

ИПМ им.М.В.Келдыша РАН • Электронная библиотека

Препринты ИПМ • Препринт № 58 за 2022 г.

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

Д.А. Тучин

Селекция аномальных измерений при первичной обработке в определении орбиты по траекторной информации наземной станции «Кобальт-Р»

Статья доступна по лицензии Creative Commons Attribution 4.0 International

Рекомендуемая форма библиографической ссылки: Тучин Д.А. Селекция аномальных измерений при первичной обработке в определении орбиты по траекторной информации наземной станции «Кобальт-Р» // Препринты ИПМ им. М.В.Келдыша. 2022. № 58. 24 с. https://doi.org/10.20948/prepr-2022-58
https://library.keldysh.ru/preprint.asp?id=2022-58

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В. Келдыша Российской академии наук

Д.А. Тучин

Селекция аномальных измерений при первичной обработке в определении орбиты по траекторной информации наземной станции «Кобальт-Р»

Д.А. Тучин

Селекция аномальных измерений при первичной обработке в определении орбиты по траекторной информации наземной станции «Кобальт-Р»

Приведены алгоритмы дешифровки измерений, небесномеханическая интерпретация запросных измерений наклонной дальности и радиальной скорости. Представлен метод отбраковки аномальных измерений при их первичной обработке.

Ключевые слова: определение орбиты, радиотехнические измерения, небесно-механическая интерпретация, статистическая обработка, «Кобальт-Р», аномальные измерения.

D.A. Tuchin

The anomalous measurements selection in primary processing for the orbit determination from the «Kobalt-R» ground station trajectory information.

Algorithms for deciphering measurements, celestial-mechanical interpretation of the requested measurements of the range and radial velocity are presented. The method of the anomalous measurements rejection during their preliminary processing is presented.

Key words: orbit determination, radio engineering measurements, celestial-mechanical interpretation, statistical processing, «Kobalt-R», anomalous measurement.

Оглавление

Введение	3
1. Измерения наземной станции	
1.1. Типы данных	
1.2. Структура файла измерений	
2. Интерпретация измерений	
2.1. Задержка на борту КА	
2.2. Задержки в аппаратуре HC	
2.3. Антенная поправка	
2.4. Тропосферная задержка	
2.5. Время привязки измерения	
2.6. Наклонная дальность	
2.7. Радиальная скорость	
3. Выявление аномальных измерений	
3.1. Статистическая модель	
3.2. Алгоритм определения выборки нормального распределения	
3.3. Вычислительный эксперимент	
Заключение	
Библиографический список	
Сокращения	
Сомращения	4

Введение

орбиты космического (KA) Для определения аппарата проекте «Луна-Глоб» планируется использовать отечественном наземные станции траекторных измерений, работающих в С-диапазоне радиочастот с сантиметровыми длинами волн. Одна из наземных станций (HC) в Медвежьих Озёрах оборудована аппаратурой «Кобальт-Р» с большой антенной ТНА-1500, позволяющей проводить запросные измерения наклонной дальности и радиальной скорости КА. Обработка измерений этой станции по KA «Спектр-Р» выявила большое число аномальных измерений, которые могут быть объяснены сбоями аппаратуры, ошибками приёма сигнала при его захвате и потере, задержками в тропосфере и ионосфере Земли.

Обработка траекторных измерений при определении орбиты КА начинается с дешифровки измерений, их небесно-механической интерпретации и отбраковки аномальных измерений.

В первой части статьи описан метод дешифровки измерений HC «Кобальт-Р», представленных в виде бинарных файлов.

Во второй части приведены алгоритмы расчёта задержек на борту КА в бортовой аппаратуре (БА) и на НС, алгоритмы сопоставления сигнала, пришедшего на антенну, и точки её привязки. Представлен алгоритм расчета задержки, вызванной тропосферой Земли. Проведено сопоставление получаемых НС радиотехнических параметров и измеренных значений наклонной дальности и радиальной скорости.

Третья часть статьи посвящена алгоритму первичной обработки измерений, которая состоит в выявлении и отбраковке аномалий. Первичная, или локальная, обработка измерений [1–5] требует наличия начального приближения орбиты КА, которое позволяет анализировать не сами измерения, а их рассогласования с расчетными значениями.

Пусть имеется n траекторных измерений $\tilde{\Psi}_i$ на моменты времени t_i и их рассогласований $\xi_i = \tilde{\Psi}_i - \Psi_i \left(t_i \right)$ с расчётными значениями Ψ_i [6] на моменты времени t_i , $i=1,\dots,n$. В алгоритмах первичной обработки рассматривается случайная величина γ_i в виде функции $\gamma_i = \varphi(\xi_i)$. В таблице 1 приведены предложенные в [1–5] функции $\varphi(\xi_i)$ и критерии отбраковки аномального измерения из выборки $\{\gamma_i\}$. Здесь σ_γ^2 — оценка дисперсии случайной величины γ_i , a и b получаются посредством минимизации по ним функции $Q = \sum_{i=1}^n \left(\xi_i - \left(a t_i + b \right) \right)^2$, четвертый столбец содержит максимальный процент отбраковываемых измерений при использовании соответствующего метода.

	•			
	функция ф	критерий	%	ссылка
1	ξ_i	$ \gamma_i \ge k\sigma_{\gamma}, \ k = 2.5$	_	[2], c. 169
2	$\xi_i - (at_i + b)$	$ \gamma_i \ge k\sigma_{\gamma} k = 1.5$	30	[3], c. 12
3	$\xi_i - (at_i + b)$	$ \gamma_i \ge k\sigma_{\gamma} \ 2.5 \le k \le 3$	50	[1],c. 11
4	$\xi_i - (at_i + b)$	$ \gamma_i \ge k\sigma_{\gamma}, \ k=1$	_	[2], c. 169
5	$\frac{\xi_i}{\dot{\mathbf{r}}(t_i)} - (at_i + b)$	Для измерений наклонной дальности, $ \gamma_i \ge k\sigma_{\gamma}$, $\dot{\mathbf{r}}$ — радиальная скорость, $k = 3$	_	[3], c. 12
7	$\frac{\xi_{i+1} - \xi_i}{t_{i+1} - t_{i+1}} - \frac{\xi_{i+2} - \xi_{i+1}}{t_{i+2} - t_{i+1}}$	$\left \gamma_{i}\right \geq k\sigma_{\gamma}\sqrt{2}\left(\frac{1}{t_{i+1}-t_{i}}+\frac{1}{t_{i+2}-t_{i+1}}\right)$	_	[1], c. 13
8	$\xi_i - (at_i + b)$	$ \gamma_i \ge k\sigma_{\gamma}, \ k = 3$	10	[4], c. 37
9	$\xi_i - (at_i + b)$	$ \gamma_i \ge k \sqrt{\sigma_{\gamma}^2 + \sigma_{\text{апр}}^2}, \ k = 3, \ \sigma_{\text{апр}}^2 -$ априорная оценка дисперсии измеренного значения	10	[5], c. 141

Таблица 1 – Случайные величины и критерий отбраковки

Анализ функций случайной величины из пунктов 2-9 таблицы 1 при отбраковке аномальных измерений показал их достаточно высокую эффективность при оперативном определении орбиты КА [1–5]. Тем не менее для них существуют проблемы определения априорного значения параметра k и априорной величины максимального числа измерений для отбраковки.

