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В.Д. Лахно  

Квантовая нелокальность и специальная теория относительности 

 

Квантовая механика приводит к непримиримым противоречиям с 

классической специальной теорией относительности (СТО). Эти противоречия 

отсутствуют, если считать пространство дискретным. В данной статье в 

простейшем случае одномерного дискретного пространства получено 

дискретное уравнение Дирака. Показано, что отказ от континуального описания 

пространства снимает противоречия между квантовомеханическим описанием и 

СТО. Рассмотрены возможности экспериментальной проверки теории. 

Ключевые слова: одномерное уравнение Дирака, операторы скорости и 

координаты, блоховские осцилляции, энион 

 

V.D. Lakhno  

Quantum nonlocality and Special Theory of Relativity 
 

Quantum mechanics leads to irreconcilable contradictions with the classical special 

theory of relativity (STR). These contradictions are absent if we consider space to be 

discrete. In this paper, the discrete Dirac equation is obtained in the simplest case of 

one-dimensional discrete space. It is shown that the rejection of the continuous 

description of space removes the contradictions between the quantum-mechanical 

description and STR. The possibilities of experimental verification of the theory are 

considered 

Key words: one-dimensional Dirac equation, velocity and coordinate operators, 

Bloch oscillations, anyon 
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1. Introduction 

The purpose of this paper is to discuss some difficulties in reconciling quantum 

mechanics and the special theory of relativity (SRT). Apparently, the most striking 

ideological contradiction is the Einstein-Podolsky-Rosen (EPR) paradox, which 

demonstrates the non-local nature of interaction in quantum mechanics. 

Another equally striking evidence of the contradiction is the demonstration of the 

superluminal velocity of particle movement in tunneling processes. 

The special theory of relativity, which underlies classical physics, has never been 

doubted by the qualified majority of physicists. It followed that quantum mechanics 

had to undergo some modification. Such a modification was carried out a hundred years 

ago by Dirac, who postulated the relativistic equations of quantum mechanics. These 

equations themselves contained a number of irremediable contradictions, which had to 

be accepted for lack of anything better. Among them, first of all, is the equality of the 

eigenvalues of the velocity operator to the value of the speed of light. Another 

fundamental contradiction is the appearance of antiparticles in the original single-

particle Dirac equation. These contradictions were automatically transferred to the 

relativistic quantum field theory, which postulates the commutativity of field operators 

for spatially similar intervals, which is necessary for the implementation of cause-and-

effect relationships. 

All attempts to correct quantum mechanics remained unsuccessful. The validity of 

the conclusions of quantum mechanics was confirmed by numerous experiments, of 

which the most important were experiments to verify Bell's inequalities. 

It followed that something was wrong not with quantum mechanics, but with SRT. 

Within the framework of the postulates on which SRT is based, and which, like 

quantum mechanics, is confirmed by many experiments, nothing can be changed either. 

 

 



4 

This means that some postulates of the theory of relativity, should be abandoned 

in order to reconcile it with quantum mechanics, and such an abandonment should be 

quite radical. 

 

2. Preliminary Remarks 

 

We will proceed from the fact that, since classical mechanics is only a limiting case 

of quantum mechanics, then SRT is also its limiting case. 

SRT, in turn, is based on the concept of space and time. However, the concept of 

space does not appear in the original postulate of quantum mechanics, describing the 

evolution of the wave function. Indeed, in the most general case, such an equation has 

the form: 

𝑖ℏ
𝜕

𝜕𝑡
|Ψ⟩ = �̂�|Ψ⟩                                                         (1) 

where Hamiltonian H is written as: 

 

�̂�кв = ∑ 𝑣𝑖𝑗|𝑖⟩𝑖,𝑗 ⟨𝑗|                                                    (2) 

The indices i and j both discrete and continuous, define an infinite-dimensional matrix 

that determines the evolution of the Dirac vectors |Ψ⟩ . Thus, equation (1) describes 

not the motion of particles in space, but the evolution of their states in time. Of course, 

equations (1), (2) can be transformed to the evolution of the wave function in ordinary 

coordinate space, but this will only be a special limiting case of these equations. 

