracy and speed. Simulating real-world 
environments poses significant challenges, particularly regarding the influence of 
ambient light on LiDAR and vision cameras. Many existing models struggle to 
replicate complex lighting conditions accurately. Nils Hirsenkorn et al. [84] from the 
University of Munich pioneered a simulation model using the OptiX ray tracing 
engine, significantly enhancing the real-time performance of environment perception 
algorithms. 

Localization is essential for ensuring that the vehicle accurately determines its 
position on the map, which is critical for safe navigation in autonomous driving 
systems. The localization process enables the vehicle to precisely identify its location 
on the map, thereby supporting safe and reliable autonomous navigation. In a 



12 
 
previous article, simultaneous localization and mapping (SLAM) algorithms based on 
the vehicle's onboard sensors—such as millimeter-wave radar, LiDAR, and 
cameras—were discussed due to their close relationship with environmental 
perception. These will not be elaborated upon here. Beyond SLAM, global 
positioning, map-based positioning, and path tracking are also employed to enhance 
the accuracy of localization within autonomous driving systems. 

Global localization commonly relies on external signals, such as GPS or Global 
Navigation Satellite Systems (GNSS). Although GPS receivers are now widely 
accessible and can determine a vehicle's position by receiving signals from at least 
four satellites, their effectiveness is limited in certain scenarios. While GPS provides 
a broad field of view and plays a crucial role in navigating vehicles in environments 
like city streets and highways, it becomes unreliable in areas such as tunnels where 
signals are blocked or viaducts where multiple roads overlap. Due to its inherent 
limitations in accuracy and applicability in specific scenes, global positioning often 
needs to be complemented by more precise local positioning methods, such as 
SLAM, to achieve higher accuracy [85]. 

Map-based positioning determines the current location by comparing real-time 
onboard sensor data with pre-drawn, high-resolution environmental map data. 
Compared to GPS positioning, map-based positioning offers higher accuracy. 
Initially, digital maps were developed for driver assistance systems to enhance 
vehicle and driver safety, as seen in Advanced Driver Assistance Systems (ADAS) 
[86]. In recent years, high-definition (HD) maps have been introduced, providing 
detailed map information at a high resolution. These HD maps are structured in 
layers, encapsulating static information such as road geometry, lane markings, traffic 
signals, and other static features relevant to the vehicle's surroundings. 

High-definition maps can be categorized into two primary models: feature-based 
and dense models. Feature-based models focus on static elements, including road 
surface details, lane configurations, traffic signs, and other fixed infrastructure, which 
are manually recorded and hierarchically organized into a layered structure, often 
referred to as static targets. Dense models, captured through sensors, encompass 
dynamic elements such as pedestrians, vehicles, and other moving objects, along with 
additional contextual information related to the vehicle's movement. This dynamic 
data is integrated into the layered stack as supplementary dynamic layers. 

More advanced Local Dynamic Maps (LDMs) extend the static and dynamic 
layers mentioned above by incorporating additional information layers. These can 
include details such as neighborhood congestion levels, traffic light timings, and 
highly dynamic data layers to facilitate vehicle-to-everything (V2X) communication 
connections. To achieve the centimeter-level localization necessary for autonomous 
driving, high resolution is critical. Constructing high-resolution maps requires 
repeated collection of environmental data, followed by the use of algorithms like 
SLAM to convert and fuse measurements from multiple sensors [87],[88], thereby 
generating sufficiently accurate high-resolution static layers. 
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Nowadays, a variety of map formats have been developed for autonomous 
driving systems, with Lanelet2 and OpenDrive being the most widely adopted. 
Lanelet2 provides rich semantic road information, such as traffic signs, speed limits, 
and lane restrictions, enabling precise navigation in urban environments and making 
it highly suitable for autonomous driving systems. In contrast, OpenDrive is better 
suited for road network modeling and simulation, focusing primarily on detailed road 
structures rather than handling complex semantic data or real-time updates [89],[90], 
as illustrated in Table 2. 