В данной работе предложен другой метод определения аномальных измерений на этапе определения орбиты КА, основанный на создании выборки случайных величин, которые удовлетворяют нормальному закону распределения.

1. Измерения наземной станции

Измерения текущих навигационных параметров (ИТНП) командноизмерительной системы (КИС) «Кобальт-Р» формируются на НС в виде бинарных файлов (файлы ИТНП). Информация в файле ИТНП представлена 16-битным словами и состоит из 6 частей.

- 1. Заголовок 32 слова.
- 2. 10 измерений задержки сигнала по калибровочному ретранслятору 80 слов.
- 3. Измерения задержки сигнала по трассе НС–КА–НС.
- 4. Измерения доплеровского смещения частоты сигнала по трассе HC–KA–HC.

- 5. Измерения метеостанции НС 32 слова;
- 6. Информация функционального контроля (ИФКТ).

Части 1, 2, 5 имеют фиксированную длину. Число измерений в частях 2, 3 и 6 содержится в заголовке 1.

Слова данных состоят из 16 бит (разрядов), или 2 байт. Младший бит слова данных имеет номер 0, старший бит имеет номер 15.

Параметры ИФКТ части 6 передаются на каждый момент измерений. Число посылок передается в ключевых параметрах сеанса. Каждая посылка этого раздела содержит 49 слов.

1.1. Типы данных

Для удобства описания данных файла ИТНП введем три типа данных: *двойное плавающее*, *посылка* и *целое*.

Четыре слова двойного плавающего образуют 64-разрядное слово (8 байт) данных $d_{\rm IEE-754}$ с плавающей запятой типа double в формате IEEE 754:

$$d_{\text{IEE-754}} = (-1)^{s} \cdot 2^{e-1023} \cdot m \cdot 2^{-52}, \tag{1.1}$$

где знак s, значение порядка e и дробная часть m мантиссы числа представлены в таблице 2.

Таблица 2 – Двойное плавающее

№ слова	3			2	1	0
Биты	15	14–4	3–0	15–0	15–0	15–0
Значение	знак <i>s</i> (1 —	порядок е		манті	исса т	
	отрицательное)	mep.i.gen e	мантисса т			

Данные калибровки, измерений задержки сигнала и доплеровского смещения частоты сигнала в файле ИТНП описываются измерительными посылками. Каждая посылка содержится в восьми 16-байтовых словах данных (таблица 3).

Таблица 3 – Посылка

№ слова	Тип	Содержание	размерность
0–3	двойное плавающее	юлианское время	сут
4–7	двойное плавающее	измерение	сек или Гц

Юлианское время является формой представления привязки измерения и соответствует середине интервала декретного московского времени (ДМВ) осреднения на НС. Целая часть юлианского времени содержит число суток, прошедших от 1899/12/30, а дробная часть содержит время внутри текущих суток ДМВ, выраженное в сутках. Другими словами, если Δt — время в секундах внутри текущих суток, то дробная часть юлианского времени в сутках равна $\Delta t/86400$, а целая часть юлианского времени для 1899/12/31 ДМВ равна 1.

Измерение, как и юлианское время, представляется в виде двойного плавающего типа и содержит задержку сигнала по калибровочному ретранслятору в секундах, задержку сигнала в секундах или доплеровское смещение частоты сигнала в Гц.

Знаковое целое в дополнительном коде передается в двух словах данных (4 байта). Младший бит, имеющий степень 2 равной 0, имеет номер 0 в нулевом слове. Старший бит, имеющий степень 2 равной 31, имеет номер 15 во втором слове.

1.2. Структура файла измерений

Структура файла ИТНП представлена в таблице 4.

Таблица 4 – Структура файла ИТНП

Таблица 4 – О	Структура фа	йла ИТНП		
№ слова		описание	мл. разряд	ТИП
Часть 1: Загол	повок: 32 сло	ова		
0	№ KA		_	слово
1	№ HC		_	слово
2	№ сеанса		_	слово
3	№ выдачи	в сеансе	_	слово
4	код компл	екта БА КИС	_	слово
5	дата и	год	ДМВ	слово
6	время	месяц		слово
7	начала	день		слово
8	сеанса	час		слово
9		минута		слово
10		секунда		слово
11		миллисекунда		слово
12		змерений задержки	_	слово
	сигнала			
13	число пд и	-	_	слово
	-	кого смещения		
1.4	частоты сі			
14	число пост		_	слово
1.7		ального контроля		
15	резерв	1)	_	слово
16		плекта на станции ¹⁾	_	слово
17	признак во комплекта		_	слово
18 – 31		ı	_	СПОРО
	резерв	жки сигнала по кал	ибровони	СЛОВО
ретранслятор		AKN CHI HAJIA IIU KAJI	иоћоводн	UNIY
<u>регранслятор</u> 32 – 39	•	1 запержин	_	постинко
34 37	_	е 1 задержки о калибровочному		посылка
		•		
	ретрансля	ropy, c		

104 – 111	измерение 10 задержки	_	посылка
104 111	сигнала по калибровочному		Посылка
	ретранслятору, с		
Пости 2. Исто	1 1		I'A IIC. Qn
часть 3. изме	рения задержки сигнала по тра	acce nc	- к А – пс: оп ₃
112 – 119	слов		ПООГИПИО
112 119	измерение 1 задержки		посылка
	сигнала		
(112 + 9(n 1))			TO 011 TIVO
$(112+8(n_3-1))$	измерение n₃ задержки	_	посылка
(112 0, 1)	сигнала		
$(112+8n_3-1)$			
_	ения доплеровского смещения	частоть	ы сигнала по
_	— НС: 8n _д слов		
$112+8n_3 -$	измерение 1 доплеровского	_	посылка
119+8n ₃	смещения частоты сигнала		
110.0(•••		
$112+8(n_3+n_{\pi}-1)$	измерение n _д доплеровского	_	посылка
112:0(смещения частоты сигнала		
$112+8(n_3+n_{\pi})-1$	HC 22		
	ения метеостанции НС: 32 сло	ва	A COIL
$112+8(n_3+n_{\pi})-$	измерение метеостанции НС3)	_	строка ASCII
$128+8(n_3+n_{\pi})-1$	на начало сеанса измерений		
$128+8(n_3+n_{\pi})$ —	измерение метеостанции HC ³⁾	_	строка ASCII
$144+8(n_3+n_{\rm d})-$	на конец сеанса измерений		
1			
Часть 6: ИФКТ	Г⁴: 49 слов		
0 - 3	юлианское время привязки	сут	двойное
			плавающее
4 - 7	резерв	_	_
8 – 9	расхождение между	мкс	целое
	секундными метками		
	оцифровки времени НРТК и		
	текущего времени АПК		
	ПФОС		
10	слово состояния системы ⁵⁾	_	_
11	литер несущей частоты,	_	_
	принимает значения 1-4		
12	полоса частот 64, 125, 250,	_	_
	500, 1000 Гц, при ПШС		
	начиная с 125		
13	резерв	_	_