The use of postulate (1), (2) instead of a spatial description removes many questions 

and paradoxes. In particular, the question of the possibility of superluminal speed in 

such a formulation becomes meaningless, since there is no space. The comparison of 

some of the set of indices i with spatial coordinates is only a convention accepted for 

describing phenomena in space. Numerical modeling of the evolutionary processes 

described by (1), (2) leads to the fact that if the state of a particle at the initial moment 
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of time corresponded to i, then at any other moment of time there is a non-zero 

probability of finding the particle in some state j. When interpreted spatially, these 

indices can correspond to the idea of superluminal motion, for example, the tunneling 

of a particle with a superluminal velocity. The idea of SRT about simultaneous events 

in the absence of a spatial description is also meaningless. In quantum theory, there is 

an absolute uniform time, which leads to a natural explanation of the EPR paradox: all 

particles are connected to each other regardless of whether the interval is time-like or 

space-like when introducing a spatial description. 

In the approach under consideration there are no time paradoxes at all, such as the 

possibility of a time machine: you can return to the past, but this will be a return to 

exactly the state that corresponded to that past, that is, “killing grandfather” is simply 

impossible. 

3. Formalism 

 

The formalism of quantum mechanics is based on the concept of a state |Ψ⟩ and a 

superposition of states. According to the principle of superposition of states, the 

superposition of any states of a system taken with arbitrary (in the general case, 

complex) coefficients is also a state of the system. In other words, the states of the 

system form a linear vector space. This makes it possible to use a formal mathematical 

apparatus for linear vector spaces.  

We will denote the state vector by the symbol |𝜆𝑖⟩ if the system is in a state in 

which the physical quantity F has a certain value i. Such a state is called an eigenstate, 

and i is an eigenvalue. In addition to addition and multiplication by a complex number, 

the state vector can be projected onto another vector. In other words, it is possible to 

form a scalar product |Ψ⟩ with any other vector |Ψ⟩, which is denoted as ⟨Ψ′|Ψ⟩ and 

is a complex number, and: 

 

⟨Ψ′|Ψ⟩ = ⟨Ψ|Ψ′⟩∗.                                                  (3) 
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In a particular case |Ψ′⟩ = |Ψ⟩ the scalar product is a positive number and determines 

the norm of the vector. In quantum mechanics, each physical quantity F corresponds 

to a linear Hermitian operator �̂�, whose eigenvalues are the possible values of a 

physical quantity, and whose eigenvectors are its eigenstates: 

 

�̂�|𝜆𝑖⟩ = 𝜆𝑖|𝜆𝑖⟩.                                                      (4) 

 

The eigenvectors |𝜆𝑖⟩ of a Hermitian operator belonging to different eigenvalues are 

orthogonal to each other, i.e. ⟨𝜆𝑖|𝜆𝑗⟩ = 0, 𝑖 ≠ 𝑗. From them, one can construct an 

orthogonal basis in the state space, normalized to unity: ⟨𝜆|𝜆⟩ = 1. An arbitrary vector 

|Ψ⟩ can be expanded in this basis: 

 

|Ψ⟩ = ∑ 𝑐𝜆𝜆 |𝜆⟩.                                                     (5) 

 

To normalize the state vector |Ψ⟩ to a unit, the expansion coefficients 𝑐𝜆 satisfy the 

relation: 

 

∑ |𝑐𝜆|
2

𝜆 = 1.                                                        (6) 

 

The sign of the sum in formulas (5), (6) means summation over a discrete and 

integration over a continuous spectrum of values. In the case of a continuous spectrum 

of values, the vectors are assumed to be normalized to the -function: ⟨𝜆|𝜆′⟩ =

𝛿(𝜆 − 𝜆′). From (5), (6) it follows that in the expansion (5) of an arbitrary state vector 

|Ψ⟩ of a physical quantity F the values of |𝑐𝜆|
2 = |⟨𝜆|Ψ⟩|2 are equal to the probabilities 

of detecting the system in states |𝜆⟩, i.e. the probabilities that when measuring F, its 

value will be equal to . 
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Any linear operator chosen in the basis |𝜆⟩, can be represented by a matrix, in 

particular, the matrix elements of a Hermitian operator �̂� have the form: 

𝐹𝜆𝑖,𝜆𝑗 = ⟨𝜆𝑖|�̂�|𝜆𝑗⟩                                                    (7) 

 

and satisfy the relations: 𝐹𝜆𝑖,𝜆𝑗 = 𝐹𝜆𝑗,𝜆𝑖
∗ . 

