

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 21 за 2024 г.</u>

Рекомендуемая форма библиографической ссылки: Голубев Ю.Ф., Корянов В.В. Преодоление шагающим роботом препятствий, характерных для равнины // Препринты ИПМ им. М.В.Келдыша. 2024. № 21. 35 с. <u>https://doi.org/10.20948/prepr-2024-21</u> <u>https://library.keldysh.ru/preprint.asp?id=2024-21</u> Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В. Келдыша Российской академии наук

Ю.Ф. Голубев, В.В. Корянов

Преодоление шагающим роботом препятствий, характерных для равнины

Москва — 2024

УДК 531.38

Голубев Ю.Ф., Корянов В.В. Преодоление шагающим роботом препятствий, характерных для равнины

Представлена оценка сверху максимальной ширины зоны, запрещённой для наступания, которую шагающий робот может преодолеть в режиме статической устойчивости. На примерах шестиногого и четырёхногого роботов показано, что полученная оценка является неулучшаемой. С этой целью сформированы следовые последовательности постановки ног робота, обеспечивающие достижение значения оценки. Приведены результаты компьютерного моделирования и видеоматериалы, иллюстрирующие процесс преодоления препятствия шестиногим роботом.

Ключевые слова: шагающий робот, преодоление препятствий, компьютерное моделирование

Yury Filippovich Golubev, Victor Vladimirovich Koryanov. Overcoming obstacles typical for a flat terrain by a walking robot

An upper estimate of the maximum width of the forbidden zone for foot fulcrums, which a walking robot can overcome in static stability mode, is presented. Using the examples of six-legged and four-legged robot, it is shown that the obtained estimate can't be improved. For this purpose, the sequences of the robot's foot placement have been formed, ensuring the achievement of the estimation meaning. The results of computer modeling and video materials illustrating the process of overcoming an obstacle by a six-legged robot are presented.

Key words: walking robot, overcoming obstacles, computer simulation

Содержание

Введ	ение	3
1.	Постановка задачи	4
2.	Запас статической устойчивости	3
3.	Максимальная ширина зоны препятствия	1
4.	Следовое расписание	õ
5.	Компьютерное моделирование	3
Закл	ючение	3
Спис	оклитературы	ō

Введение

В естественной природной среде часто встречаются невысокие препятствия в виде областей, непригодных для опоры ног шагающего аппарата. Это могут быть глубокие расщелины, рвы, ручьи, лужи, траншеи, заболоченные участки, россыпи камней и пр. Такие природные образования будем в дальнейшем называть опасными областями. Колесные вездеходы разнообразных конструкций преодолевают такого рода препятствия одним способом. Они просто едут, и если получилось проехать, то и хорошо. Однако непрерывность их колеи накладывает серьёзные ограничения как на саму возможность проезда, так и на возможность не сокрушить состояние окружающей среды после их деятельности [1]. Для шагающих машин в зависимости от конструкции могут возникать различные варианты прохода над препятствием в зависимости от их размеров. Например, если препятствие целиком умещается между планируемыми точками опоры на следовой колее, то его можно легко перешагнуть, ничего не меняя ни в следовом расписании, ни в расположении планируемых следовых точек. Если ширина препятствия не превосходит расстояния между следовыми точками, но препятствие не попадает целиком ни в один из интервалов между ними, то тогда достаточно будет перестроить следовую последовательность не меняя направление движения. В том случае, когда препятствие широкое, но сравнительно короткое, робот может его попросту обойти.

Ниже рассматривается вопрос о преодолении широкого и весьма протяженного препятствия, когда перечисленные выше сразу напрашивающиеся способы преодоления не работают. В таком случае робот может применять методы, основанные на анализе способности робота дотянуться до точек опоры на противоположной стороне препятствия [2], и если это возможно, то пройти над препятствием, не обязательно соблюдая при этом регулярность походки. Если не получается дотянуться до необходимых опорных точек, то робот может попытаться перепрыгнуть через препятствие [3]. Для этого он должен весьма надёжно сопоставить свои динамические свойства с шириной препятствия, что крайне рискованно, когда края препятствия имеют разную высоту и не очень твёрдые.

В препринте исследуется вариант преодоления шагающим роботом запрещенных для наступания протяженных зон в режиме статической устойчивости без использования прыжков. Для преодоления такой зоны указанным способом можно либо использовать собственные элементы конструкции робота, либо привлечь какие-либо достаточно длинные предметы (доска или брус) из окружающей среды, чтобы обеспечить себе возможность переправы на противоположную сторону препятствия. Переправа робота по брусу уже рассматривалась ранее [4] для случая, когда края расщелины находятся на одной высоте. Отметим, что применение подобного рода опор может создавать дополнительные помехи, например, колебания и вибрации, неизбежно возникающие при движении по ним [5].

В данном препринте решена задача о нахождении максимальной ширины зоны, запрещённой для наступания, которую *n*-ногий симметричный шагающий робот с прямоугольным корпусом может преодолеть в режиме статической устойчивости. Найдена неулучшаемая аналитическая оценка максимальной ширины зоны. Для шестиногого робота доказано, что при возможности движения «след в след» допустимая ширина зоны препятствия ограничена суммой половины длины корпуса и предельного значения полушага робота. Установлено также, что для шестиногого робота при полудлине корпуса, превышающей полный предельный шаг, указанное ограничение сохраняет постоянное значение, равное с точностью до запаса статической устойчивости трем предельным полушагам. Указаны методы построения следового расписания, обеспечивающие достижение максимальной ширины зоны препятствия как для шестиногого, так и для четырёхногого роботов. Соответствующие алгоритмы были отработаны на программном комплексе «Универсальный механизм» [6] с учётом полной динамики шестиногого робота. Представленные результаты компьютерного моделирования подтверждают аналитические оценки.

1. Постановка задачи

Будем иметь в виду изолированные препятствия, расположенные на равнинной горизонтальной местности, для преодоления которых достаточно через них перешагнуть. Препятствие называется изолированным [2], если его можно заключить в область между двумя вертикальными плоскостями, перпендикулярными направлению движения корпуса, таким образом, что вне этой области в достаточно большой её окрестности отсутствуют точки, запрещённые для наступания. На опорной поверхности указанные плоскости выделяют полосу, называемую зоной препятствия, внутри которой нельзя помещать следовые точки. Ширина d зоны зависит от соотношения размеров препятствия и несущих свойств опорной поверхности.

Пусть корпус шагающего робота имеет форму прямоугольного параллелепипеда и инсектоморфную структуру ног [2]. Точки подвеса одинаковых двухзвенных весомых ног расположены на боковых сторонах корпуса симметрично относительно продольной и поперечной вертикальных строительных плоскостей корпуса, содержащих его центр. Тогда число ног робота n = 2k— чётное. Длина боковых сторон корпуса больше его ширины. Робот подходит к препятствию передней или задней стороной. При перешагивании через препятствие робот сохраняет направление продольной оси корпуса перпендикулярным границам зоны препятствия. Возникает задача о нахождении максимально возможной ширины зоны препятствия, которое робот может преодолеть. Требуется также указать логическую последовательность постановки ног (следовое расписание), позволяющую аппарату безопасно перешагнуть через такую зону.

Пусть $O_1\xi\eta\zeta$ – неподвижная декартова система координат. Плоскость $O_1\xi\eta$ горизонтальна. Ось $O_1\xi$ направлена перпендикулярно зоне препятствия. Ось $O_1\zeta$ направлена вертикально вверх. Ось $O_1\eta$ дополняет систему координат $O_1\xi\eta\zeta$ до правой тройки. Начало O_1 расположим со стороны подхода робота к препятствию, так что $\xi = \xi_m$ – уравнение передней границы зоны препятствия, а $\xi = \xi_M$ – уравнение её задней границы, ξ_m и ξ_M – постоянные, причём $0 < \xi_m < \xi_M$.

Декартову право-ориентированную систему координат Oxyz жёстко свяжем с корпусом аппарата так, чтобы её начало O совпало с центром однородного корпуса, плоскость Oxy содержала точки подвеса всех ног, ось Ox была ориентирована вдоль продольной оси корпуса по скорости его движения, ось Oy была направлена в сторону точек подвеса ног, расположенных с левой стороны корпуса по ходу его движения.

Ногам, расположенным справа (если смотреть вперёд в направлении движения) от продольной плоскости симметрии корпуса, припишем, начиная с задних ног, последовательные нечётные номера, а ногам, расположенным слева от указанной плоскости, — последовательные чётные. Пусть x_{2j} , y_{2j} , $z_{2j} = 0$ — относительные координаты точек подвеса ног левой стороны, а $x_{2j-1}, y_{2j-1}, z_{2j-1} = 0$ — относительные координаты точек подвеса ног правой стороны $(j = \overline{1, k})$. Потребуем, чтобы $y_i = (-1)^i b, b > 0, i = \overline{1, n}$. Геометрически это означает, что точки подвеса ног расположены на прямых, лежащих в плоскости Oxy симметрично относительно плоскости Oxz и равно отстоят от оси Ox на расстояние b. Кроме того, предположим, что $x_{2j-1} = x_{2j} = a[j - (k+1)/2]$. Величины a, b постоянны и определяют габариты корпуса аппарата, так что (k-1)a — длина корпуса и 2b — его ширина. Будем считать, что корпус шагающего аппарата движется поступательно, сохраняя в любой момент времени сонаправленную взаимную ориентацию осей координат $O_1\xi\eta\zeta$ и Oxyz.