14	прогноз доплеровского	10 Гц	слово,
	смещения частоты по		знаковое
	ответному сигналу		
15	литер ПШС	1-368	слово в
			восьмеричной
16	литер РК, принимает	_	слово
	значения 1-10		
17	выбор бортовых	_	_
	дешифраторов ⁶⁾		
18	уровень сигнала	1 дБ	слово
19	резерв	_	_
20	готовность устройства ⁷⁾	_	_
21 - 34	резерв	_	_
35	квитанция $PK^{8)}$	_	_
36	номер квитируемой РК	_	слово
37	квитанция СИ ⁹⁾	_	_
38	номер квитируемой фразы	_	слово
	СИ		
39	идентификатор СИ	_	_
	(копируется из заголовка СИ)		
40	режим телеметрии 10)	_	_
41	счетчик кадров телеметрии	_	слово
42 - 48	резерв	_	_

 $^{^{1)}}$ Слово номера комплекта на станции принимает значения 0x0000, 0x000A или 0x000B.

²⁾ Если слово признака ведущего полукомплекта 0x1EAD, то этот полукомплект соответствует комплекту с содержанием номера (слово 16) 0x000B.

³⁾ Измерение метеостанции НС содержит параметры погодных условий на время начала и конца сеанса. 32 слова содержат две равные строки символов в ASCII коде. Не используемые под содержательную информацию байты заполнены нулями. Каждая строка состоит из трех полей, содержащих измеренные значения температуры в °С, относительной влажности в % и давления в гПа, разделённых символом «*». Пример строки измерения метеостанции НС: «25.3*58*1010.5».

⁴⁾ Слова данных нумеруются относительно 144+8(n_3 + n_{π}).

⁵⁾ Структура слова состояния системы представлена в таблице 5. Наличие режима – «1» в соответствующем разряде.

Таблица 5 — Слово состояния системы (10-е слово ИФКТ)

бит	15	14	13-11	10	9	8
значение		Архив	_	Вкл. ПШС	_	Готовность ЦМОС
бит	7-5	4	3	2	1	0
значение		Имитация ПЧ	_	Работа	_	Связь

⁶⁾ Структура слова выбора бортовых дешифраторов представлена в таблице 6. Наличие режима – «1» в соответствующем разряде.

Таблица 6 – 17-е слово ИФКТ. Слово выбора бортовых дешифраторов

бит	15-2	1	0
значение	_	п/к 1 РК	п/к 2 РК

⁷⁾ Структура слова готовности устройства представлена в таблице 7. Наличие режима – «1» в соответствующем разряде.

Таблица 7 – 20-е слово ИФКТ. Слово готовности устройства

бит	15-3	2	1	0
значение	_	Конв. ПЧ	Ф3С ПЧ	Мод. ПЧ

⁸⁾ Структура слова квитанции РК представлена в таблице 8. Наличие режима – «1» в соответствующем разряде.

Таблица 8 – 35-е слово ИФКТ. Слово квитанции РК

бит	15-3	2	1	0
значение	_	Идет	+ KB	0 KB

⁹⁾ Структура слова квитанция СИ представлена в таблице 9. Наличие режима – «1» в соответствующем разряде.

Таблица 9 – 37-е слово ИФКТ. Слово квитанция СИ

бит	15-6	5	4	3	2	1	0
значение	_	Вкл. СИ	_	ИД	+ KB	– КВ	0 KB

¹⁰⁾ Структура слова режима телеметрии представлена в таблице 10. Наличие режима – «1» в соответствующем разряде.

Таблица 10 – 40-е слово ИФКТ. Слово режима телеметрии

бит	15-3	2	1	0
значение	_	32 кГц	8 кГц	1 кГц

2. Интерпретация измерений

2.1. Задержка на борту КА

Задержка $\Box \, \tau_{KA} \,$ БА КИС на борту КА определяется по формуле

$$\Delta \tau_{KA} = d_0 + \frac{1}{c} d_1, \tag{1}$$

где параметры d_0 и d_1 , зависящие от № КА и кода комплекта БА КИС, передаются разработчиком БА КИС после калибровки, c — скорость

света. Пример значений параметров d_0 и d_1 представлен в таблице 11. № КА и код комплекта БА КИС передаются в заголовке файла ИТНП.

T 7 11	П		
таолина гт	— Hanameti	ры для расчета	- за пе п жки
т иолици т т	. Hapamon	ры дли рас тета	задоржин

No	код	d_0 , 10^{-9} c	d_1 , M	№ KA	*	d_0 , 10^{-9} c	d_1 , M
КА	БА КИС	0,	-			0,7	
512	0	81.9	13	512	10	40.8	12
512	1	81.9	13	512	11	84.4	12
512	2	40.3	13	512	12	41.5	12
512	3	82.6	12	512	13	82.8	13
512	4	40.7	12	512	14	40	13
512	5	83.3	12	512	15	83.5	12
512	6	41.4	12	512	16	40.4	12
512	7	83	13	512	17	84.2	12
512	8	40.4	13	512	18	41.4	12
512	9	83.7	12				

2.2. Задержки в аппаратуре НС

Перед проведением сеанса на HC выходной сигнал направляют на приём и измеряют задержку в тракте прохождения сигнала в аппаратуре. Эти задержки содержатся в измерениях τ_i^{κ} задержки сигнала по калибровочному ретранслятору. Усредняя десять задержек сигнала по калибровочному ретранслятору, передаваемых во второй части файла ИТНП, можно найти задержку $\Delta \tau_{HC}$ в секундах в аппаратуре при проведении сеанса:

$$\Delta \tau_{\rm HC} = \frac{1}{10} \sum_{i=1}^{10} \tau_i^{\rm K} \,. \tag{2}$$

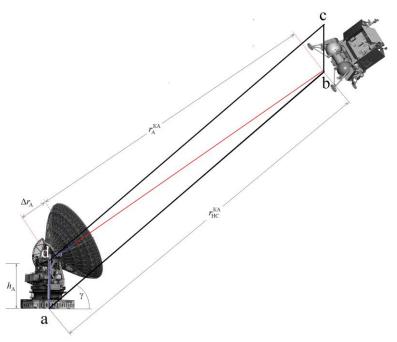


Рис. 1 – Геометрия приёма сигнала

2.3. Антенная поправка

Расчётные значения наклонной дальности $r_{\rm HC}^{\rm KA}$ от HC до KA используют точку привязки HC на поверхности Земли. При больших размерах антенны и отражателя требуется вычислять расчётное значение дальности $r_{\rm A}^{\rm KA}$ от антенны до KA (рис. 1) и находить антенную поправку $\Delta \tau_{\rm A}$. На рис. 1: $\Delta r_{\rm A}$ — вынос антенны относительно отражателя, $h_{\rm A}$ — высота антенны, γ — угол места.