For |𝜆⟩, which are eigenvectors of the operator  �̂�, the matrix corresponding to it 

is diagonal. 

If we compare an arbitrary vector |Ψ⟩ with a column of coefficients: 

 

|Ψ⟩ = (
𝑐1
𝑐2
⋮
)                                                            (8) 

 

in the chosen basis (5), then the action of the operator, on |Ψ⟩: is reduced to matrix 

multiplication. The vector |Ψ′⟩ resulting from such an action may differ from |Ψ⟩ in 

length and direction, i.e. it is a column in which, instead of coefficients сi, there are 

coefficients 𝑐𝑖
′ corresponding to the coordinates of the vector |Ψ′⟩ in the same basis: 

𝑐𝑖
′ = ∑ 𝐹𝑖𝑗𝑐𝑗𝑗 . 

Accordingly, the conjugate vector in a given basis is written as:  

 

⟨Ψ′| = (𝑐1
′∗, 𝑐2

′ ∗, ⋯ )                                                 (9) 

 

so that the scalar product:  

 

⟨Ψ′|Ψ⟩ = ∑𝑐1
′∗𝑐𝑖                                                   (10) 

 

is calculated according to the rules of matrix multiplication and, in the case of equality 

of |Ψ′⟩ and |Ψ⟩ leads to the normalization condition (6).  

If we choose an orthonormal basis of unit vectors as the basis vectors of the state: 
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|𝑖⟩ =

(

 
 
 
 

0
⋮
0
1𝑖
0
⋮
0)

 
 
 
 

                                                            (11) 

 

then any linear operator �̂� in this basis can be represented as:  

 

�̂� = ∑ |𝑖⟩𝑖,𝑗 ⟨𝑗|                                                   (12) 

 

using the rules of matrix multiplication for (11) it is easy to verify that (12) is a matrix 

with matrix elements 𝐹𝑖𝑗: 

 

∑ 𝐹𝑖𝑗|𝑖⟩⟨𝑗|
𝑁
𝑖,𝑗 = (

𝐹11 𝐹12
𝐹21 𝐹22

⋯ 𝐹1𝑁
⋯ 𝐹2𝑁

⋯ ⋯
𝐹𝑁1 𝐹𝑁2

⋯ ⋯
⋯ 𝐹𝑁𝑁

).                           (13) 

 

In quantum mechanics, the state of a system is determined by specifying a set of 

physical quantities that characterize the system – the so-called complete set. 

Any vector of the system’s state can be represented as a decomposition into states 

|𝜆⟩ of a complete set chosen by us, where  is the set of eigenvalues of the quantities 

included in this complete set. If  is a set of eigenvalues of the quantities that make up 

another complete set chosen to describe the same physical system, then in this new 

representation: 

 

|Ψ⟩ = ∑ 𝑏(𝜇)𝜇 |𝜇⟩,   𝑏(𝜇) = ⟨𝜇|Ψ⟩                                    (14) 

 

the coefficients 𝑏(𝜇) satisfy condition (6), i.e. |𝑏(𝜇)|2 are equal to the probability of 

finding the system in the state . Thus, the coefficients 𝑏(𝜇) have the meaning of the 
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wave function of the system in the representation of , which are related to the wave 

function 𝑐(𝜆) in the representation of  by the relation: 

𝑏(𝜇) = ∑ ⟨𝜇|λ⟩𝜆 𝑐𝜆.                                        (15) 

 

4. Quantum Mechanics of a Relativistic Particle 

 

Let us apply the outlined general scheme of quantum mechanics to describe a 

relativistic quantum particle and, as an example, obtain an equation that, corresponds 

to the one-dimensional Dirac equation in the space-time description. For this purpose, 

let us consider a one-dimensional discrete regular lattice. 

To describe the states of a particle in a chain, we will proceed from the 

Hamiltonian 

 

�̂� = ∑ 𝜈𝑖,𝑗𝑖,𝑗 |𝑖⟩⟨𝑗|,                                                     (16) 

 

where matrix elements 𝜈𝑖𝑗 are independent of time. 