Table 2 
Advantages and Disadvantages of Lanelet2 Maps vs. OpenDrive Maps 

Feature Lanelet2 OpenDrive 

Map Type Semantic, detailed, high-
definition maps 

Road geometry-focused, vector-
based maps 

Coverage Limited in some regions; 
crowdsourced via OSM 

Extensive global coverage; 
widely adopted 

Map Content High-level semantic road 
information (traffic signs, speed 

limits, lanes) 

Primarily road geometry and lane 
positioning 

Use Case Autonomous driving, high-
precision navigation 

Road network modeling, 
simulations 

Data 
Complexity 

High (more detailed) Low to medium (simplified road 
network) 

Real-time 
Updates 

Can integrate real-time updates 
via OSM 

Typically static; updates require 
manual intervention 

Adoption Growing, particularly in 
autonomous driving 

Highly adopted in simulation and 
road modeling 

Main 
Strength 

Detailed road semantics, lane-
level control 

Simplicity, large-scale 
simulations, widespread adoption 

Limitations Complex and requires high-
precision sensors 

Lacks semantic details, requires 
additional data for decision-

making 
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Planning and Decision-Making in the vehicle Autopilot 
system 
This component entails determining the appropriate actions for the vehicle to 

take in any given scenario. Path planning techniques can be categorized into three 
main types: traditional methods, machine learning and deep learning approaches, and 
meta-heuristic optimization algorithms. Traditional methods often face limitations 
that make it challenging for them to outperform the other two categories due to their 
inherent constraints. Machine learning and deep learning-based path planning 
techniques excel in learning and adapting swiftly in known environments. 
Meanwhile, meta-heuristic optimization algorithms serve as versatile processors 
capable of addressing complex problems. Additionally, hybrid algorithms that 
integrate these three techniques are gradually emerging, leveraging the respective 
strengths of each approach [91]. 

Risk assessment and prediction constitutes the initial phase of path planning. 
This process relies on environmental perception data to evaluate the overall risk of 
the current driving scenario and predict the movements of surrounding vehicles or 
pedestrians, thereby enhancing the emergency risk avoidance capabilities of 
autonomous vehicles. Risk assessment and prediction can be categorized into three 
main types: uncertainty and risk evaluation, dynamic target behavior forecasting, and 
driver's driving style classification. 

1. The primary objective of uncertainty and risk assessment is to monitor the 
overall road environment, typically achieved through the integration of 
radar systems, camera technologies, and neural network algorithms. 

2. Dynamic target behavior prediction involves not only surrounding 
vehicles and pedestrians but also all road traffic participants who are 
subjectively influenced by their consciousness. Accurate prediction of 
these participants enables the system to respond more swiftly in 
unexpected situations. However, existing algorithms often fail to focus on 
a single target for an extended period, resulting in insufficient data 
accumulation for predicting the behavior of each individual target. 

3. In contrast, the categorization of a driver's driving style is arguably the 
most critical component of the risk assessment and prediction process. 
Driving styles can be classified based on data such as the frequency of 
lane changes over a specific time period, vehicle acceleration patterns, 
and other relevant metrics, following the detection of the target vehicle 
[92]. In this context, various algorithms, including neural networks, 
support vector machines (SVM), principal component analysis (PCA), 
and K-means clustering, are commonly employed to categorize driving 
styles [93]. 

The primary objective of the path planning phase is to determine a safe and 
efficient travel route for the vehicle. Initially, global planning is conducted using map 
and GPS data to navigate the optimal road from the starting point to the destination. 
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Subsequently, continuous local planning is performed along this forward route to 
address traffic signals, avoid obstacles, and prevent potential collisions. However, as 
the number of available nodes increases during local planning, the computational 
complexity grows exponentially, making the task of identifying the shortest collision-
free path a significant challenge that remains to be addressed in the path planning 
process. 

Behavioral decisions entail selecting actions in complex scenarios, such as 
interacting with other road users, handling accidents, and adapting to dynamic 
environments. This encompasses rule-based systems, behavior prediction, 
reinforcement learning, among others. Behavior prediction and reinforcement 
learning have been elaborated upon in the previous section. Rule-based systems 
involve employing predefined rules within traditional decision-making frameworks to 
direct vehicle behavior, such as stopping at red lights or yielding to pedestrians. 
While these rules are straightforward and effective in structured situations, they may 
exhibit insufficient adaptability in uncertain or ambiguous contexts. 