Большая диагональ параллелограмма abcd равна $\Delta r_{\rm A} + r_{\rm A}^{\rm KA}$, и для неё по теореме косинусов можно определить антенную поправку $\Delta \tau_{\rm A}$:

$$\begin{split} -\Delta r_{\rm A} + r_{\rm A}^{\rm KA} &= \sqrt{h_{A}^{2} + \left(r_{\rm HC}^{\rm KA}\right)^{2} + 2h_{A}r_{\rm HC}^{\rm KA}}\cos\left(\frac{\pi}{2} - \gamma\right)}, \\ \left(r_{\rm HC}^{\rm KA}\right)^{2} &= \left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA}\right)^{2} - \left(h_{A}^{2} + 2h_{A}r_{\rm HC}^{\rm KA}\sin\gamma\right), \\ \left(r_{\rm HC}^{\rm KA}\right)^{2} + 2h_{A}r_{\rm HC}^{\rm KA}\sin\gamma + \left(h_{A}^{2}\right)\sin^{2}\gamma = \left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA}\right)^{2} - h_{A}^{2} + \left(h_{A}^{2}\right)\sin^{2}\gamma, \\ \left(r_{\rm HC}^{\rm KA} + h_{A}\sin\gamma\right)^{2} &= \left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA}\right)^{2} - h_{A}^{2}\cos^{2}\gamma, \\ \left(r_{\rm HC}^{\rm KA} + h_{A}\sin\gamma\right)^{2} &= \left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA}\right)^{2} - h_{A}^{2}\cos^{2}\gamma, \\ r_{\rm HC}^{\rm KA} + h_{A}\sin\gamma &= \pm\sqrt{\left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA} - h_{A}\cos\gamma\right)\left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA} + h_{A}\cos\gamma\right)} - h_{A}\sin\gamma \approx \\ r_{\rm HC}^{\rm KA} &= +\sqrt{\left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA} - h_{A}\cos\gamma\right)\left(\Delta r_{\rm A} + r_{\rm A}^{\rm KA} + h_{A}\cos\gamma\right)} - h_{A}\sin\gamma \approx \\ r_{\rm HC}^{\rm KA} &= r_{\rm A}^{\rm KA} - h_{A}\sin\gamma, \quad r_{\rm HC}^{\rm KA} \approx r_{\rm A}^{\rm KA} + \Delta\tau_{\rm A}, \quad \Delta\tau_{\rm A} = \Delta r_{\rm A} - h_{A}\sin\gamma. \end{split}$$

Отметим, что для антенны ТНА-1500 в Медвежьих Озёрах эти параметры приблизительно составляют $h_{\scriptscriptstyle A}=25.25\,\mathrm{m}$ и $\Delta r_{\scriptscriptstyle A}=4.33\,\mathrm{m}$ для антенной поправки $\Delta \tau_{\scriptscriptstyle A}$, выраженной в метрах.

2.4. Тропосферная задержка

Тропосферная задержка не зависит от излучаемой частоты и вызвана эффектом распространения сигнала в тропосфере Земли. Задержка учитывается в виде добавки к измеренному значению дальности, поэтому будем эту временную задержку рассматривать в единицах длины (т.е. умноженную на скорость света). Для вычисления тропосферной задержки $\Delta \tau_{\rm Tpon}$ измерения дальности [7] используют измерения температуры $t_{\rm HC}$ в °C, $p_{\rm HC}$ давления воздуха в мм рт. ст., парциального давления водяного пара $p_{\rm HC}^{\rm H_2O}$ в Мбар. Соотношение для вычисления тропосферной задержки $\Delta \tau_{\rm Tpon}$, выраженной в метрах, имеет вид [8]:

$$\Delta \tau_{\text{Tpon}} = \frac{1}{10^{2}} \frac{N^{*}}{\ln \frac{93}{N^{*}} \cdot \sin \gamma}, \quad N^{*} = \frac{77.6}{T_{\text{HC}}} \left[p_{\text{HC}} + \frac{4810 p_{\text{HC}}^{\text{H}_{2}\text{O}}}{T_{\text{HC}}} \right],$$

$$p_{\text{HC}}^{\text{H}_{2}\text{O}} = \frac{k \left(t_{\text{HC}} \right)}{100} R_{\%},$$
(4)

где $T_{\rm HC} = t_{\rm HC} + 273.15$ — температура в °K, $t_{\rm HC}$ — температура в °C, $p_{\rm HC} = 0.75006 \cdot \hat{p}_{\rm HC}$ — давление воздуха в мм. рт. ст., $\hat{p}_{\rm HC}$ — давление воздуха в гПа, $p_{\rm HC}^{\rm H_2O}$ — парциальное давление водяного пара в Мбар, $R_{\rm \%}$ — относительная влажность воздуха в %, N^* — приведённый коэффициент преломления, γ — угол места при проведении измерения (рис. 1). Параметры $t_{\rm HC}$, $\hat{p}_{\rm HC}$ и $R_{\rm \%}$ передаются в части 5 файла ИТНП.

Значение коэффициента $k(t_{HC})$ в зависимости от температуры приведено в таблице 12.

- HC /						
t_{HC} , C°	$k(t_{ ext{HC}})$	$t_{ ext{HC}}$, $ ext{C}^{\circ}$	$k\left(t_{ ext{HC}} ight)$			
-40	0.19	5	8.72			
-35	0.35	10	12.30			
-30	0.51	15	17.00			
-25	0.88	20	23.40			
-20	1.25	25	32.90			
-15	2.05	30	42.40			
-10	2.86	36	58.10			
-5	4.48	40	73.80			
0	6 11					

Таблица 12 – Значения коэффициента $k(t_{\scriptscriptstyle \mathrm{HC}})$

2.5. Время привязки измерения

Информационные посылки привязаны к Δt_i ДМВ в юлианском представлении относительно 30 декабря 1899 года. Найдём сутки $d_{\rm ДМВ}$ в формате «ггггммдд» (например, 20140501) и момент времени $t_{\rm ДМВ}$ внутри $d_{\rm ЛМВ}$.

Сначала вычисляется абсолютное юлианское время $t_{\text{юл}} = t_0 + \Delta t_i$, где $t_0 = 15018$ — юлианское представление 30 декабря 1899 года.

Вычисляются год y, месяц m и день d:

$$q_1 = [t_{\text{\tiny 1OJI}}] + 678882, \ q_2 = \left[\frac{4q_1 - 1}{146097}\right], \ q_3 = \left[\frac{4q_1 - 1 - 146097q_2}{4}\right],$$
 (5)

$$q_4 = \left[\frac{4q_3 + 3}{1461}\right], \ q_5 = \left[\frac{4q_3 + 7 - 1461q_4}{4}\right], \ m = \left[\frac{5q_5 - 3}{153}\right],$$
 (6)

$$d = \left[\frac{5d + 2 - 153m}{5} \right], \ y = 100q_2 + q_4, \tag{7}$$

где $[\cdot]$ — целая часть числа. Если $\, m < 10 \, ,$ то $\, m = m + 3 \, ,$ иначе $\, m = m - 3 \,$ и $\, y = y + 1 \, .$ Наконец,

$$d_{\text{IMB}} = 10000 \, y + 100 \, m + d \,. \tag{8}$$

Для $t_{\text{дмв}}$ справедливо

$$t_{\text{ДMB}} = \left(t_{\text{\tiny foll}} - \left[t_{\text{\tiny foll}}\right]\right) \cdot 86400. \tag{9}$$

2.6. Наклонная дальность

Сопоставим измеряемую величину задержки сигнала с параметрами движения КА, задержкой на борту КА $\Delta \tau_{KA}$, задержкой в аппаратуре НС $\Delta \tau_{HC}$, тропосферной задержкой $\Delta \tau_{Tpon}$ и антенной поправкой $\Delta \tau_{A}$, т.е. приведем небесно-механическую интерпретацию наклонной дальности.