The Schrödinger equation for the wave function of a particle |Ψ⟩ has the form: 

 

𝑖
𝜕

𝜕𝑡
|Ψ⟩ = �̂�|Ψ⟩.                                                     (17) 

 

We will seek the wave function of a stationary state for which the probability of finding 

a particle at any site in the chain does not depend on time in the form: 

 

|Ψ(𝑡)⟩ = 𝑒−𝑖𝑊𝑡|Φ⟩,                                                    (18) 

 

where the wave function |Φ⟩ does not depend on time, we assume that Planck's 

constant   is equal to 1. 

Substituting (18) into (17) leads to an equation for determining the eigenvalues of 

the particle energy W: 

 

𝑊|Φ⟩ = �̂�|Φ⟩.                                                       (19) 
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Let us denote by Wk the energy of the k-th state of the particle, corresponding to the 

wave function |Φ𝑘⟩, which we will seek in the form: 

 

|Φ𝑘⟩ = ∑ 𝑅𝑛𝑘𝑛 |𝑛⟩,                                                     (20) 

 

where the summation is performed over all sites of the chain. For the Hamiltonian (16), 

the eigenvalue equation (19) with the wave function (20) takes the form: 

 

𝑊𝑘𝑅𝑛𝑘 = ∑ 𝜈𝑛𝑛′𝑛′ 𝑅𝑛′𝑘.                                                (21) 

 

Let us consider the case when the matrix elements 𝜈𝑛𝑛′  are nonzero only if 𝑛′ = 𝑛 −

1, 𝑛, 𝑛 + 1. In this case, from (21) we obtain: 

 

𝑊𝑘𝑅𝑛𝑘 = 𝜈𝑛𝑅𝑛𝑘 + 𝜈𝑛,𝑛+1𝑅𝑛+1,𝑘 + 𝜈𝑛,𝑛−1𝑅𝑛−1,𝑘.                    (22) 

 

We will look for a solution to equation (22) in the form: 

 

𝑅𝑛𝑘 = 𝐶exp(𝑖𝑘𝑛).                                                    (23) 

 

We will consider in the equation for the eigenvalues (22), assuming for even and odd 

sites of the chain: 

 

𝑛 = 2𝑗:   𝜈𝑛,𝑛 = 𝜈2𝑗,2𝑗 = −𝑚0,   𝜈𝑛,𝑛+1 = 𝜈2𝑗,2𝑗+1 = 𝜈,                (24) 

   𝜈𝑛,𝑛−1 = 𝜈2𝑗,2𝑗−1 = −𝜈 

𝑛 = 2𝑗 + 1:   𝜈2𝑗+1,2𝑗+1 = 𝑚0,   𝜈𝑛,𝑛+1 = 𝜈2𝑗+1,2𝑗+2 = −𝜈, 

   𝜈𝑛,𝑛−1 = 𝜈2𝑗,2𝑗−1 = 𝜈,     𝑗 = 0,±1,±2,……. 

 

As a result, from (24) we obtain: 

 

𝑊𝑘𝑅2𝑗,𝑘 = −𝑚0𝑅2𝑗,𝑘 + 𝜈𝑅2𝑗+1,𝑘 − 𝜈𝑅2𝑗−1,𝑘                        (25) 

𝑊𝑘𝑅2𝑗+1,𝑘 = 𝑚0𝑅2𝑗+1,𝑘 − 𝜈𝑅2𝑗+2,𝑘 + 𝜈𝑅2𝑗,𝑘 
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We will look for solutions of the system of equations (25) in the form: 

 

𝑅2𝑗+1,𝑘 = 𝑢2exp[𝑖𝑘(2𝑗 + 1)],                                    (26) 

𝑅2𝑗,𝑘 = 𝑢1exp[𝑖𝑘2𝑗], 

 

Substituting (26) into (25) leads to the equations: 

 

(𝑊𝑘 +𝑚0)𝑢1 = 𝜈(𝑒
𝑖𝑘 − 𝑒−𝑖𝑘)𝑢2                                 (27) 

(𝑊𝑘 −𝑚0)𝑢2 = 𝜈(𝑒
−𝑖𝑘 − 𝑒𝑖𝑘)𝑢1 

 

Hence, for the spectrum, we obtain the expression: 

 

𝑊𝑘 = ±√𝑚0
2 + 4𝜈2sin2𝑘                                          (28) 

 

 

For a massless particle 𝑚0 = 0 and small k, the spectrum (28) must correspond to 

the photon energy. Thus, from (28) it follows that for this to happen 2𝜈 = 𝑐, must be 

satisfied, where c is the speed of light. 