Положения (x_i^f, y_i^f, z_i^f) стоп ног относительно корпуса определяются соот-

ношениями [4]

$$q_{xi} = x_i^f - x_i = -[(-1)^i l_1 \sin \beta_i - l_2 \sin(\beta_i + \gamma_i)] \sin \alpha_i, q_{yi} = y_i^f - y_i = [(-1)^i l_1 \sin \beta_i - l_2 \sin(\beta_i + \gamma_i)] \cos \alpha_i, q_{zi} = z_i^f - z_i = (-1)^{i+1} l_1 \cos \beta_i + l_2 \cos(\beta_i + \gamma_i), \quad i = \overline{1, n},$$
(1.1)

где l_1 — длина бедра, l_2 — длина голени, β_i — угол между бедром и осью Oz, γ_i — угол между бедром и голенью, α — угол поворота плоскости ноги вокруг оси, проходящей через точку подвеса ноги параллельно оси Oz. Непростая зависимость правых частей (1.1) от индекса *i* обусловлена требованием, чтобы углы, определяющие положение стопы в осях Oxyz для разных сторон робота отсчитывались единообразно в положительном направлении, если смотреть со стороны положительного направления осей Ox и Oz (рис.1, а и б).

Рис. 1: Угловые координаты робота

Обозначим (ξ_0, η_0, ζ_0) абсолютные координаты точки O. Тогда абсолютные координаты стоп ног примут вид

$$\xi_i^f = \xi_0 + x_i + q_{xi}, \quad \eta_i^f = \eta_0 + y_i + q_{yi}, \quad \zeta_i^f = \zeta_0 + z_i + q_{zi}. \tag{1.2}$$

Из формул (1.1) видно, что положение стопы ноги, при котором $\xi_i^f = \xi_0 + x_i$ и $\eta_i^f = \eta_0 + y_i$, оказывается особым. Во избежание неприятностей, связанных с вырождением уравнений (1.1), потребуем, чтобы при перешагивании через зону препятствия было выполнено ограничение

$$|\eta_i^f - \eta_0| \ge c' > b, \quad i = \overline{1, n}, \tag{1.3}$$

где c' — постоянная. В дальнейшем предполагается, что точки опоры ног каждой из сторон принадлежат соответственно левой и правой прямолинейным следовым колеям, параллельным боковым сторонам корпуса. В процессе движения какие-то ноги опираются о грунт, а какие-то находятся в состоянии переноса. Грунт может быть неровным. Вертикальные проекции точек опоры на плоскость $O_1\xi\eta$ образуют плоский выпуклый опорный многоугольник \mathcal{D} , как минимальное множество точек на плоскости $O_1\xi\eta$, содержащее проекции всех точек опоры робота.

Позиция робота называется статически устойчивой [4], если его центр масс, рассчитанный с учётом массивности корпуса и всех ног, проектируется строго внутрь опорного многоугольника \mathcal{D} :

$$C_{\xi\eta} \in (\mathcal{D} \backslash \partial \mathcal{D}), \tag{1.4}$$

где $C_{\xi\eta}$ – проекция центра масс аппарата (с учётом всех его ног) на плоскость $O_1\xi\eta, \partial \mathcal{D}$ – граница множества \mathcal{D} .

При движении по равнинной и в среднем горизонтальной местности естественным представляется положение корпуса, когда плоскости $O_1\xi\eta$ и Oxyпараллельны. Пусть это ограничение удовлетворено. Приняв во внимание неравенства (1.3) и условие сонаправленности осей координат, заключаем, что тогда для выполнения условия статической устойчивости необходимо, чтобы в число вершин опорного многоугольника входили опорные точки ног каждой из сторон.

Зону препятствия \mathcal{Z} можно выразить формулой

$$\mathcal{Z} = \{ (\xi, \eta) : \xi_m < \xi < \xi_M \}, \quad d = \xi_M - \xi_m,$$
(1.5)

так что

$$(\xi_i^f, \eta_i^f) \notin \mathcal{Z}. \tag{1.6}$$

Рассмотрим ситуацию, когда робот вплотную подошёл к передней границе ξ_m зоны препятствия и должен переправиться на другую сторону зоны. Это означает, что вначале переправы будет выполнено $\xi_0 + a(k-1)/2 \leq \xi_m$, а в конце переправы должно быть выполнено: $\xi_M \leq \xi_0 - a(1-k)/2$. Из множества \mathcal{G} всех последовательностей постановки ног и движений корпуса требуется указать последовательность, которая позволит роботу достичь

$$\max_{\mathcal{G}}(d) \tag{1.7}$$

при выполнении условий (1.3), (1.4) и (1.6).

2. Запас статической устойчивости

Оценим величину отклонения центра масс шагающего робота от центра масс его корпуса. Координата ξ_c центра масс робота определяется формулой

$$\xi_c = \frac{1}{M} \left(m_0 \xi_0 + m \sum_{i=1}^n \xi_{ci} \right) = \xi_0 + \frac{m}{M} \sum_{i=1}^n (\xi_{ci} - \xi_0),$$

где m_0 — масса корпуса, m — масса одной ноги, M — масса всего аппарата, ξ_{ci} — координаты центров масс ног. Следовательно, в соответствии с формулами (1.2) при симметричном расположении точек подвеса ног получим

$$\xi_c = \xi_0 + \frac{m}{M} \sum_{i=1}^n (x_i + q_{xi}^c) = \xi_0 + \frac{m}{M} \sum_{i=1}^n q_{xi}^c, \qquad (2.1)$$

где q_{xi}^c — координаты центров масс ног относительно их точек подвеса.

Для планирования перешагивания через запрещенные зоны в режиме статической устойчивости необходимо оценивать положение центра масс робота относительно критической границы опорного многоугольника, в окрестности которой устойчивость шагающего аппарата может быть нарушена. Как показывает формула (2.1), положение центра масс аппарата отклоняется от центра корпуса в некоторых пределах, зависящих от конструктивных особенностях ног и их положения относительно корпуса. По положению центра корпуса можно надёжно судить о критичности положения центра масс аппарата, если эти пределы гарантированно ограничивают область возможных положений центра масс аппарата и достаточно близки по x-координате. Близость указанных пределов в критических для потери статической устойчивости случаях с заданной точностью ε обеспечивается посредством надлежащей балансировки позы аппарата.

Определение 2.1. Позу аппарата назовём продольно *ε*-сбалансированной, если выполнено неравенство

$$\left|\sum_{i=1}^{n} q_{xi}^{c}\right| \le \varepsilon \frac{M}{m}.$$
(2.2)

Например, для шестиногого аппарата любая поза, удовлетворяющая соотношениям

$$q_{x1} = q_{x2} = -q_{x5} = -q_{x6}, \quad q_{x3} = q_{x4} = 0, \tag{2.3}$$

является абсолютно продольно ε -сбалансированной для любого ε и любой массы ног. Ещё один пример абсолютно продольно ε -сбалансированной позы доставляется равенствами

$$q_{x3} = q_{x4} = -q_{x5} = -q_{x6}, \quad q_{x1} = q_{x2} = 0.$$

Другой пример выглядит так:

 $q_{x1} = q_{x2} = -q_{x3} = -q_{x4}, \quad q_{x5} = q_{x6} = 0.$

Формула (2.2) представляет собой условие, при выполнении которого для оценки возможности сохранения продольной статической устойчивости можно пользоваться критерием близости центра корпуса к границе опорного многоугольника при заданном запасе статической устойчивости ε .

Определение 2.2. Движение робота считается *продольно статически устойчивым с запасом* ε , если в любой момент времени выполнено условие

$$\{(\xi, \eta_0) : \xi_0 - \varepsilon \le \xi \le \xi_0 + \varepsilon\} \in \mathcal{D}.$$
(2.4)

Ясно, что критерий будет физически осмысленным для достаточно малых ε . Например, он имеет геометрический смысл при значениях ε , не превышающих продольный размер опорного многоугольника в любой момент времени. При использовании критерия (2.4) предполагается, что ξ_c -координата центра масс робота из-за движения ног может оказаться в любой точке отрезка $[\xi_0 - \varepsilon, \xi_0 + \varepsilon]$, и заранее неизвестно в какой.

Можно сказать, что при значительной массе ног формула (2.2) определяет меру симметричности позы аппарата, при которой критерий (2.4) надёжно работает. Или, например, насколько масса отдельной ноги должна быть меньше суммарной массы всего аппарата, чтобы критерий (2.4) можно было использовать при любых положениях ног относительно их точек подвеса.