В части 3 файла ИТНП передаётся массив задержек τ_i привязанных к времени приёма измерений t_i .

Восстановление параметров сигнала происходит начиная со времени приёма t_i . В результате решения светового уравнения $t_{\rm KA} = t_{\rm np} - \frac{1}{c} \left| {\bf r}_{\rm KA} \left(t_{\rm KA} \right) - {\bf r}_{\rm HC} \left(t_{\rm np} \right) \right|$ [5] распространения сигнала относительно времени приёма сигнала от КА на НС находится время переизлучения сигнала с КА $t_{\rm KA}$, которое, в свою очередь, является и временем приёма сигнала от НС выданного в момент $t_{\rm изл}$. Времена распространения сигнала $t_{\rm KA} - t_{\rm изл}$ и $t_{\rm np} - t_{\rm KA}$ соответствуют радиальным дальностям

$$r_{\text{HC}}^{\text{KA}} = (t_{\text{KA}} - t_{\text{изл}})c$$
 и $r_{\text{KA}}^{\text{HC}} = (t_{\text{пр}} - t_{\text{KA}})c$. (10)

Световое уравнение для нахождения времени излучения $t_{\rm KA}$ по времени приема $t_{\rm пр}$ решают итерационным методом, при котором на нулевом шаге итерации $t_{\rm KA}^0 = t_{\rm np}$, а на i-м шаге итерации $t_{\rm KA}^i = t_{\rm np} - \frac{1}{c} \left| \mathbf{r}_{\rm KA} \left(t_{\rm KA}^{i-1} \right) - \mathbf{r}_{\rm HC} \left(t_{\rm np} \right) \right|$, где $\mathbf{r}_{\rm KA}$ — вектор положения КА, $\mathbf{r}_{\rm HC}$ — вектор положения НС в системе координат (СК) J2000. Итерации продолжают до тех пор, пока $\left| t_{\rm KA}^i - t_{\rm KA}^{i-1} \right| > \varepsilon$, полагая обычно $\varepsilon = 10^{-10}$ с. В решении светового уравнения предполагается наличие априорно известных начальных условий КА (номинал выведения или результат предыдущего определения). Аналогично решается и световое уравнение по нахождению $t_{\rm изл}$ относительно $t_{\rm KA}$. Отметим, что в первом световом уравнении неподвижной в итерациях остается НС, а во втором — КА.

Определяется число миллисекундных зон однозначного измерения HC «Кобальт-Р» $\left(2\tau_i-2\Delta\tau_{\rm HC}-\Delta\tau_{\rm KA}\right)$ по модулю 1 мс

$$n_{_{3\text{OHa}}} = \left[\frac{\left(r_{\text{HC}}^{\text{KA}} + r_{\text{KA}}^{\text{HC}} \right) - \left(2\tau_{i} - 2\Delta\tau_{\text{HC}} - \Delta\tau_{\text{KA}} \right) \cdot c}{10^{-3} \cdot c} \right], \tag{11}$$

где [·] – целая часть числа.

Наконец, измеренное значение $\tilde{\Psi}_i^{\pi}$ наклонной дальности рассчитывается по формуле:

$$\widetilde{\Psi}_{i}^{\text{A}} = c \cdot \left(10^{-3} n_{\text{\tiny 3OHa}} + \left(2\tau_{i} - 2\Delta\tau_{\text{HC}} - \Delta\tau_{\text{KA}}\right)\right) - \Delta\tau_{\text{\tiny Tpoil}} + \Delta\tau_{\text{A}}.$$
(12)

Отметим, что для вычисления тропосферной задержки $\Delta \tau_{\text{Троп}}$ и антенной поправки $\Delta \tau_{\text{A}}$ следует рассчитать угол места γ по направлению HC–KA. Для расчета угла места потребуется СК HC с осями декартовой СК Север–Зенит–Восток.

Пусть ϕ_{HC} – геодезическая широта, а λ_{HC} – геодезическая долгота HC, тогда матрица перевода CK HC в CK WGS-84 \mathbf{C}_{HC}^{WGS-84} имеет вид

$$\mathbf{C}_{\mathrm{HC}}^{\mathrm{WGS-84}} = \begin{pmatrix} -\sin\phi_{\mathrm{HC}}\cos\lambda_{\mathrm{HC}} & -\sin\phi_{\mathrm{HC}}\sin\lambda_{\mathrm{HC}} & \cos\phi_{\mathrm{HC}} \\ \cos\phi_{\mathrm{HC}}\cos\lambda_{\mathrm{HC}} & \cos\phi_{\mathrm{HC}}\sin\lambda_{\mathrm{HC}} & \sin\phi_{\mathrm{HC}} \\ -\sin\lambda_{\mathrm{HC}} & -\cos\lambda_{\mathrm{HC}} & 0 \end{pmatrix}. \tag{13}$$

2.7. Радиальная скорость

КИС НС формирует сигнал с учетом литерной частоты излучения $f_{\scriptscriptstyle \rm HST}^{\scriptscriptstyle \rm RMT}$ и прогнозного значения переизлучаемой частоты $f_{\scriptscriptstyle \rm HST}^{\scriptscriptstyle \rm BA}$ в БА КИС на борту КА:

$$f_{\text{изл}}^{\text{KUC}} = f_{\text{изл}}^{\text{лит}} + \frac{1}{\chi} \Delta f_{\text{изл}}^{\text{БA}}, \tag{14}$$

где $\chi < 1$ — коэффициент понижения частоты излучаемого сигнала относительно принимаемого на борту КА, БА КИС преобразует сигнал на излучение по формуле:

$$f_{_{_{\mathit{H}\!3\!\Pi}}}^{\,\mathrm{BA}} = \chi \cdot f_{_{_{\mathit{H}\!3\!\Pi}}}^{\,\mathrm{KUC}} \,. \tag{15}$$

Отношение принимаемой частоты с КА к излучаемой описывается формулой [1], [9, с. 199 (6.12)]:

$$A = \frac{\Delta f_{\text{HC}} + f_{\text{прм}}^{\text{лит}}}{f_{\text{изл}}^{\text{БА}}} = \frac{\Delta f_{\text{HC}} + f_{\text{прм}}^{\text{лит}}}{\chi \cdot f_{\text{изл}}^{\text{КИС}}} = \frac{1}{\chi} \frac{\Delta f_{\text{HC}} + f_{\text{прм}}^{\text{лит}}}{f_{\text{изл}}^{\text{лит}} + \frac{1}{\chi} f_{\text{изл}}^{\text{БА}}},$$
(16)

где $\Delta f_{\rm HC}$ — измерение доплеровского смещения частоты в четвертой части файла ИТНП.