Finally, the issue of ethical and moral safety decisions must be addressed. In 
emergency scenarios where an accident is inevitable, self-driving cars may need to 
make complex ethical judgments, such as whether to swerve into an obstacle to 
protect pedestrians or continue along their current trajectory. The development of 
these decision-making processes is ongoing and may draw upon ethical frameworks 
like utilitarianism or deontological ethics. 

Summarizing the previous section, there are typically three approaches for 
conducting path planning and decision-making processes, which we will present in 
turn: 

Traditional path planning algorithms are designed to address the challenge of 
identifying the optimal or suboptimal path from a starting point to an endpoint within 
a complex environment. These algorithms primarily encompass graph-based 
methods, sampling-based methods, gradient-based methods, optimization-based 
methods, and interpolation curve methods, among others. 

Graph-based methods. Graph-based methods, such as Dijkstra and A*, are 
widely employed in path planning for autonomous driving systems. These methods 
represent the environment as a graph, where nodes correspond to potential locations 
and edges signify connections between these locations. The algorithm subsequently 
conducts a search to identify the shortest path from the start node to the destination 
node. While these methods yield precise solutions within a confined search space and 
exhibit strong performance in static environments by finding optimal paths, their 
computational demands can escalate rapidly in dynamic or complex scenarios. This 
increase in computation may render graph construction and path searching 
impractical for large-scale or continuous search spaces. 

Although graph-based methods can theoretically generate optimal solutions in 
structured environments, their computational requirements escalate significantly in 
unstructured and dynamic scenarios. To balance real-time efficiency with path 
feasibility, sampling-based methods enable comprehensive exploration of high-
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dimensional state spaces using stochastic techniques, albeit with some compromise in 
optimality. 

Sampling-based methods. Sampling-based methods, such as the Rapidly-
exploring Random Tree (RRT), sample points within the state space and attempt to 
connect them to construct a tree structure. This tree is subsequently utilized to 
identify a feasible path from the start point to the destination. Sampling-based 
methods are generally faster than graph search methods, capable of addressing high-
dimensional state spaces, and well-suited for dynamic and unknown environments. 
However, the generated paths may lack sufficient smoothness and exhibit "jitter," 
necessitating additional optimization steps to enhance both path efficiency and 
comfort. 

Even though sampling-based methods enhances adaptability to the environment, 
the paths generated often encounter challenges in terms of smoothness and comfort. 
The potential field gradient method achieves continuous optimization through 
physical modeling, transforming the process of path search into a trajectory 
optimization problem within the potential energy field. This provides an innovative 
approach for ensuring smooth motion under dynamic constraints. 

Gradient-based methods. Gradient-based methods leverage the gradient of a 
potential field to guide the search for a path. These methods usually define a potential 
function that quantifies the desirability of each point in the environment, and 
subsequently employ gradient descent or analogous techniques to identify a path that 
minimizes this potential. This approach is adept at managing complex constraints, 
such as obstacles and road boundaries, and in certain scenarios, produces smooth and 
efficient paths. Nevertheless, it is prone to converging on local optima in complex or 
unfamiliar environments and exhibits sensitivity to the formulation of the potential 
function and the selection of parameters. 

The gradient-based methods tend to fall into local optima traps. Although it can 
address continuous constraints effectively, the inherent limitations of heuristic 
approaches should not be disregarded. Optimization-based methods grounded in 
mathematical programming facilitate precise path planning under global constraints 
via systematic modeling. Moreover, these methods unify multiple objectives, 
including safety and comfort, within an integrated framework for thorough 
consideration. 