In dimensional units 2|𝜈| = ℏ𝑐/𝑎, where ℏ is the Planck constant, a is the lattice 

constant. As 𝑎 → 0 from (28) follows the relativistic expression for the particle energy:  

 

𝑊𝑘 = ±√𝑚0
2𝑐4 + ℏ2𝑘2𝑐2 ,                                     (29) 

 

which does not depend on the value of a. Thus, in dimensional form, the dynamic Dirac 

equation corresponding to (25) takes the form:  

 

𝑖ℏ
𝜕𝑅2𝑗

𝜕𝑡
= −𝑚0𝑐

2𝑅2𝑗 +
ℏ𝑐

2𝑎
𝑅2𝑗+1 −

ℏ𝑐

2𝑎
𝑅2𝑗−1                         (30) 



12 

𝑖ℏ
𝜕𝑅2𝑗+1
𝜕𝑡

= 𝑚0𝑐
2𝑅2𝑗+1 −

ℏ𝑐

2𝑎
𝑅2𝑗+2 +

ℏ𝑐

2𝑎
𝑅2𝑗 

 

To bring the Dirac equation to its usual form in spatial description, we denote: 

 

𝑅2𝑗+1,𝑘 = 𝑅𝑘
(1)(𝑗)                                              (31) 

𝑅2𝑗,𝑘 = 𝑅𝑘
(2)(𝑗) 

 

We will consider 𝑅𝑘
(1)(𝑗) and 𝑅𝑘

(2)(𝑗) to be smooth functions of j. In this case, equations 

(30) will take the form: 

 

𝑊𝑘𝑅𝑘
(1)(𝑗) = 𝑚0𝑅𝑘

(1)(𝑗) − 2𝜈
𝑑

𝑑𝑗
𝑅𝑘
(2)(𝑗)                            (32) 

𝑊𝑘𝑅𝑘
(2)(𝑗) = −𝑚0𝑅𝑘

(2)(𝑗) + 2𝜈
𝑑

𝑑𝑗
𝑅𝑘
(1)(𝑗) 

 

or introducing the Pauli matrices: 

 

𝜎1 = (
0 1
1 0

),    𝜎2 = (
0 −𝑖
𝑖 0

),     𝜎3 = (
1 0
0 −1

) ,     𝑅 = (𝑅
(1)

𝑅(2)
)    (33) 

 

from (32) we get  

 

𝑊𝑅 = 𝜎3𝑅 + 2𝜈
𝑑

𝑑𝑥
𝑖𝜎2𝑅                                          (34) 

 

In dimensional form, the 1d Dirac time equation has the form: 

 

𝑖ℏ
𝜕𝑅

𝜕𝑡
= 𝑚0𝑐

2𝜎3𝑅 + 𝑖𝑐ℏ𝜎2
𝑑𝑅

𝑑𝑥
                                        (35) 
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where 𝑥 = 𝑗𝑎, the function R satisfies the normalization condition. Note that, 

depending on the choice of matrix elements (24), under the condition that it is 

Hermitian, there are different forms of writing the one-dimensional Dirac equation. 

In Dirac's interpretation, negative energies correspond to an unobservable "Dirac 

sea" filled with electrons, against the background of which particles with positive 

energy are described. Unlike Dirac, for a finite value of the lattice constant a, the energy 

of the particle (28) is limited from above and below and consists of two zones of 

continuous energies separated by an energy gap, the minimum value of which is equal 

to 2𝑚0. 

Here there is a complete analogy with intrinsic semiconductors, in which the lower 

zone is a completely filled valence band, and the upper one is a free conduction band. 

The minimum energy required to transfer a particle from the valence band to the 

conduction band is equal to 2𝑚0. 

 

5. Coordinate, Velocity, Momentum operators 

 

As an example, we give expressions for the operators of the coordinate, velocity 

and momentum of a particle in discrete quantum mechanics.  