Радиальная скорость определяется соотношением:

$$\Psi_{i}^{c} = \frac{\left(\mathbf{r}_{HC}\left(t_{np}\right) - \mathbf{r}_{KA}\left(t_{изл}\right), \mathbf{v}_{HC}\left(t_{np}\right) - \mathbf{v}_{KA}\left(t_{изл}\right)\right)}{\left|\mathbf{r}_{HC}\left(t_{np}\right) - \mathbf{r}_{KA}\left(t_{изл}\right)\right|},$$
(17)

где ${\bf v}_{\rm KA}$ и ${\bf v}_{\rm HC}$ – векторы скоростей КА и НС в СК J2000.

Для измерения радиальной скорости справедливо [1], [9, с. 199 (6.12)]:

$$\tilde{\Psi}_i^{\rm c} = c \frac{1 - A}{1 + A}.\tag{18}$$

Соотношение (18) описывает небесно-механическую интерпретацию измеренного значения задержки $\Delta \tau_{\rm HC}$ и измерения радиальной скорости $\tilde{\Psi}_i^{\rm c}$. Частоты излучения $f_{\rm изл}^{\rm лит}$ и приёма $f_{\rm прм}^{\rm лит}$ в зависимости от литера определяются перед полётом КА и работой НС. Литер для каждого измерения передается в шестой части файла ИТНП (ИФКТ) в 11-м слове, а прогноз ДС $f_{\rm изл}^{\rm EA}$ передаётся в 14-м слове.

3. Выявление аномальных измерений

3.1. Статистическая модель

Пусть имеется n траекторных измерений $\tilde{\Psi}_i$ и их расчетных значений $\Psi_i(t_i)$ на момент времени t_i . По рассогласованиям $\xi_i = \tilde{\Psi}_i - \Psi_i(t_i)$ строится линейная регрессия $\xi_i = b + at_i + \varepsilon_i$ с использованием случайной величины ε_i , где значения a и b определяются из соотношений [4]:

$$a = (n\Sigma_{t\xi} - \Sigma_{t}\Sigma_{\xi})/(n\Sigma_{t^{2}} - \Sigma_{t}^{2}), b = (\Sigma_{t^{2}}\Sigma_{\xi} - \Sigma_{t}\Sigma_{t\xi})/(n\Sigma_{t^{2}} - \Sigma_{t}^{2}),$$

$$\Sigma_{t} = \sum_{i=1}^{n} t_{i}, \Sigma_{t^{2}} = \sum_{i=1}^{n} t_{i}^{2}, \Sigma_{\xi} = \sum_{i=1}^{n} \xi_{i}, \Sigma_{\xi^{2}} = \sum_{i=1}^{n} \xi_{i}^{2}, \Sigma_{t\xi} = \sum_{i=1}^{n} t_{i}\xi_{i}.$$
(19)

Оценка дисперсии σ_{ϵ}^2 случайной величины ϵ_i определяется по формуле

$$\sigma_{\varepsilon}^{2} = \frac{1}{n-2} \left(\Sigma_{\xi^{2}} + a^{2} \Sigma_{t^{2}} + nb^{2} + 2 \left(ab \Sigma_{t} - a \Sigma_{t\xi} - b \Sigma_{\xi} \right) \right). \tag{20}$$

Легко видеть, что нормированная безразмерная случайная величина $\overline{\xi}_i = \frac{\xi_i}{\sigma_{\epsilon}}$ имеет оценку дисперсии $\overline{\sigma}_{\epsilon}^2 = 1$, а коэффициенты линейной

регрессии
$$\overline{\xi}_i = \overline{b} + \overline{a}t_i + \overline{\epsilon}_i$$
 удовлетворяют соотношениям $\overline{a} = \frac{a}{\sigma_{\epsilon}}$,

$$\overline{b} = \frac{b}{\sigma_{\varepsilon}}$$
.

На рис. 2 изображена прямая $\overline{b}+\overline{a}t$ и звёздочкой значение случайной величины $\overline{\xi}_i$ на момент t_i .

Определим случайную величину γ_i как кратчайшее расстояние от точки с координатами (t_i, ξ_i) до этой прямой (рис. 2). Тогда

$$\frac{1}{2} \left(\overline{b} + \overline{a} t_i - \xi_i \right) \left(t_i - \frac{\overline{\xi}_i - \overline{b}}{\overline{a}} \right) = \frac{1}{2} \gamma_i \sqrt{ \left(\overline{b} + \overline{a} t_i - \overline{\xi}_i \right)^2 + \left(t_i - \frac{\overline{\xi}_i - \overline{b}}{\overline{a}} \right)^2} ,$$

или
$$\frac{1}{a} \overline{\varepsilon}_i^2 = \gamma_i \sqrt{\overline{\varepsilon}_i^2 + \frac{\overline{\varepsilon}_i^2}{\overline{a}^2}} .$$
(21)

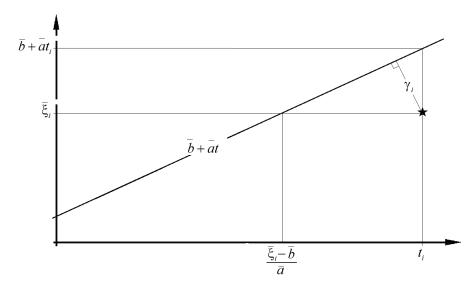


Рис. 2 – Случайная величина и прямая линейной регрессии

Поэтому случайная величина γ_i выражается формулой

$$\gamma_i = \frac{1}{\sqrt{\overline{a}^2 + 1}} \overline{\varepsilon}_i = \frac{1}{\sqrt{\overline{a}^2 + 1}} \left(\overline{\xi}_i - \left(\overline{b} + \overline{a}t_i \right) \right). \tag{22}$$

Случайная величина γ_i имеет нулевое математическое ожидание $M_{\gamma}=0$, а оценка дисперсии σ_{γ}^2 определяется соотношением $\sigma_{\gamma}^2=\frac{1}{\overline{a}^2+1}\overline{\sigma}_{\varepsilon}^2=\frac{1}{\overline{a}^2+1}.$

В основу алгоритма положено представление случайной величины на нормальной вероятностной диаграмме [10].

Функция стандартного нормального распределения (функция Лапласа) записывается в виде

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt.$$
 (23)

Площадь закрашенной фигуры под графиком плотности стандартного нормального распределения на рис. 3 определяется функцией Лапласа и равна $2\Phi(-|x|)$.