Optimization-based methods. Optimization-based methods for path planning 
in ADS utilize mathematical planning or optimization algorithms to determine 
optimal paths. These methods identify the optimal path by defining one or more 
objective functions and corresponding constraints. The objective function typically 
relates to factors such as path length, safety, and comfort, while constraints may 
encompass road boundaries, obstacle locations, and vehicle dynamics limitations, 
among others. Depending on actual requirements, different objective functions and 
constraints can be established, enabling the identification of an optimal path through 
mathematical planning to accommodate various driving scenarios and tasks. Due to 
their accuracy, flexibility, and scalability, optimization-based methods can be 
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integrated with other algorithms, such as heuristic search algorithms and sampling 
algorithms, to enhance detection efficiency and path quality. Nevertheless, for large-
scale or complex detection spaces, the computational demands of optimization 
algorithms may become substantial, potentially compromising real-time performance. 
Additionally, parameter selection can significantly impact the stability and 
performance of the optimization algorithm, with inappropriate parameters leading to 
suboptimal results. 

Although optimization-based methods can effectively address multi-objective 
trade-off problems, discrete solutions frequently encounter continuity challenges 
when implemented at the vehicle execution level. As a post-processing module, 
interpolation curve methods convert discrete paths into continuous trajectories that 
comply with vehicle kinematics through parametric curve fitting. This ultimately 
ensures the closed-loop operation of the control layer interface. 

Interpolation curve methods. The interpolation curve methods involve 
constructing and inserting a series of new data points, given a predefined set of 
nodes, to generate a path that satisfies specific requirements. In Autonomous Driving 
Systems (ADS), this method is frequently employed to refine and optimize initial 
paths generated by the global planner or other local planners. This ensures collision 
avoidance while adapting to the dynamic environment and adhering to vehicle 
constraints. Commonly used curves include Bezier curves, spline curves, polynomial 
curves, and gyratory curves. A key characteristic of the interpolation curve method is 
its requirement to handle a large number of data points and constraints, which can 
increase computational complexity. By strategically selecting appropriate 
interpolation curve types and integrating them with optimization algorithms and real-
time feedback mechanisms, the path planning efficiency and driving safety of ADS 
can be significantly enhanced. 

Machine learning and deep learning play a pivotal role in autonomous driving 
path planning algorithms. Machine learning models can effectively leverage rich 
vehicle sensor data and map information, enabling data-driven path planning by 
collecting and analyzing extensive historical driving data. Through this process, the 
models learn driving characteristics and optimal paths under various road conditions. 
Deep learning models, on the other hand, excel at capturing complex nonlinear 
relationships and efficiently fusing multi-sensor data to construct highly accurate 
environment models. This capability allows for more precise predictions of both the 
vehicle's driving path and potential future obstacles. Consequently, the autonomous 
driving system can make more accurate and intelligent path planning decisions while 
providing essential data support for subsequent planning stages. Both machine 
learning and deep learning models possess continuous learning and self-optimization 
capabilities, allowing them to adapt to diverse complex road conditions and dynamic 
environments by identifying patterns and rules within training datasets. This ensures 
that the autonomous driving system maintains efficient and stable operation even 
when faced with unexpected changes in the road environment. Additionally, these 
models can analyze vehicle driving behavior under different traffic flows, weather 
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conditions, and road types, serving as a foundation for smarter, safer, and more 
secure path planning for autonomous driving systems. 

1. Supervised and deep learning techniques have been utilized in path 
planning primarily in two ways: within the perception layer for processing 
images and sensory data, or as an end-to-end driving framework that 
incorporates path planning. The capacity to train with extensive datasets 
enhances the algorithm's ability to generalize, enabling it to deliver high-
speed and accurate solutions in familiar scenarios. However, in unfamiliar 
scenarios or when anomalies occur, these techniques may exhibit 
suboptimal performance. This is due to their reliance on large volumes of 
labeled data and significant computational resources for model training. 
Additionally, end-to-end solutions can be challenging to interpret and 
debug, which may hinder their practical application. 