В предположении, что звенья l_1 и l_2 однородны, координаты центров масс ног относительно их точек подвеса даются выражениями

$$q_{xi}^{c} = x_{i}^{c} - x_{i} = \frac{1}{2} \left[(-1)^{i+1} l_{1} \sin \beta_{i} \sin \alpha_{i} + \frac{m_{2}}{m} q_{xi} \right],$$

$$q_{yi}^{c} = y_{i}^{c} - y_{i} = \frac{1}{2} \left[(-1)^{i} l_{1} \sin \beta_{i} \cos \alpha_{i} + \frac{m_{2}}{m} q_{yi} \right],$$

$$q_{zi}^{c} = z_{i}^{c} - z_{i} = \frac{1}{2} \left[(-1)^{i+1} l_{1} \cos \beta_{i} + \frac{m_{2}}{m} q_{zi} \right], \quad i = \overline{1, n},$$
(2.5)

где $m = m_1 + m_2$ — масса ноги, m_1 — масса бедра, m_2 — масса голени. Если для ног с точками подвеса, симметричными относительно плоскости Oxz, принять

$$\alpha_{2j-1} = -\alpha_{2j}, \quad \beta_{2j-1} = \pi - \beta_{2j}, \quad \gamma_{2j-1} = \pi - \gamma_{2j}, \quad j = \overline{1, k},$$

то соответствующая пара ног расположится симметрично относительно плоскости Oxz, а центр масс такой пары будет иметь координаты

$$x_{2j-1,2j}^{c} = \frac{1}{2} \left(l_1 \sin \beta_{2j-1} \sin \alpha_{2j-1} + \frac{m_2}{m} q_{x(2j-1)} \right), \ y_{2j-1,2j}^{c} = 0,$$
$$z_{2j-1,2j}^{c} = \frac{1}{2} \left(l_1 \cos \beta_{2j-1} + \frac{m_2}{m} q_{z(2j-1)} \right), \ j = \overline{1,k}.$$

Симметричное расположение ног правой и левой сторон робота относительно плоскости Oxz характерно для различных вариантов походки «галоп», часто используемой для преодоления препятствий. С точки зрения статической устойчивости интерес представляет величина $x_{2j-1,2j}^c$, которую преобразуем следующим образом:

$$x_{2j-1,2j}^{c} = \frac{1}{2} \left(\chi_{2j-1} + \frac{m_2}{m} \right) q_{x(2j-1)},$$

$$\chi_{2j-1} = \frac{l_1 \sin \beta_{2j-1}}{l_1 \sin \beta_{2j-1} + l_2 \sin(\beta_{2j-1} + \gamma_{2j-1})}, \quad j = \overline{1, k},$$
(2.6)

где параметр χ_{2j-1} есть отношение модуля проекции бедра на плоскость Oxy к расстоянию между стопой и осью вращения ноги.

Если передние и задние ноги сбалансированы относительно середины корпуса:

$$q_{x(2j-1)} = q_{x(2j)} = -q_{x[2(k-j)+1]} = q_{x[2(k-j+1)]}, \quad j = \overline{1, \lfloor (k+1)/2 \rfloor - 1}, \quad k > 2,$$

где символом $\lfloor ... \rfloor$ обозначена целая часть числа по недостатку, то при нечётном k из формулы (2.1) следует

$$\xi_c = \xi_0 + \frac{m}{M} \left(\chi_k + \frac{m_2}{m} \right) q_{xk}.$$

Требование надёжности статической устойчивости, когда передняя граница опорного многоугольника образована средними ногами и принадлежит прямой $\xi = \xi_m$, запишем в виде

$$\xi_m - \xi_c = \xi_m - \xi_0 - \frac{m}{M} \left(\chi_k + \frac{m_2}{m} \right) \left(\xi_m - \xi_0 \right) \ge \varepsilon_0.$$

Откуда

$$\xi_m - \xi_0 \ge \left[1 - \frac{m}{M}\left(\chi_k + \frac{m_2}{m}\right)\right]^{-1} \varepsilon_0$$

Последнее неравенство будет гарантированно выполнено, если потребовать

$$\xi_m - \xi_0 \ge \varepsilon = \lambda \varepsilon_0, \quad \lambda = \left[1 - \frac{m}{M} \left(\frac{l_1}{c} + \frac{m_2}{m}\right)\right]^{-1} > 1,$$
 (2.7)

поскольку max $\chi_k = l_1/c$, где c – расстояние от следовой колеи до проекции точки подвеса ноги на горизонтальную плоскость. Как и следовало ожидать, для центра корпуса запас статической устойчивости должен быть больше, чем запас для расчётного центра масс всего робота.

3. Максимальная ширина зоны препятствия

Длину абсолютного шага отдельной ноги будем оценивать как расстояние между её последовательными точками опоры в неподвижной системе координат $O_1\xi\eta\zeta$. Из (1.2) видим, что указанное расстояние зависит от перемещения корпуса и от перемещения стопы относительно корпуса. Расстояние между последовательными точками опоры в координатах Oxyz, связанных с корпусом, будем называть длиной относительного шага. Возможное положение стопы относительно точки подвеса соответствующей ноги определено формулами (1.1) и (1.3) и описывается соотношениями

$$q_{xi}^2 + q_{yi}^2 + q_{zi}^2 = \rho_i^2 = l_1^2 + l_2^2 + (-1)^{i+1} 2l_1 l_2 \cos \gamma_i, \quad (-1^i)q_{yi} > c = c' - b > 0.$$
(3.1)

В координатных осях Oxyz при фиксированном значении γ_i возможные положения *i*-й стопы принадлежат соответствующему сферическому сегменту, отсечённому плоскостью $(-1)^i y = c'$ от сферы радиуса ρ_i с началом в точке подвеса *i*-й ноги.

Из формул (3.1) и (1.1) следует, что проекция i-й стопы на ось Ox может быть выражена формулой

$$x_i^f = x_i + q_{xi} = x_i \pm L_{xi}, \quad L_{xi} = \sqrt{\rho_i^2 - q_{yi}^2 - q_{zi}^2},$$
 (3.2)

где выбор знака зависит от значения угла α_i . Рассмотрим случай, когда шагающий аппарат преодолевает препятствие, двигаясь в положительном направлении оси Ox. Тогда вопрос о возможности опоры *i*-й стопы о какую-либо точку на грунте с абсциссой ξ связан с анализом справедливости включения

$$(\xi - \xi_0 - x_i) \in [-\mathcal{L}_i, \mathcal{L}_i], \quad \mathcal{L}_i = \max_{\gamma_i, q_{yi}, q_{zi}} L_{xi}.$$
 (3.3)

Если включение (3.3) справедливо, то указанную точку можно оставить в качестве предположительно возможной точки опоры. Если же это включение не выполнено, то на такую точку опереться не получится.

В соответствии с выбором системы координат Oxyz имеем $q_{zi} = \zeta_i^f - \zeta_0$. Если ζ_i^f — высота предполагаемой точки опоры, то тогда $|q_{zi}|$ характеризует клиренс аппарата, то есть свободный просвет между корпусом и опорной поверхностью, которым шагающий аппарат может управлять в определенных пределах. Пусть опорная поверхность задана формулой $\zeta = F(\xi, \eta)$. Обозначим

$$\bar{\zeta}_0 = \max_{\xi,\eta\in\mathcal{E}} F(\xi,\eta) + \delta$$

 ζ -координату центра корпуса, допустимую с точки зрения безопа
сности движения, где постоянная δ учитывает минимально безопа
сную величину кли-

ренса, \mathcal{E} — ограниченная область плоскости $O\xi\eta$, содержащая следовые колеи, на которых планируются положения точек опоры робота. Ясно, что чем меньше эта область, тем аккуратнее будет выбран параметр $\bar{\zeta}_0$. Из формул (3.2) и (3.1) найдём

$$\mathcal{L}(\xi_f, \eta^*) = \sqrt{(l_1 + l_2)^2 - c^2 - [\bar{\zeta}_0 - F(\xi_f, \eta^*)]^2}, \quad \eta^* = \eta_0 + (-1)^i (b+c). \quad (3.4)$$

Это означает, что максимальная величина $\mathcal{L}(\xi_f, \eta^*)$ выноса опорной стопы в направлении оси Ox зависит от координат точки предполагаемой опоры и достигается, когда нога предельно выпрямлена:

$$(-1)^{i+1}\cos\gamma_i = 1 \to \gamma_i = \frac{\pi}{2}[1 + (-1)^i] \to \max_{\gamma_i} \rho_i = l = l_1 + l_2,$$

предполагаемая точка опоры расположена на следовой колее, параллельной корпусу и отстоящей от него на предельно близкое допустимое расстояние c, а высота корпуса над предполагаемой точкой опоры настолько мала, насколько это соответствует допустимому пределу безопасного перемещения. Точное значение координаты ξ_f в формуле (3.4) для ноги с номером i можно найти из уравнения

$$\xi_f - \xi_0 - x_i = \pm \mathcal{L}(\xi_f, \eta^*) = \pm \sqrt{(l_1 + l_2)^2 - c^2 - [\bar{\zeta}_0 - F(\xi_f, \eta^*)]^2},$$

и это будут абсолютные ξ -координаты предельных точек на опорной поверхности, до которых нога может дотянуться из заданного положения корпуса. Если же, наоборот, задать значение ξ_f , то тогда можно легко найти значение ξ_0 , соответствующее положению корпуса, при котором в зависимости от знака перед радикалом эта точка окажется предельно достижимой либо спереди от соответствующей точки подвеса, либо позади неё.