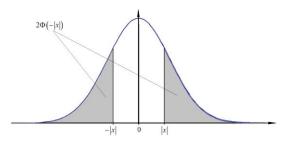


Рис. 3 – Геометрическая интерпретация значения функции Лапласа Согласно закону нормального распределения для случайной

Согласно закону нормального распределения для случаиной величины у имеем

$$P\left(\left|\frac{\gamma - M_{\gamma}}{\sigma_{\gamma}}\right| > |x|\right) = 2\Phi\left(-|x|\right). \tag{24}$$

Пусть функция $N_{\gamma}(x)$ определяет число случайных величин из выборки $\{\gamma_i\}$ нормального распределения, для которых $\left|\frac{\gamma-M_{\gamma}}{\sigma_{\gamma}}\right|<|x|,$ тогда для выборки размером n величина $\frac{1}{n}N_{\gamma}(x)$ является оценкой

вероятности $P\left(\left|\frac{\gamma-M_{\gamma}}{\sigma_{\gamma}}\right|>\left|x\right|\right)$ в формуле (24), т.е.

$$\frac{1}{n}N_{\gamma}(x) = 2\Phi(-|x|). \tag{25}$$

Введём величину $q=\frac{1}{n}N_{\gamma}(x)\cdot 100\%$ процентного числа случайных величин, определяющих оценку вероятности, и построим таблицу значений обратной функции Лапласа $x=\Phi^{-1}\left(\frac{1}{2}\cdot\frac{q}{100\%}\right)=\tilde{\Phi}^{-1}(q)$ для $q=1,\dots 50\%$. Значения таблицы 13 можно получить, например, вызовом функции **НОРМСТОБР** в MS Excel.

Таблица 13 – Значения обратной функции Лапласа

таолица 13 – Значения обратной функции Лапласа									
q	$ ilde{\Phi}^{ ext{-}1}ig(qig)$	q	$ ilde{\Phi}^{ ext{}1}ig(qig)$	q	$ ilde{\Phi}^{ ext{}1}ig(qig)$	q	$ ilde{\Phi}^{ ext{}1}ig(qig)$	q	$ ilde{\Phi}^{ ext{-}1}ig(qig)$
1	2.57583	11	1.59819	21	1.25357	31	1.01522	41	0.82389
2	2.32635	12	1.55477	22	1.22653	32	0.99446	42	0.80642
3	2.17009	13	1.51410	23	1.20036	33	0.97411	43	0.78919
4	2.05375	14	1.47579	24	1.17499	34	0.95417	44	0.77219
5	1.95996	15	1.43953	25	1.15035	35	0.93459	45	0.75542
6	1.88079	16	1.40507	26	1.12639	36	0.91537	46	0.73885
7	1.81191	17	1.37220	27	1.10306	37	0.89647	47	0.72248
8	1.75069	18	1.34076	28	1.08032	38	0.87790	48	0.70630
9	1.69540	19	1.31058	29	1.05812	39	0.85962	49	0.69031
10	1.64485	20	1.28155	30	1.03643	40	0.84162	50	0.67449

3.2. Алгоритм определения выборки нормального распределения

Предположим, что выборка $\{\gamma_i\}$ состоит из не более чем 50% аномальных измерений. Задача выбора из $\{\gamma_i\}$ случайных величин нормального распределения и отбраковки аномальных состоит в последовательном переборе процентной оценки измерений q, определении значения границы интервала x и отбраковке k измерений:

$$k = N_{\gamma} \left(\tilde{\Phi}^{-1} \left(q \right) \right) - \frac{q}{100\%} n. \tag{26}$$

Таким образом, на начальном этапе отбраковка происходит не по значению γ_i , а по числу, определяемому формулой (26).

Алгоритм же выбора самих величин для отбраковки основывается на отбраковке k первых величин из упорядоченной по убыванию выборки $\{\gamma_i\}$.

Алгоритм отбраковки состоит из 51 итерации по проценту числа измерений q. Итерация может содержать k отбракованных измерений, после которой остаётся $n_s = n_{s-1} - k$ измерений, $n_0 = n$. Если величины, участвующие на итерации q, снабдить соответствующим индексом, то на шаге $q = 1, \ldots, 50$:

- 1. вычисляется $x_q = \tilde{\Phi}^{-1} \left(q \right)$ значение обратной функции Лапласа из таблицы 14;
- 2. вычисляются a_q , b_q , $\sigma_{\gamma,q}$ параметры линейной регрессии по формулам (19, 20);
- 3. определяются n_s стандартных случайных величин $\hat{\gamma}_{i,q} = \frac{1}{\sigma_{\gamma,q}} \gamma_{i,q}$, где $\gamma_{i,q}$ не отбракованные на предыдущем шаге случайные величины, рассчитываются по формулам (22) ;
- 4. определяется $k_q = N_{\gamma_q}(x_q) \frac{q}{100\%} n_s$ с использованием (26);
- 5. если $k_q \le 0$, то увеличиваем q на 1 и переходим к шагу 1 без отбраковки:
- 6. если $k_q > 0$, то отбраковываем первые k_q измерений из $\left\{ \left| \hat{\gamma}_{i,q} \right| \right\} -$ упорядоченной по убыванию выборки абсолютных значений, $n_{s+1} = n_s k_q$. Если $n_{s+1} \geq 0$, то q = 0 и переходим к шагу 1.

Псевдокод алгоритма представлен ниже.

```
function: Селекция (кол-во n;
                                                                      невязки
\gamma_i(t_i), \quad i=0,n
for q = 1 : 50
      x = \tilde{\Phi}^{-1}(q) // значение таблицы 14
      for \Sigma_{t}=\Sigma_{t^{2}}=\Sigma_{\gamma}=\Sigma_{\gamma^{2}}=\Sigma_{t\gamma}=0 , i=1 : n
            \Sigma_t + = t_i, \Sigma_{t^2} + = t_i^2, \Sigma_{\gamma} + = \gamma_i, \Sigma_{\gamma^2} + = \gamma_i^2,
\Sigma_{t\gamma} + = t_i \gamma_i
      end
      a = \left(n\Sigma_{ty} - \Sigma_{t}\Sigma_{y}\right) / \left(n\Sigma_{t^{2}} - \Sigma_{t}^{2}\right),
b = \left(\sum_{t^2} \sum_{\gamma} - \sum_{t} \sum_{t\gamma}\right) / \left(n\sum_{t^2} - \sum_{t}^2\right)
      \sigma_{\varepsilon} = \sqrt{\frac{1}{n-2} \left( \sum_{\gamma^2} + a^2 \sum_{t^2} + nb^2 + 2 \left( ab \sum_{t} - a \sum_{t\gamma} - b \sum_{\gamma} \right) \right)}
      for i=1 : n
           \hat{\gamma}_i = \gamma_i / \sigma_{\gamma}
      end
      N_{\gamma}(x) = 2\Phi(-|x|)n
      k = N_{\gamma}(x) - \frac{q}{100\%}n
      if k > 0 then
             Упорядочиваем \hat{\gamma}_i по абсолютному значению
             Удаляем k самых больших по модулю
элемента из \hat{\gamma}_i
             n = n - k
             if n \le 0 then
                   return; // отбраковали
измерения
             q=0 // для начала работы
основного цикла c q=1
      fi
end
return
end function
```

3.3. Вычислительный эксперимент

Для проведения вычислительного эксперимента взята орбита КА «Спектр-Р» в виде набора векторов положения $\bf r$ и скорости $\bf v$ в СК J2000 на момент времени 2017/08/04 10:27:17 UTC (таблица 14). Оскулирующие элементы орбиты приведены в таблице 15.