2. In reinforcement learning, the intelligent agent interacts with its 
environment via sensors and learns through a trial-and-error approach. 
During the training process, the agent's performance is assessed using a 
reward function. In each state, the agent selects an action that transitions it 
to another state. If the new state aligns the agent closer to the goal, it 
receives a positive reward. The strength of reinforcement learning lies in 
its capacity to handle complex environments and dynamic constraints 
while discovering optimal strategies through continuous exploration and 
learning. However, reinforcement learning also encounters challenges, 
such as high computational demands, low sample efficiency, and 
difficulties in addressing partially observable environments. To address 
these issues, researchers are actively investigating novel algorithms and 
techniques, including deep reinforcement learning and inverse 
reinforcement learning. 

3. Deep reinforcement learning integrates the representation learning 
capabilities of deep learning with the decision-making optimization 
capabilities of reinforcement learning, offering a robust learning 
framework for intelligences operating in complex environments. It can be 
classified into approaches such as deep Q-networks, gradient-based 
strategies, and model-based deep reinforcement learning, among others. 

Meta-heuristic optimization techniques, such as Genetic Algorithm (GA), 
Differential Evolution (DE), Simulated Annealing (SA), Ant Colony Optimization 
(ACO), and Particle Swarm Optimization (PSO), serve as versatile problem-solving 
frameworks applicable to a broad spectrum of optimization problems, including path 
planning for autonomous driving systems. These methods possess robust global 
search capabilities for identifying near-optimal solutions, making them particularly 
suitable for complex, multi-constrained, and dynamic environments. Furthermore, 
they can be integrated with other algorithms to form hybrid approaches that enhance 
overall performance. However, meta-heuristic optimization is computationally 
demanding and may necessitate extended run times. The algorithm's parameter 
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settings significantly influence its performance and require meticulous tuning. 
Additionally, these techniques often exhibit weaker local search capabilities, which 
can lead to suboptimal solutions (though this issue can be partially alleviated through 
algorithmic improvements). Due to the extensive number of meta-heuristic 
optimization algorithm derivatives, it is impractical to comprehensively introduce all 
variations here. 

Path Tracking and Control in the vehicle Autopilot system 
Path tracking and control play a pivotal role in automated vehicle systems, 

ensuring precise adherence to the intended trajectory while maintaining safety and 
stability. These systems enable vehicles to navigate diverse environments effectively, 
avoid obstacles, and respond dynamically to changing conditions such as traffic 
patterns and road alterations. Furthermore, they integrate seamlessly with other 
vehicle subsystems to execute planned maneuvers smoothly, including lane changes 
and turns. By minimizing erratic movements, these systems enhance passenger 
comfort, support ethical decision-making in critical situations, and improve driving 
efficiency through optimized route planning and speed regulation. 

Path tracking refers to the process of ensuring that a self-driving car adheres 
precisely to a planned route or trajectory. It facilitates smooth and safe navigation, 
enabling the vehicle to maintain its lane, follow curves, and respond effectively to 
environmental changes such as obstacles or traffic conditions. Path tracking is 
essential for implementing decisions made by the pathfinding system and ensuring 
that the vehicle remains on course while behaving predictably. Motion control 
algorithms translate trajectory decisions into real-time actions, such as steering 
adjustments, braking, and acceleration. Proportional-Integral-Derivative (PID) 
control, speed control, and path tracking are all critical components of vehicle motion 
control that involve decision-making processes. Basic PID controllers can be 
employed to regulate a vehicle's steering and speed. However, more advanced 
methods, such as adaptive PID controllers or fuzzy logic control, are often better 
suited for handling complex driving scenarios. Speed control, which falls under 
longitudinal control, adjusts the vehicle's speed based on factors like road gradients, 
surrounding vehicles, and speed limits. The primary objective of path tracking is to 
ensure that the vehicle follows the planned trajectory as closely as possible while 
accounting for dynamic constraints. Pure pursuit and Stanley controllers are 
commonly utilized for lateral control to keep the vehicle within its designated lane. 

Based on different strategies, path tracing can be classified into four distinct 
categories: 

Model Predictive Control (MPC) is an advanced control strategy that 
leverages a vehicle dynamics model to predict future states and determines optimal 
control inputs via an optimization algorithm. In path tracking, MPC can effectively 
account for the nonlinear characteristics and constraints of the vehicle, generating 
smooth and stable control commands. This makes it well-suited for addressing 
multivariate and Mult constraint optimization problems. MPC's ability to predict 
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future states and adapt to the vehicle's nonlinear characteristics provides a degree of 
foresight and stability. However, MPC is also associated with challenges such as high 
computational demands and limited real-time performance, particularly in complex 
environments. In these scenarios, the control effectiveness is significantly influenced 
by the accuracy of the model and imposes stringent hardware requirements. 