Назовём передней границей опорного многоугольника отрезок прямой, образованный ближайшими к зоне препятствия двумя точками опоры ног, одна из которых находится с правой, а другая с левой стороны корпуса если смотреть в направлении оси Ox. Обозначим ξ -координаты правой и левой точек опоры передней границы опорного многоугольника через ξ_r и ξ_l соответственно. Согласно принятым ограничениям на конфигурацию робота, обеспечивающим возможность выполнения шага максимальной длины для всех ног (см. формулу (3.4)), точка O проектируется в середину отрезка между следовыми колеями. Пусть прямая $\eta = \eta_l = \eta_0 - b + c$ – следовая колея для левых ног робота, а $\eta = \eta_r = \eta_0 + b - c$ – следовая колея для правых ног робота. Граница ξ_M достижима для передних ног, если на следовых колеях найдутся точки с координатой ξ_f , для которых выполнено неравенство

$$\xi_0 + a \frac{k-1}{2} + \mathcal{L}(\xi_f, \eta^*) \ge \xi_M,$$
(3.5)

причём равенство достигается, когда $\xi_f = \xi_M$. Обозначим

$$\mathcal{L}_M = \max(\mathcal{L}(\xi_M, \eta_l), \mathcal{L}(\xi_M, \eta_r))$$
(3.6)

и учтём, что $\xi_M = \xi_m + d$. Равенство левой и правой частей формулы (3.5) для заданного значения ξ_0 обеспечивается, когда d принимает предельно большое значение $d = \bar{d}$. Следовательно,

$$\xi_0 - \xi_m + a \frac{k-1}{2} + \mathcal{L}_M = \bar{d}(\xi_0). \tag{3.7}$$

Справедлива следующая лемма

Лемма 3.1. Максимум $\Delta = \max_{\xi_0} \bar{d}$ ширины зоны препятствия, преодолимого рассматриваемым многоногим статически устойчивым роботом, достигается, если в момент постановки передних ног на линию $\xi = \xi_M$ передняя граница опорного многоугольника удовлетворяет условию

$$(\xi_r, \xi_l) = \operatorname*{argmin}_{\xi_r \le \xi_m, \xi_l \le \xi_m} \left(\xi_m - \frac{\xi_r + \xi_l}{2} \right).$$
(3.8)

Доказательство. Поскольку передняя граница опорного многоугольника линейна, то для выполнения условия статической устойчивости необходимо, чтобы было

$$\xi_c < \frac{\xi_r + \xi_l}{2} \le \xi_m \to \xi_c - \xi_m < \frac{\xi_r + \xi_l}{2} - \xi_m \le 0.$$

Отсюда ясно, что для возможности увеличения допустимой ширины препятствия (3.7) следует в конце переноса передних ног через зону препятствия выбирать точки опоры для передней границы опорного многоугольника так, чтобы было удовлетворено требование (3.8).

Теорема 3.1. Максимальная ширина Δ зоны препятствия, преодолимого рассматриваемым шестиногим роботом, ограничена неравенством

$$\Delta \le \max_{\xi_r \le \xi_m, \xi_l \le \xi_m} \frac{\xi_r + \xi_l}{2} - \xi_m - \frac{m}{M} \sum_{i=1}^n q_{xi}^c + a \frac{k-1}{2} + \mathcal{L}_M, \quad (3.9)$$

то есть многоногий робот описанной выше конструкции не может преодолеть зону препятствия, ширина которой на момент окончания переноса передних ног превосходит сумму половины длины корпуса робота и максимально возможного выноса стоп передних ног в направлении оси Ох за вычетом минимально достижимого расстояния от середины передней границы опорного многоугольника до переднего края зоны препятствия и х-координаты центра масс всех ног относительно корпуса робота. Доказательство. До начала перешагивания через зону препятствия все точки опоры имеют ξ -координаты, меньшие ξ_m . Корпус робота ориентирован так, что ось Ox направлена к границе зоны $\xi = \xi_m$ и перпендикулярна к ней. Ясно, что такое расположение корпуса позволяет наилучшим образом использовать его габариты для переправы через зону, потому что a(k-1) > b. Из формулы (3.7) следует, что

$$\xi_0 - \frac{\xi_r + \xi_l}{2} + \frac{\xi_r + \xi_l}{2} - \xi_m + a\frac{k-1}{2} + \mathcal{L}_M = \bar{d}(\xi_0).$$
(3.10)

Но согласно формуле (2.1) найдём

$$\xi_0 < \frac{\xi_r + \xi_l}{2} - \frac{m}{M} \sum_{i=1}^n q_{xi}^c.$$
(3.11)

Поэтому

$$\xi_0 - \frac{\xi_r + \xi_l}{2} < -\frac{m}{M} \sum_{i=1}^n q_{xi}^c$$

Кроме того, разность $(\xi_r + \xi_l)/2 - \xi_m$ не положительна, поскольку рассматривается этап, когда робот еще не перенёс ноги через препятствие. Вместе с тем эта разность по модулю тем меньше, чем ближе расположены передние опорные точки к зоне препятствия. \diamond

Замечание 3.1. Если в момент постановки передних ног робота на заднюю границу препятствия робота используется абсолютно сбалансированная поза, то есть $\sum_{i=1}^{n} q_{xi}^{c} = 0$, то тогда ширина преодолимой зоны препятствия ограничена неравенством

$$\Delta \leq \max_{\xi_r \leq \xi_m, \xi_l \leq \xi_m} \frac{\xi_r + \xi_l}{2} - \xi_m + a \frac{k-1}{2} + \mathcal{L}_M.$$

Вместе с тем, если число ног достаточно велико, например, $n \geq 8$, то без ущерба для статической устойчивости некоторую часть ног можно употребить с целью увеличения допустимой зоны препятствия, смещая суммарный относительный центр масс этих ног в направлении, противоположном оси Ox. Если число ног относительно невелико ($n \leq 6$), то указанная возможность практически отсутствует, поэтому требование абсолютной сбалансированности следует ослабить, заменив его требованием ε -сбалансированности позы. В таком случае следует допустить, что в пределах $\xi_0 - \varepsilon \leq \xi_c \leq \xi_0 + \varepsilon$ координата ξ_c центра масс робота может принимать любое значение. Полагая, что требование сохранения статической устойчивости имеет приоритетное значение во всех обстоятельствах движения робота, будем в дальнейшем пользоваться критерием (2.4), гарантирующим при условии ε -сбалансированности позы статическую устойчивость робота. В результате получим ограничение

$$\Delta \le \max_{\xi_r \le \xi_m, \xi_l \le \xi_m} \frac{\xi_r + \xi_l}{2} - \xi_m - \varepsilon + a \frac{k-1}{2} + \mathcal{L}_M, \qquad (3.12)$$

которым и будем пользоваться при анализе возможности преодоления запрещённых для наступания зон шестиногими и четырёхногими аппаратами. Параметр ε в данном случае характеризует меру неуверенности в оценке расположения центра масс ног относительно их точек подвеса.

4. Следовое расписание

Для того чтобы убедиться, что приведённые в предыдущем разделе оценки ширины предельно допустимой зоны препятствия являются неулучшаемыми, следует указать следовое расписание, при котором они превращаются в равенство. Проделаем это для шестиногих и четырёхногих аппаратов. Процесс преодоления зоны препятствия начинается в тот момент, когда робот подошёл вплотную к зоне препятствия.

I. Рассмотрим сначала **процесс преодоления препятствия шестиногим аппаратом**.

Лемма 4.1. Для преодоления шестиногим аппаратом зоны препятствия максимальной ширины передние ноги следует переносить через препятствие одновременно.

Доказательство. Пусть передние ноги переносятся через препятствие последовательно. Тогда оставшаяся в опоре передняя нога будет ограничивать продвижение корпуса над зоной препятствия и тем самым будет мешать дотягиванию передних ног до точек опоры на границе $\xi = \xi_M$ зоны.

Следствие 4.1. При одновременном переносе передних ног через препятствие передняя граница опорного многоугольника формируется средними ногами.

Следствие 4.2. Перед перешагиванием через предельно широкую зону препятствия точки опоры передних ног следует ставить на переднюю границу $\xi = \xi_m$ зоны.

Доказательство. При переносе передних ног передняя граница опорного многоугольника формируется точками опоры средних ног, но эти точки опоры не могут располагаться впереди точек опоры передних ног. Вместе с тем при переносе передних ног проекция центра масс на горизонтальную плоскость не может выходить за пределы передней границы опорного многоугольника, образованной средними ногами.

Походка «след в след» возникает, когда точки опоры соседних ног одной стороны для последовательных шагов совпадают. Для того чтобы походка «след в след» могла быть реализована при движении по всей поверхности $\zeta = F(\xi, \eta)$, должно быть выполнено общее конструктивное ограничение:

$$a \le 2\min_{\xi,\eta\in\mathcal{E}} \mathcal{L}(\xi,\eta).$$
(4.1)

Заметим, что в реальности, когда звенья ног имеют конкретные физические размеры, а планируемая точка опоры ещё занята предыдущей ногой, походку «след в след», строго говоря, практически реализовать невозможно без пересечения соседних ног одной стороны корпуса. Если всё же необходимо применить такую походку, то планируемую точку опоры следует смещать по координате η в ту или другую сторону на расстояние, не меньшее, чем толщина голени. В дальнейшем для оценок максимальной допустимой ширины препятствия будем пользоваться формулой (4.1), считая, что указанная походка при незначительном боковом смещении планируемых точек опоры не окажет ощутимого влияния на эти оценки.

Пусть условие (4.1) нарушено. Тогда в области \mathcal{E} , где происходит движение аппарата, найдётся такая точка поверхности, до которой последующая нога не сможет дотянуться, если на неё опирается соседняя предыдущая. Случай, когда точка опоры последующей ноги оказывается впереди предыдущей, в дальнейшем рассматриваться не будет в связи с тем, что тогда для робота рассматриваемой конструкции при переносе последующей ноги, очевидно, может возникнуть взаимное пересечение соседних ног, что недопустимо.