By introducing the coordinate operator �̂�: 

 

�̂� = ∑ 𝑛|𝑛⟩𝑛 ⟨𝑛|,                                                (36) 

 

we find the velocity operator �̂� from the quantum mechanical relation for the 

commutator: 

 

𝑖�̂� = [�̂�, �̂�] = �̂��̂� − �̂��̂�.                                          (37) 

 

Substituting (36) and (16) into (37) we express the velocity operator as: 
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�̂� = 𝑖 ∑ 𝑣𝑛,𝑚(𝑚 − 𝑛)|𝑛⟩⟨𝑚|𝑛,𝑚  .                                       (38) 

 

Thus, the velocity operator is determined by the non-diagonal elements of the matrix 

𝑣𝑛,𝑚 and in the case when 𝑣𝑛,𝑚 are non-zero only between adjacent sites, that is, in the 

nearest neighbor approximation, from (38) we obtain:  

 

�̂� = 𝑖 ∑ (𝑣𝑛,𝑛+1|𝑛⟩⟨𝑛 + 1| − 𝑣𝑛,𝑛−1|𝑛⟩⟨𝑛 − 1|)𝑛 .                    (39) 

 

The momentum operator  �̂� should be determined from the commutation relations: 

 

[�̂�, �̂�] = �̂��̂� − �̂��̂� = −𝑖ℏ𝐼 ,                                       (40) 

 

where 𝐼 is the identity matrix, the operator �̂� is defined by expression (36). In the finite-

dimensional case, however, it is impossible to construct a momentum operator 

satisfying the commutation relations (40). This is due to the fact that the matrices A 

and B of finite rank have the property: SpAB=SpBA and, therefore, the spur taken from 

the left-hand side of equality (40) is equal to zero, and on the right, the spur from the 

identity matrix is equal to the dimension of the finite-dimensional space. When passing 

to the continuum limit, however, that is, for matrices of infinite rank, such an operator 

can be introduced. It is easy to verify that it has the form: 

 

�̂� = −𝑖ℏ∑
𝜕

𝜕𝑥𝑛 |𝑛⟩⟨𝑛| .                                           (41) 

 

In dimensionless variables, the eigenvalue of such an operator will be the wave number 

k, while for the velocity operator in a finite-dimensional Hilbert space, the eigenvalue 

of the velocity operator will be the quantity |𝜈| = 2𝜈sin𝑘. In dimensional units, this 
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corresponds to |𝜈| =  𝑐sin𝑘 from which it follows that the speed of light when passing 

on to a spatial description is the limiting speed. 

 

6. Two-body Problems and Anyons 

 

In both classical and quantum relativistic mechanics, the problem of even two 

bodies cannot be solved, since in continuum space the relativistic problem of two 

bodies cannot be reduced to a single-particle problem. This is due to the fact that if we 

use the special theory of relativity and introduce the concept of time for one of the 

particles, it becomes unclear how to introduce time for the second particle and write 

the corresponding dynamic equations. In the case of a discrete space, this is quite easy 

to do. Choosing the wave function of two particles in the form: 

 

|Ψ⟩ =∑ Ψ𝑖,𝑗|0, … , 1𝑖 , 0, … 1𝑗 , 0, … ⟩
𝑖,𝑗

 

 

For the coefficients Ψ𝑖,𝑗 we get: 

 

𝑣(ΔΨ)𝑖𝑗 + 𝑣𝑖𝑗Ψ𝑖𝑗 = √−1𝜕Ψ𝑖𝑗/𝜕𝑡  

where 𝑣𝑖𝑗 are the interactions of particles located at sites i and j, (ΔΨ)𝑖𝑗  is the discrete 

Laplace operator: 

 

(ΔΨ)𝑖𝑗 = Ψ𝑖−1,𝑗 +Ψ𝑖+1,𝑗 +Ψ𝑖,𝑗−1 +Ψ𝑖,𝑗+1  

 

Accordingly, the probability of finding particles at point i is determined by the 

expression 𝑃𝑖(𝑡) = ∑ |Ψ𝑖𝑗(𝑡)|
2

𝑗  

Thus, the two-body problem in a 1d lattice becomes equivalent to the one-body 

problem in a 2d lattice.  
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In the 1d case under consideration, there is no concept of a particle spin. The 

concept of fermions and bosons is preserved in 1d. In the two-body problem, the limit 

𝑣𝑖𝑖 = ∞ corresponds to fermions, and the limit 𝑣𝑖𝑖 = 0 corresponds to bosons. 