Sliding mode control (SMC) is a robust control strategy that ensures the system 
state converges to the sliding mode surface within a finite time by designing an 
appropriate sliding mode surface. The system then moves along this surface toward 
the equilibrium point. In path tracking applications, SMC demonstrates robustness 
against vehicle model uncertainties and external disturbances. Additionally, the 
algorithm is straightforward and easy to implement, as it does not require an exact 
mathematical model of the system. However, the effectiveness of the control is 
significantly influenced by the design of the sliding mode surface, which can be 
highly sensitive to system parameters and may induce vibrations during the control 
process. 

Path tracking based on proportional-integral-derivative (PID) control is a 
classical and widely adopted control strategy that adjusts the control inputs by 
calculating the proportional, integral, and derivative terms of the deviation to bring 
the system state closer to the desired value. In path tracking, the PID control 
algorithm is simple and frequently utilized for controlling basic maneuvers such as 
steering, acceleration, and braking. While PID control is robust to variations in 
system parameters, it exhibits limited adaptability to nonlinear and time-varying 
systems and may result in overshooting and oscillations during the control process. 

Path tracking based on fuzzy control and neural network control represents 
intelligent control strategies capable of addressing complex, uncertain, and nonlinear 
problems. In path tracking, these strategies adapt to dynamic changes in the vehicle 
and environment through learning and optimization processes. A precise 
mathematical model is not required, making them highly adaptive to nonlinear 
systems and uncertainties while effectively managing multivariate and complex 
constraints. However, these strategies also have notable disadvantages, including 
high initial investment costs, lengthy training and learning periods, and control 
performance that is heavily influenced by the quality of training data and the structure 
of the model. Additionally, in large-scale networks, the real-time performance of 
fuzzy and neural network control may be constrained due to computational 
limitations. 

At this stage, this paper systematically reviews and analyzes the current 
advancements in automated vehicle driving technology across three key dimensions: 
perception, planning and decision-making, and control. It also identifies several 
significant challenges, thereby providing a clear direction for future research efforts 
in this field. 
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Conclusion 
This paper provides a thorough review of the three core modules in autonomous 

driving systems: perception, planning, and control. It further investigates the current 
challenges and future research directions of this technology. The perception module 
leverages multi-sensor fusion and deep learning techniques to extract comprehensive 
environmental information. However, the integration and processing of sensor data 
remain challenging, particularly in complex and dynamic scenarios. Future research 
should prioritize the development of lightweight models and standardized testing 
frameworks to improve the system's real-time performance and robustness. Path 
planning and decision-making serve as the backbone of autonomous driving systems, 
integrating traditional algorithms, machine learning, and meta-heuristic optimization 
methods. Although existing algorithms demonstrate strong performance in known 
environments, their adaptability and generalization capabilities in complex and 
dynamic settings need further enhancement. Future studies should focus on refining 
decision-making processes for multi-agent coordination and intricate scenarios. Path 
tracking and control algorithms are crucial for ensuring the precise execution of 
planned trajectories while maintaining stability and safety in dynamic environments. 
Advanced techniques, such as model predictive control (MPC) and fuzzy control, 
exhibit superior performance under complex driving conditions. However, 
computational complexity and real-time requirements continue to pose significant 
challenges. Future research should focus on developing more computationally 
efficient control algorithms tailored for complex driving scenarios. Additionally, 
autonomous driving systems must address ethical decision-making in emergency 
situations. While current ethical frameworks provide a foundation, they remain 
insufficient for handling all possible scenarios. Future work should aim to establish a 
comprehensive and robust ethical decision-making framework to ensure safe and 
ethical behavior in uncertain and complex environments. Simulation testing remains a 
critical component for validating these systems. 
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