Походка «след в след» обладает набором интересных автомодельных качеств, облегчающих анализ статической устойчивости движения ША в целом [2]. Вместе с тем её совсем необязательно использовать повсеместно. Учитывая тот факт, что возможность постановки ног «след в след» рассматривается лишь с точки зрения преодоления зоны препятствия максимальной ширины, условие (4.1) можно ослабить:

$$a \le a_e, \tag{4.2}$$

где

$$a_e = 2\min(\min_{\xi,\eta_r \in \mathcal{E}} \mathcal{L}(\xi,\eta), \min_{\xi,\eta_l \in \mathcal{E}} \mathcal{L}(\xi,\eta)).$$
(4.3)

Другими словами, нас будет интересовать возможность организации движения «след в след» при расположении точек опоры на левой и правой следовых колеях. Ясно, что условие (4.2) является необходимым по отношению к условию (4.1).

Для простоты последующего анализа обратимся к варианту, когда движение происходит по ровной горизонтальной плоскости. В таком случае максимальные длины относительных шагов будут одинаковы для всех точек опоры и для всех ног. Обозначим \mathcal{L} длину максимально возможного относительного полушага для этого случая. Тогда условие (4.3) можно переписать в виде

$$a_e = 2\mathcal{L}.\tag{4.4}$$

Представим половину длины корпуса а в виде

$$a = a_e + \sigma. \tag{4.5}$$

Замечание 4.2. Если $\sigma \geq 0$, взаимное пересечение соседних ног в точках, не совпадающих со стопами, отсутствует. При произвольном значении $\sigma \in [-a_e, 0)$ точки подвеса соседних ног могут оказаться расположенными слишком близко, из-за чего будет существовать опасность взаимного пересечения звеньев соседних ног. Допустим, что найдется число μ , такое что $0 < \mu < a_e$, для которого неравенство $\sigma \geq -\mu$ исключает возможность взаимного пересечения звеньев соседних ног.

Определение 4.3. *Стандартной позицией* (рис. 2) шестиногого робота перед препятствием назовём позицию, когда передний край корпуса расположен над линией $\xi = \xi_m$, точки опоры ног имеют координаты:

$$\xi_5 = \xi_6 = \xi_m, \quad \xi_3 = \xi_4 = \xi_m - a, \quad \xi_1 = \xi_2 = \xi_m - 2a, \\ \eta_1 = \eta_3 = \eta_5 = \eta_0 - b - c, \quad \eta_2 = \eta_4 = \eta_6 = \eta_0 + b + c.$$

В этой позиции центр масс робота совпадает с серединой корпуса и имеет координаты

$$\xi_c = \xi_0 = \xi_m - a, \quad \eta_0.$$

Рис. 2: Стандартная позиция ША перед препятствием

Реализуемость движения «след в след» позволяет уточнить неравенство (3.12).

Теорема 4.1. Пусть $-a_e < -\mu \leq \sigma \leq 0, \mu > 0$. Тогда, если применяется критерий (2.4), максимальная ширина Δ зоны препятствия, которую шестиногий робот может преодолеть при движении по плоскости, выражается равенством

$$\Delta = a_e + \sigma - \varepsilon + \mathcal{L}, \tag{4.6}$$

где ε — запас статической устойчивости.

Доказательство. Как было установлено выше, перед началом перешагивания через зону препятствия точки опоры передних ног должны располагаться на прямой $\xi = \xi_m$. Условие (4.2), которое при $\sigma \leq 0$ очевидно будет выполнено, обеспечивает возможность постановки средних ног в точки опоры передних, когда корпус частично продвигается за переднюю границу $\xi = \xi_m$ зоны препятствия на расстояние, при котором будет выполнено $\xi_0 = \xi_m - \varepsilon$. После этого передние ноги следует переносить в точки опоры на задней границе $\xi = \xi_M$. В этом случае

$$\frac{\xi_r + \xi_l}{2} = \xi_m,$$

и правая часть формулы (3.12) превращается в правую часть формулы (4.6).

Покажем теперь, что существует следовое расписание, обеспечивающее преодоление зоны препятствия ширины (4.6) без нарушения статической устойчивости. Пусть робот находится в стандартной позиции перед препятствием в соответствии с определением 4.3. Прежде чем начать перенос передних ног, надо продвинуть корпус по направлению к линии $\xi = \xi_M$ так, чтобы появилась возможность в том же направлении перенести задние ноги. Наиболее далеко корпус можно было бы продвинуть на расстояние максимального относительного полушага передних ног. Однако при этом проекция центра масс робота на горизонтальную плоскость должна всё же находиться внутри опорного многоугольника, образованного передними и средними ногами, с заданным запасом ε статической устойчивости. Тогда передние ноги ещё могут оставаться в опоре (Puc. 3).

Рис. 3: Начальный этап

Теперь задние ноги могут одновременно сделать шаг величиной $a - \mathcal{L} - \varepsilon$ (Рис. 4). После этого точки опоры расположатся следующим образом

 $\xi_1 = \xi_2 = \xi_m - a - \mathcal{L} - \varepsilon, \quad \xi_3 = \xi_4 = \xi_m - a, \quad \xi_5 = \xi_6 = \xi_m.$

Рис. 4: Перенос задних ног

Затем стопы средних ног могут переместиться в точки опоры передних ног (Рис. 5).

Рис. 5: Перенос средних ног

После этого всё готово к началу переноса передних ног. Передние ноги переносятся одновременно с перемещением вперёд корпуса так, чтобы к моменту окончания их переноса поза аппарата стала ε -сбалансированной, и центр корпуса обеспечивал ε -запас передней статической устойчивости при опоре на средние и задние ноги. В полученной позиции задние ноги препятствуют дальнейшему продвижению корпуса вперёд (Рис. 6), но их нельзя переставить, так как центр корпуса робота не доходит до передней границы $\xi = \xi_m$.

Рис. 6: Перенос передних ног с одновременным продвижением корпуса

Как только передние ноги встали на линию $\xi = \xi_M$, опорный многоугольник изменился, и можно начинать дальнейшее маневрирование. Например, можно немного отступить средними ногами назад, так чтобы центр корпуса попал внутрь опорного многоугольника, образованного передними и средними ногами, затем переместить стопы задних ног на расстояние $\mathcal{L} + \varepsilon$ в сторону препятствия, вернуть средние ноги на передний край зоны препятствия и продвинуть корпус через препятствие на расстояние $\mathcal{L} + \varepsilon$ (Рис. 7). Точки опоры и центр корпуса будут иметь координаты

$$\xi_1 = \xi_2 = \xi_m - a, \quad \xi_3 = \xi_4 = \xi_m, \quad \xi_5 = \xi_6 = \xi_m + a + \mathcal{L} - \varepsilon = \xi_M, \quad \xi_0 = \xi_m + \mathcal{L}.$$

Рис. 7: Продвижение корпуса после постановки передних ног

Затем задние ноги переносятся в точки опоры средних ног (Рис 8). Корпус

Рис. 8: Перенос задних ног

продвигается через препятствие на расстояние $a - \mathcal{L} - \varepsilon$, а средние ноги переносятся в точки опоры передних ног (Рис. 9). Точки опоры и центр корпуса

Рис. 9: Перенос средних ног с продвижением корпуса

получат координаты

$$\xi_1 = \xi_2 = \xi_m, \ \xi_3 = \xi_4 = \xi_M, \ \xi_5 = \xi_6 = \xi_M, \ \xi_0 = \xi_m + a - \varepsilon = \xi_M - \mathcal{L}$$

Такой манёвр возможен, поскольку в результате него расстояние между проекцией центра корпуса и задней границей препятствия оказывается равным \mathcal{L} . Полученная в итоге позиция робота симметрична относительно срединной плоскости препятствия позиции, соответствующей пятому шагу (рис. 8). Поэтому остаётся выполнить ряд очевидных шагов в обратном порядке с учётом указанной симметрии для завершения процесса перелаза.◊

Рассмотрим случай, когда движение «след в след» невозможно. Тогда справедлива теорема.

Теорема 4.2. Если применяется критерий (2.4) и $\sigma > 0$, то максимальная ширина зоны препятствия выражается формулой

$$\Delta = a_e + \mathcal{L} - \varepsilon, \quad \sigma \ge 0. \tag{4.7}$$

Доказательство. Преодоление зоны препятствия начинается из стандартной позиции. Корпус продвигается в направлении границы $\xi = \xi_M$ на расстояние максимального относительного полушага передних ног. Потом сначала задние делают относительный шаг длиной

$$a - \sigma - \mathcal{L} - \varepsilon = \mathcal{L} - \varepsilon$$

а затем средние ноги — максимальный относительный шаг в том же направлении, и стопы всех ног будут иметь координаты

 $\xi_1 = \xi_2 = \xi_m - 2a + \mathcal{L} - \varepsilon, \quad \xi_3 = \xi_4 = \xi_m - \sigma, \quad \xi_5 = \xi_6 = \xi_m$

соответственно (Рис. 10).