The finite values of 𝑣𝑖𝑖 correspond to anyons that have not been observed in the 

world of elementary particles, but have meaning in condensed matter physics by 

introducing an anyon phase multiplier into the permutation relations: 

 

|𝑛,𝑚⟩ = 𝑒𝑖𝜃|𝑚, 𝑛⟩ 

 

where 𝜃 = 𝜋 corresponds to Fermi-Dirac statistics, and 𝜃 = 2𝜋 to Bose-Einstein 

statistics. 

 

Discussion 

 

The question of the EPR paradox, superluminal tunneling and wave function 

reduction are in fact questions of the same nature. For their consistent description, the 

approach under consideration assumes the use of a discrete space. This approach, using 

the Holstein, Hubbard, Su-Schrieffer-Heeger and other models, has long been used in 

condensed matter physics. 

An experimental test of the discrete nature of space can be cosmological 

observations. Due to the dependence of the speed of light on the granularity of space, 

its value for photons of different energies will be different. This follows from the fact 

that, according to (28), at 𝑚0 = 0 the group velocity of a photon 𝑣 =  𝑐cos𝑘𝑎, i.e. it 

decreases with increasing energy. 

In terrestrial conditions, direct confirmation of the possibility of superluminal 

speed can be obtained in tunnel experiments if a large concentration of particles is 

created to the left of the tunnel barrier, of which at least one will be recorded to the 

right of the barrier in a time shorter than the time it takes for light to pass through the 

region occupied by the barrier. 
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The approach considered leads to numerous new effects that have apparently never 

been discussed in the literature. So, for example, due to the finiteness of the magnitude 

of the possible particle energy determined by (28), it is possible to observe such a 

phenomenon as Bloch oscillations of elementary particles in superstrong electric fields 

with a frequency of w = eEa, where E is the electric field intensity. The presence of 

such oscillations leads to the possibility of emitting ultra-low frequency 

electromagnetic waves. This radiation can be observed in collision experiments of 

elementary particles, such as protons, the electric field intensity inside of which is 

millions of times higher than intra-atomic ones. 

The motivation for writing this article was the intensive development of such 

industries as quantum computers and quantum computations. It is generally assumed 

that any theory is approximate, since an exact theory must be relativistic. However, 

this does not apply to quantum computers, which operate based on the properties of 

entangled states. Taking into account relativistic corrections in the theory of quantum 

computations would make it impossible to carry out such calculations. Relativistic 

corrections would lead to a rapid accumulation of computational errors due to 

decoherence associated with the use of SRT. It is also difficult to specify the exact 

limits of applicability of SRT as well as to determine the value of the fundamental 

length of a discrete space. Roughly speaking, the limits of applicability of SRT can be 

defined as follows: if the application of SRT leads to paradoxes, a discrete space and a 

quantum mechanical description should be used. 

One of the current problems of physics is the quantum-mechanical generalization 

of SRT to gravity, which in the classical case is described by the general theory of 

relativity. Such a generalization to the case of quantum mechanics, apparently, can be 

associated with a further rejection of the postulates used, for example, from the 

translational invariance of discrete space. An experimental confirmation of the discrete 

nature of the gravitational field would be the observation of electromagnetic radiation 

from elementary particles in a strong gravitational field. Due to the discreteness of 
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space, this frequency will be equal to the Bloch frequency 𝑤 = 𝑚0𝐺𝑎 , where 𝐺 is the 

intensity of the gravitational field, which can reach Planck values near the singularities. 

This note can be expanded infinitely by means of sophisticated mathematical 

formalism and deep philosophical reflections on the nature of space and time. We leave 

this to those who wish to immerse themselves into the subject matter. The material 

presented is completely devoid of literature and references to it. This is done because 

of the countless number of publications on the issues considered, which are easy to 

find on the Internet. The list of references would be a multi-volume construction, 

making such an undertaking pointless. 
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