Рис. 10: Сдвиг корпуса, затем перенос задних, потом средних ног

Покажем, что если в полученной позе поднять передние ноги, то робот не сможет изменить переднюю границу опорного многоугольника, образованную средними ногами. Действительно, при поднятых передних ногах центр масс робота будет смещён относительно точек подвеса ног в сторону препятствия. Но смещение робота назад невозможно из-за того, что средние ноги, будучи в опоре, максимально вынесены вперёд. Поэтому середина диагонали опорного многоугольника при поднятых передних ногах будет иметь координату $\xi_d = \xi_m - \sigma - (a + \mathcal{L} + \varepsilon)/2$. Кроме того, $\xi_0 = \xi_m - a + \mathcal{L}$. Поэтому

$$\xi_0 - \xi_d = \frac{\mathcal{L} + \sigma + \varepsilon}{2} > 0.$$

С другой стороны, если перенести по очереди задние ноги на максимально возможный полушаг вперёд, то середина диагонали сместится вперёд и станет равной $\xi'_d = \xi_m - (a + \varepsilon)/2 - \sigma$. Следовательно,

$$\xi_0 - \xi'_d = \frac{\sigma + \varepsilon}{2} > 0$$

То есть получается, что при поднятых передних ногах перенос средних ног без потери статической устойчивости невозможен, даже если любым образом менять положение точек опоры задних ног, и поэтому

$$\xi_3 = \xi_4 = \xi_m - \sigma = \operatorname*{argmax}_{\xi_r \le \xi_m, \xi_l \le \xi_m} \frac{\xi_r + \xi_l}{2}$$

Таким образом, при переносе передних ног передняя граница опорного многоугольника определяется точками опоры средних ног, имеющих координаты $\xi_3 = \xi_4 = \xi_m - \sigma$. Поэтому

$$\max_{\xi_r \le \xi_m, \xi_l \le \xi_m} \frac{\xi_r + \xi_l}{2} = \xi_m - \sigma,$$

и формула (3.12) даёт

 $\Delta \le a_e + \mathcal{L} - \varepsilon.$

Но формула (3.12) была получена в предположении, что передние ноги робота, будучи предельно выпрямленными, ставятся на границу $\xi = \xi_M$. Допустим, что они уже там стоят (Рис. 11). Тогда центр корпуса робота проектируется внутрь опорного многоугольника, образованного задними и средними ногами, и не доходит до передней границы этого многоугольника на заданный запас устойчивости ε .

Рис. 11: Сдвиг корпуса и одновременный перенос передних ног

Полученная позиция является ε -сбалансированной, и центр робота находится над опорным многоугольником, образованным средними и задними ногами. Поэтому задние ноги одновременно поднять невозможно. Невозможно также и сдвинуть корпус ни вперёд, ни назад. Теперь необходимо выполнить несколько подготовительных действий, которые зависят от величины σ .

a) Пусть $\sigma \geq \mathcal{L}$. Тогда робот должен перенести средние ноги на один полушаг \mathcal{L} назад, переместить задние ноги в точки опоры с координатами $\xi_1 = \xi_2 = \xi_m - a - \sigma - \varepsilon$, затем поставить стопы средних ног в точки опоры $\xi_3 = \xi_4 = \xi_m - \sigma + \mathcal{L}$, после чего переместить корпус так, чтобы центр масс робота проектировался в точку, не доходящую до новых точек опоры средних ног на расстояние, равное запасу статической устойчивости ε , а потом перенести передние ноги на один относительный полушаг \mathcal{L} в направлении от задней границы зоны $\xi = \xi_M$. В итоге получится позиция, аналогичная той, которая изображена на рис. 11, но сдвинутая на один относительный полушаг \mathcal{L} в сторону препятствия и имеющая точки опоры

$$\xi_1 = \xi_2 = \xi_m - \sigma' - a - \mathcal{L} - \varepsilon, \ \xi_3 = \xi_4 = \xi_m - \sigma', \ \xi_0 = \xi_m - \sigma' - \varepsilon, \ \xi_5 = \xi_6 = \xi_M + \mathcal{L},$$
где $\sigma' = \sigma - \mathcal{L}.$

b) Если окажется, что снова $\sigma' \geq \mathcal{L}_m$, то роботу следует повторять процедуру a) до тех пор, пока в результате не окажется, что $\sigma' < \mathcal{L}$.

c) Пусть $\sigma' < \mathcal{L}$. Тогда роботу достаточно выполнить аналогичную волну переносов ног, переводящую его в позицию, при которой стопы средних ног находятся на передней границе препятствия (Рис. 12):

$$\xi_1 = \xi_2 = \xi_m - a, \ \xi_3 = \xi_4 = \xi_m, \ \xi_0 = \xi_m - \varepsilon, \ \xi_5 = \xi_6 = \xi_M + \sigma_A$$

Далее робот должен продвинуть корпус вперёд на расстояние $\mathcal{L} + \varepsilon$, оставив

Рис. 12: Дошагивание средними ногами до границы зоны препятствия

средние ноги в опоре на линии $\xi = \xi_m$. Затем следует перенести стопы задних ног, чтобы получить позицию (Рис. 13)

$$\xi_1 = \xi_2 = \xi_m - \sigma, \ \xi_3 = \xi_4 = \xi_m, \ \xi_0 = \xi_m + \mathcal{L}, \ \xi_5 = \xi_6 = \xi_M + \sigma.$$
(4.8)

Теперь стопы средних ног можно переместить на заднюю границу зоны пре-

Рис. 13: Исходная позиция для переноса средних ног через препятствие

пятствия с одновременным перемещением корпуса на расстояние $\mathcal{L} - \varepsilon$, чтобы получилась конфигурация

$$\xi_1 = \xi_2 = \xi_m - \sigma, \ \xi_3 = \xi_4 = \xi_M, \ \xi_0 = \xi_M - \mathcal{L}, \ \xi_5 = \xi_6 = \xi_M + \sigma,$$

симметричная позиции (4.8) (Рис. 13) относительно срединной линии зоны препятствия (Рис. 14).

Следовательно, выполнив в обратном порядке симметричные действия относительно срединной линии, получим позицию:

$$\xi_1 = \xi_2 = \xi_M, \ \xi_3 = \xi_4 = \xi_M + a, \ \xi_0 = \xi_M + a + \varepsilon, \ \xi_5 = \xi_6 = 2a,$$

что и доказывает теорему.

Рис. 14: Симметричная позиция

Следствие 4.3. Если длина корпуса позволяет выполнить походку «след в след» ($-\mu \leq \sigma \leq 0$), то предельно допустимая ширина зоны препятствия линейно возрастает при увеличении длины корпуса. Если движение «след в след» невыполнимо ($\sigma > 0$), то предельно допустимая ширина зоны препятствия не зависит от длины корпуса и принимает максимальное значение

$$\max_{a} \Delta = 3\mathcal{L} - \varepsilon. \tag{4.9}$$

Другими словами, при движении по ровной горизонтальной плоскости максимальная ширина преодолимой шагающим аппаратом зоны препятствия на запас ε статической устойчивости меньше утроенной максимальной длины относительного полушага или полутора полного относительного шага, и это не зависит от величины параметра $\sigma > 0$ (Рис. 15). Для преодоления зон, запрещённых для наступания, оптимальной является длина корпуса $a \ge a_e = 2\mathcal{L}$.

Доказательство. Если движение ША происходит по ровной горизонтальной плоскости ($F(\xi, \eta) \equiv 0$), то тогда $\mathcal{L}(\xi, \eta) \equiv \mathcal{L}$. Теперь достаточно сопоставить формулы (4.4), (4.6) и (4.7). \diamond

Рис. 15: Ширина преодолимой зоны препятствия

II. Рассмотрим процесс преодоления зоны препятствия четырёхногим аппаратом, движущимся по горизонтальной плоскости. Для четырёхногого аппарата неравенство (3.12) принимает вид

$$\Delta < \max_{\xi_r \le \xi_m, \xi_l \le \xi_m} \frac{\xi_r + \xi_l}{2} - \xi_m - \varepsilon + \frac{a}{2} + \mathcal{L}_M.$$
(4.10)

По-прежнему обозначим $a_e = 2\mathcal{L}, a = a_e + \sigma$. Справедлива следующая теорема о движении «след в след»

Теорема 4.3. Пусть применяется критерий (2.4) и

$$-a_e < -\mu \le \sigma \le -2\varepsilon, \quad \mu > 0, \quad a \ge 4\varepsilon, \quad \mathcal{L} \ge 3\varepsilon.$$

Тогда максимальная ширина Δ зоны препятствия, которую четырёхногий робот может преодолеть при движении по плоскости, выражается равенством

$$\Delta = \frac{a_e + \sigma}{2} - \varepsilon + \mathcal{L}. \tag{4.11}$$

Доказательство. Движение начнём со стандартной позиции перед препятствием, а именно:

$$\xi_1 = \xi_2 = \xi_m - a, \quad \xi_3 = \xi_4 = \xi_m, \quad \xi_0 = \xi_m - \frac{a}{2}$$

Из этой позиции продвинем корпус по направлению к задней границе препятствия так, чтобы центр корпуса не доходил до передней границы препятствия на расстояние ε :

$$\xi_1 = \xi_2 = \xi_m - a, \quad \xi_3 = \xi_4 = \xi_m, \quad \xi_0 = \xi_m - \varepsilon.$$

Затем перенесём по очереди сначала левую заднюю, а затем правую заднюю ноги в новые точки опоры:

$$\xi_1 = \xi_m, \quad \xi_2 = \xi_m - \frac{a}{2} - 2\varepsilon, \quad \xi_3 = \xi_4 = \xi_m, \quad \xi_0 = \xi_m - \varepsilon.$$

Полученная поза неплохо сбалансирована, поскольку смещения центров масс первой и четвертой ног почти компенсируют друг друга. Первую ногу можно поместить на переднюю границу, потому что $\mathcal{L} > a/2 + \varepsilon$. Следовательно, передняя граница опорного многоугольника не изменилась, а задняя граница образуется первой и второй ногами, и её середина имеет координату $(\xi_1 + \xi_2)/2 = \xi_m - a/4 - \varepsilon$. Полученная координата из-за требования статической устойчивости должна быть меньше координаты центра корпуса по крайней мере на ε . Это будет выполнено при $a > 4\varepsilon$. Теперь можно начать перенос передних ног на заднюю границу препятствия. Сначала переносим правую переднюю ногу:

$$\xi_1 = \xi_m, \quad \xi_2 = \xi_m - \frac{a}{2} - 2\varepsilon, \quad \xi_3 = \xi_m + \frac{a}{2} + \mathcal{L} - \varepsilon, \quad \xi_4 = \xi_m, \quad \xi_0 = \xi_m - \varepsilon.$$

Далее можем перенести левую переднюю ногу, поскольку при её переносе передняя граница опорного многоугольника будет образована третьей и второй ногами. Середина этой границы имеет координату $(\xi_2 + \xi_3)/2 = \xi_m + \mathcal{L}/2 - 3\varepsilon/2$, и эта координата должна быть больше, чем на ε , координаты центра корпуса. Поэтому должно быть $\mathcal{L} > 3\varepsilon$. В итоге получится позиция

$$\xi_1 = \xi_m, \quad \xi_2 = \xi_m - \frac{a}{2} - 2\varepsilon, \quad \xi_3 = \xi_M = \xi_m + \frac{a}{2} + \mathcal{L} - \varepsilon, \quad \xi_4 = \xi_M, \quad \xi_0 = \xi_m - \varepsilon.$$

В этой позиции центр масс системы смещён вперёд по сравнению с его положением в предыдущей позиции из-из выноса вперёд передних ног. Поэтому ограничение на задний запас устойчивости ослабевает. Теперь надо поставить вторую ногу на переднюю границу препятствия. Во время её переноса задняя граница опорного многоугольника будет образована четвёртой и первой ногами, а её середина будет иметь координату

$$\frac{\xi_4 + \xi_1}{2} = \xi_m + \frac{1}{2} \left(\frac{a}{2} + \mathcal{L} - \varepsilon \right).$$

Для того чтобы во время переноса второй ноги обеспечивалась статическая устойчивость, корпус следует продвинуть вперед на величину

$$\frac{1}{2}\left(a/2 + \mathcal{L} + 3\varepsilon\right) < \mathcal{L} + \varepsilon.$$

Такое продвижение корпуса вперёд вполне возможно, так как максимальная длина полного шага в данном случае равна $a/2 + \mathcal{L} + 2\varepsilon \leq 2\mathcal{L} + \varepsilon$. Выполнив указанное продвижение корпуса и последующий перенос второй ноги на переднюю границу препятствия, получим позицию:

$$\xi_1 = \xi_m, \quad \xi_2 = \xi_m, \quad \xi_3 = \xi_M, \quad \xi_4 = \xi_M, \quad \xi_0 = \xi_m + \frac{1}{2} \left(\frac{a}{2} + \mathcal{L} + \varepsilon \right).$$

Теперь достаточно сдвинуть корпус назад на величину (-2ε) , чтобы получить симметричную позицию относительно средней линии препятствия. После этого осталось выполнить все действия симметрично в обратном порядке для того, чтобы робот перебрался на другую сторону препятствия. \diamond

Замечание 4.3. В доказательстве теоремы 4.3, как и в доказательстве предшествующих теорем для простоты использовалось понятие запаса продольной статической устойчивости. Это понятие, очевидно, отличается от более строгого понятия статической устойчивости, основанного не на оценке отклонения продольной координаты центра масс аппарата от границы опорного многоугольника, а на оценке отклонения центра масс от указанной границы. Для того чтобы сделать эти понятия эквивалентными, необходимо учитывать угол наклона границ опорного многоугольника к продольной оси движения. Из-за этого, если соответствующая граница опорного многоугольника не перпендикулярна направлению движения, требуемый запас продольной статической устойчивости надо полагать несколько бо́льшим, по сравнению с запасом, необходимым для обеспечения статической устойчивости в строгом понимании.

Замечание 4.4. В режиме статической устойчивости четырёхногий аппарат не способен двигаться походкой «галоп», успешно применённой для генерирования следовой последовательности шестиногого аппарата. Однако восьминогий аппарат уже обладает достаточным числом ног для возможности применения указанной походки.

Замечание 4.5. Сравнение проходимости четырёхногих и шестиногих роботов удобно проводить, задав одинаковыми длины \mathcal{L} их максимальных относительных полушагов и приняв $\sigma = 0$. В этом случае длина корпуса четырёхногого робота составляет $2a(4) = 2\mathcal{L}$, и без потери статической устойчивости он может преодолеть расщелину шириной $\Delta = 2\mathcal{L} - \varepsilon$, то есть приблизительно равную длине корпуса. С другой стороны, длина корпуса шестиногого робота составляет $2a(6) = 4\mathcal{L}$, и без потери статической устойчивости он может преодолеть расщелину шириной $\Delta = 3\mathcal{L} - \varepsilon$, то есть приблизительно равную 3/4 корпуса, но зато корпус у него оказывается вдвое длиннее, чем у четырёхногого. Таким образом, при одинаковой длине шага шестиногий робот может преодолеть препятствие бо́льшей ширины, чем четырёхногий, но длина корпуса четырёхногого робота при этом используется более эффективно.

Замечание 4.6. Выше были рассмотрены принципиально различные базовые для генерирования следовых последовательностей случаи n = 4 или n = 6. Если число ног шагающего аппарата $n \ge 8$, то избыточные ноги можно использовать двояко. Например, выделив в качестве основных ноги в количестве 4 или 6, окружающие центр корпуса, назначить их в качестве основного средства для продвижения центра корпуса через препятствие. При этом другими ногами можно будет стремиться обеспечивать ε -сбалансированную позу аппарата. Другой вариант состоит в том, чтобы использовать избыточные ноги для целенаправленного смещения центра масс робота с целью увеличения ширины преодолимого препятствия. Однако такой вариант управления предполагает достаточно уверенное знание положения центра масс робота относительно его корпуса, что не всегда будет возможно в полевых условиях.

Компьютерное моделирование осуществлялось аналогично тому, как это было описано в [4,7,8]. Управление инсектоморфным роботом, закон взаимодействия корпуса и стоп ног с опорой реализованы в виде DLL-библиотеки, подключённой к программному комплексу «Универсальный механизм» [6]. Тем самым создаётся виртуальная среда обитания робота. Неподвижная опорная поверхность в ней представлена горизонтальной плоскостью. Опорная плоскость, корпус и ноги робота взаимодействуют друг с другом согласно модели трения, основанной на вязко-упругом взаимодействии тел в точках контакта. Управление движением реализуется посредством компьютерного моделирования работы электромеханических приводов шарнирных углов. Выполнение требуемого движения робота осуществляется, как и в реальности, лишь в результате подачи значения управляющего электрического напряжения на модели электромеханических приводов. Представление о движении корпуса робота и его ног возникает в результате численного интегрирования дифференциальных уравнений полной трёхмерной динамики робота и элементов окружающей среды. Поскольку в точках контакта объектов предполагается силовое взаимодействие, соответствующая механическая система имеет 18 степеней свободы. Уравнения динамики синтезируются автоматически [6]. Результаты компьютерного моделирования отображаются на экране монитора в виде движения геометрических образов исследуемых материальных объектов.

Исследовалось влияние геометрических параметров робота на процесс преодоления расщелины максимальной ширины. Отношения массы робота и масс звеньев ног были выбраны одинаковыми для всех вариантов:

$$m: m_1: m_2 = 10: 0.5: 0.5.$$

Запас статической устойчивости тоже был задан неизменным и равным 0.023 м.

Традиционный вариант, описанный в работе [4], для которого соотношение размеров половины длины корпуса, звеньев ног, длины полушага, ширины расщелины, соответствующей указанным параметрам, и параметра σ имеет вид

$$a:b:l_1:l_2:\mathcal{L}:\Delta:(-\sigma)=0.525:0.5:0.52:0.335:0.553:1.078:0.581,$$

оказался неудачным по причине возникающего в процессе движения взаимного пересечения ног из-за небольшой длины корпуса (см. замечание 4.2).

Ниже представлены некоторые результаты моделирования трёх вариантов геометрических параметров задачи.

Вариант 1, в котором $\sigma \approx -\mu$: $a < 2\mathcal{L}$,

 $a:b:l_1:l_2:\mathcal{L}:\Delta:(-\sigma)=0.8:0.5:0.52:0.335:0.553:1.330:0.306.$

Покажем отдельные фрагменты движения, иллюстрирующие характерные особенности преодоления препятствия. Рис. 16 демонстрирует модельную позицию, соответствующую схеме, изображённой на рис. 4. Указатель в виде шарика с риской показывает положение центра масс робота, которое в процессе движения может заметно отклоняться от центра корпуса. Точки опоры задних ног выбраны с учётом необходимости сохранения баланса на переднем крае препятствия при переносе передних ног.

Рис. 16: Позиция модели, соответствующая схеме на рис. 4

На рис. 17 показан момент процесса переноса стоп передних ног на задний край препятствия, предшествующий появлению позиции, схематично изображённой на рис. 6.

Рис. 17: Перенос передних ног с одновременным продвижением корпуса

Рис. 18 демонстрирует манёвр средними ногами для обеспечения переноса задних ног из *ε*-сбалансированной позы.

На рис. 19 изображена позиция аппарата, полученная непосредственно перед началом переноса средних ног. Она соответствует схеме, показанной на рис. 8.

Рис. 20 показывает позицию, возникающую непосредственно перед шагом передних ног в процессе подготовки переноса задних ног через препятствие. Центр масс робота проектируется в опорный многоугольник, образованный задними и средними ногами.

Рис. 18: Переступание средними ногами

Рис. 19: Состояние готовности к переносу средних ног

Рис. 20: Подготовка переноса задних ног через препятствие

Наконец, на рис. 21 приведена финальная позиция, когда робот практически уже перебрался через препятствие.

Рис. 21: Робот прошёл над препятствием

Более подробную информацию о процессе преодоления препятствия можно получить при просмотре видеоролика по ссылке

 $\verb+https://keldysh.ru/e-biblio/golubev/gap-long-body.mp4.$

Вариант 2, в котором половина длины корпуса предельна для возможности движения походкой «след в след»: $a = 2\mathcal{L}$,

$$a:b:l_1:l_2:\mathcal{L}:\Delta=1.106:0.5:0.52:0.335:0.553:1.658, \quad \sigma=0.553:0.553:0.553:0.553$$

Этот вариант качественно практически ничем не отличается от предшествующего варианта, но ширина преодолимой зоны препятствия становится на четверть больше, и эта ширина является предельной для аппарата с полушагом 0.553. Дальнейшее увеличение преодолимой зоны можно получить за счёт уменьшения клиренса, вследствие чего возрастёт длина полушага.

Вариант 3, в котором походка «след в след» не может быть реализована: $a > 2\mathcal{L},$

 $a:b:l_1:l_2:\mathcal{L}:\Delta:\sigma=1.935:0.5:0.52:0.335:0.553:1.658:0.829.$

Приведём здесь некоторые характерные позиции робота, отличающие данный вариант от варианта 1. На рис. 22 показана позиция, соответствующая схематическому изображению на рис. 11. Здесь средние ноги вынужденно

Рис. 22: Робот перенёс передние ноги на задний край препятствия

отстоят от переднего края препятствия на величину $\sigma \approx 3\mathcal{L}/2$. Цель дальнейших манёвров состоит в том, чтобы вывести их на переднюю границу препятствия. Выполняются действия в соответствии с пунктом *a*) доказательства теоремы 4.2. Рис. 23 показывает позицию робота после первой волны переносов ног. Видим, что конфигурация робота сохранилась, но точки

Рис. 23: Позиция после первой волны переносов ног

опоры средних ног приблизились к передней границе и теперь отстоят от неё

на $\sigma' \approx \mathcal{L}/2 < \sigma$. В соответствии с пунктом *c*) доказательства теоремы 4.2 выполняется волна переносов, выводящая точки опоры средних ног на переднюю границу препятствия, как это показано на рис. 24.

Рис. 24: Стопы средних ног на передней границе препятствия

Следующий рис. 25 изображает позицию, когда робот готов к переносу средних ног через препятствие, и соответствует рис. 13.

Рис. 25: Начало переноса средних ног через препятствие

После переноса средних ног робот выполняет несколько волн переносов для того, чтобы вывести стопы задних ног на переднюю границу зоны препятствия по процедуре, изложенной в пункте a) доказательства теоремы 4.2 и получить ε -сбалансированную позу для возможности переноса задних ног через препятствие (рис. 26).

Рис. 26: *є*-сбалансированная поза

После этого осталось только перенести задние ноги через препятствие (рис. 27). Затем необходимо сделать несколько очевидных шагов, чтобы корпус робота не нависал над препятствием. Более подробную информацию о

Рис. 27: Препятствие преодолено

технике перелезания через зону, запрещенную для постановки ног, можно получить из просмотра видеоролика по ссылке https://keldysh.ru/e-biblio/golubev/gap-very-long-body.mp4.

Заключение

Решена задача о преодолении *n*-ногим шагающим роботом в режиме статической устойчивости препятствий в виде областей, запрещённых для наступания. Найдена неулучшаемая аналитическая оценка сверху предельной ширины преодолимой зоны. Выявлена аналитическая зависимость предельной ширины препятствия от длины корпуса, требуемого запаса статической устойчивости и максимальной длины шага. Для шестиногого и четырёхногого роботов построены следовые последовательности, доказывающие достижимость полученных оценок. Установлено, что зависимость предельной ширины препятствия от длины корпуса имеет насыщение сверху, связанное с возможностью или невозможностью реализации движения «след в след». Для компьютерной динамической модели шестиногого инсектоморфного робота разработаны конкретные алгоритмы формирования следового расписания, обеспечивающие преодоление препятствий максимально возможной ширины. Выполнено компьютерное моделирование процесса перешагивания. Представлены видеоролики, которые наглядно демонстрируют подробности преодоления рассматриваемых препятствий. Представленные результаты могут быть полезными при решении задач планирования движения робота по пересеченной местности. По итогам исследования можно сделать следующие выводы относительно оптимального соотношения конструктивных элементов шагающих аппаратов рассмотренного типа, обеспечивающего наибольшую ширину преодолимой зоны препятствия в режиме статической устойчивости.

1. Оптимальное расстояние между точками подвеса ног равно длине полного шага. При сохранении числа ног увеличение этого расстояния по сравнению с указанным неэффективно, так как не способствует увеличе-

нию ширины преодолимой зоны препятствия. Кратное увеличение длины корпуса вместе с соответствующим увеличением числа ног увеличивает ширину преодолимого препятствия.

- 2. Если число ног аппарата превышает четыре, то расположение точек подвеса ног на прямолинейных боковых сторонах приводит к тому, что при применении физического аналога походки «след в след» уменьшается расчётная максимальная длина шага, а следовательно, уменьшается ширина преодолимого препятствия.
- 3. При использовании для движения конечностей инсектоморфного типа существует нижний предел допустимого расстояния между точками подвеса ног, зависящий от максимальной длины шага и исключающий взаимное пересечение звеньев соседних ног одной стороны.
- Если положение центра масс симметричного робота известно недостаточно хорошо, то для сохранения равновесия при критической близости горизонтальной проекции центра корпуса к границам опорного многоугольника полезно использовать геометрически ε-сбалансированные позы аппарата.
- 5. При просмотре видеоматериалов иногда можно заметить лёгкие покачивания корпуса при переносе передних или задних ног через препятствие. Это объясняется динамическими эффектами из-за подъёма весомых ног при заданном малом запасе устойчивости вблизи передней или задней границы опорного многоугольника. Если запас устойчивости увеличить, указанные явления пропадают. Вместе с тем увеличение запаса устойчивости уменьшает ширину преодолимого препятствия, что может оказаться критичным для решения более общей задачи планирования движения.

Список литературы

- Архив журнала Моделист-Конструктор. Вездеходы: вчера, сегодня, завтра. URL: https://hobbyport.ru/mk_other/horizons_technic/7606_vezdehody.htm (дата обращения: 15.03.2022).
- 2. Охоцимский Д.Е., Голубев Ю.Ф. Механика и управление движением автоматического шагающего аппарата. М.: Наука. Глав. ред. физ.-мат. лит., 1984. 312 с.
- Эволюция роботов Boston Dynamics. URL: https://www.youtube.com/watch?v=t3hPckJCx9s (дата обращения: 15.03.2022).
- 4. Голубев Ю.Ф., Корянов В.В. Экстремальные локомоционные возможности инсектоморфных роботов. — М: ИПМ им. М.В. Келдыша, 2018. — 212 с. ISBN 978-5-98354-040-8, https://doi.org/10.20948/mono-2018-golubev
- 5. *Филиппов А.П.* Колебания деформируемых систем. Изд. 2-е переработанное. — М.: «Машиностроение», 1970. 736 с.
- 6. Универсальный механизм. Моделирование динамики механических систем. URL: http://www.umlab.ru (дата обращения: 10.03.2020).
- 7. Голубев Ю.Ф., Корянов В.В. Преодоление шестиногим роботом изолированных цилиндрических препятствий // Препринты ИПМ им. М.В. Келдыша. 2020. № 65. 34 с. https://doi.org/10.20948/prepr-2020-65 URL: http://library.keldysh.ru/preprint.asp?id=2020-65
- Голубев Ю.Ф., Корянов В.В. Преодоление инсектоморфным роботом завалов в виде изолированных цилиндров // Известия РАН. Теория и системы управления, 2021, № 2, с. 156–176. DOI: 10.31857/S0002338821020050 Golubev Yu.F., Koryanov V.V. An Insectomorphic Robot Overcoming Obstructions Formed by Isolated Cylinders // J. Comput. Syst. Sci. Int. 60, 333–352 (2021). https://doi.org/10.1134/S1064230721020052