Таблица 14 – Кинематический вектор КА

вектор	компоненты				
r , M	-144478985.5	258600785.0	89989688.4		
v , м/c	-412.755	162.068	-608.131		

Таблица 15 – Оскулирующие элементы орбиты

параметр	значение
период	10 сут 04:23:35
полуось	198451 км
эксцентриситет	0.584254
долгота восходящего узла	306°02'
наклонение	68°04'
высота апоцентра	314397 км
высота перицентра	76127 км

Было проведено моделирование сеанса траекторных измерений наклонной дальности с НС в Медвежьих Озёрах (55°52'05.54339" с.ш., 37°57'06.02881" в.д., высота 209.39 м).

С шагом 1 минута смоделировано 859 измерений наклонной дальности на интервале времени видимости КА со станции: 01:02:00 – 15:20:00 2017/08/04 UTC.

Дальности (10) от KA в момент излучения до HC $r_{\rm KA}^{\rm HC}$ и от HC в момент излучения до KA в момент приёма $r_{\rm HC}^{\rm KA}$ рассчитаны с использованием решения светового уравнения на момент времени приёма измерений $t_{\rm nn}$.

Моделируемое измерение наклонной дальности $\tilde{\Psi}^{\text{д}}$ на момент приёма измерений $t_{\text{пр}}$ рассчитано по формуле

$$\tilde{\Psi}^{\pi}(t_{\text{np}}) = \frac{1}{2} (r_{\text{KA}}^{\text{HC}} + r_{\text{HC}}^{\text{KA}}) + \eta_0^{\sigma_n}, \qquad (27)$$

где $\eta_0^{\sigma_\pi}$ — нормально распределённая случайная величина с нулевым математическим ожиданием и дисперсией σ_π^2 . Для зашумления измерения наклонной дальности среднеквадратическая ошибка (СКО) полагалась равной $\sigma_\pi = 50\,\mathrm{M}$.

С использованием равномерного закона распределения было выбрано 40% измерений (343 измерения) для моделирования аномалий. Аномальное измерение рассчитывалось по формуле

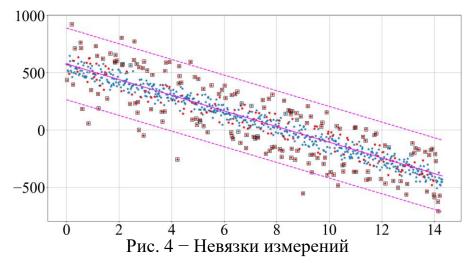
$$\tilde{\Psi}_{a}^{\pi}\left(t_{np}\right) = \tilde{\Psi}^{\pi}\left(t_{np}\right) + \xi_{-\sigma_{a}}^{\sigma_{a}}, \tag{28}$$

где $\xi_{-\sigma_a}^{\sigma_a}$ — случайная величина равномерного распределения на интервале $\left[-\sigma_a^{},\sigma_a^{}\right]$. Для зашумления аномалией полагалась $\sigma_a^{}=250\,\mathrm{M}$.

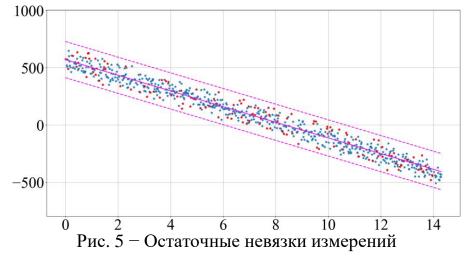
На этапе первичной обработки траекторных измерений КА предполагается наличие опорной орбиты, по которой строятся и

анализируются рассогласования измерений с расчетными значениями. Моделирование измерений наклонной дальности (27, 28) производилось с использованием эталонных векторов \mathbf{r} и \mathbf{v} , а первичная обработка с использованием зашумленных векторов $\tilde{\mathbf{r}}$ и $\tilde{\mathbf{v}}$.

Зашумление векторов **r** и **v** производилось в орбитальной СК RNB, состоящей из трёх компонент: радиус орбиты; вектор направления движения, перпендикулярный радиусу (трансверсаль); вектор в направлении, перпендикулярном плоскости орбиты (бинормаль). Для перевода вектора из СК J2000 в орбитальную СК RNB использовалась матрица


$$\mathbf{C}_{\text{J2000}}^{\text{RNB}} = \begin{pmatrix} \mathbf{r}^{\text{T}}/|\mathbf{r}| \\ (\mathbf{r} \times (\mathbf{r} \times \mathbf{v}))^{\text{T}}/|\mathbf{r} \times (\mathbf{r} \times \mathbf{v})| \\ (\mathbf{r} \times \mathbf{v})^{\text{T}}/|\mathbf{r} \times \mathbf{v}| \end{pmatrix}, \ \tilde{\mathbf{r}} = \mathbf{C}_{\text{J2000}}^{\text{RNB}} \cdot \mathbf{r}, \ \tilde{\mathbf{v}} = \mathbf{C}_{\text{J2000}}^{\text{RNB}} \cdot \mathbf{v}.$$
(29)

Каждой компоненте вектора положения $\tilde{\mathbf{r}}$ в орбитальной СК добавлялась нормально распределенная случайная величина с нулевым математическим ожиданием и дисперсией $\sigma_x^2 = 114^2 \text{ m}^2$, $\sigma_y^2 = 249^2 \text{ m}^2$, $\sigma_z^2 = 26^2 \text{ m}^2$ соответственно.


Каждой компоненте вектора скорости $\tilde{\mathbf{v}}$ в орбитальной СК добавлялась нормально распределенная случайная величина с нулевым математическим ожиданием и дисперсией $\sigma_{v_x}^2 = 4^2 \; \frac{\text{MM}^2}{c^2} \; , \; \sigma_{v_y}^2 = 4^2 \; \frac{\text{MM}^2}{c^2} \; ,$

$$\sigma_{v_z}^2 = 21^2 \frac{MM^2}{c^2}$$
 соответственно.

На рисунке 5 точками разного цвета показаны невязки γ_i (22) измеренных и расчетных значений вдоль прямой линейной регрессии (сплошная красная линия). Пунктирными линиями изображены прямые, соответствующие $3\sigma_\epsilon=312.9\,\mathrm{m}$ (20). По оси абсцисс отложено время сеанса измерений в часах, а по оси ординат — значение невязки в метрах. Красные точки (343 измерения) соответствуют аномальным измерениям $\tilde{\Psi}^{\mathrm{g}}_{\mathrm{a}}$, а синие — нормальным измерениям $\tilde{\Psi}^{\mathrm{g}}_{\mathrm{a}}$. Отмеченные квадратом красные точки соответствуют отбракованным в алгоритме (п. 3.2) измерениям.

Уровень $3\sigma_{\epsilon}$ графика на рис. 4 показывает сложности в применении алгоритмов (таблица 1), а отбракованные 22.5 % аномалий показывают высокую эффективность предложенного алгоритма. Не попавшие в отбраковку оставшиеся красные точки имеют малый уровень шума. На рис. 5 изображены остаточные (не отбракованные) невязки и их уровень $3\sigma_{\epsilon} = 157.8 \,\mathrm{m}$.

Заключение

траекторных Построенная математическая измерений модель наземной станции «Кобальт-Р» может быть использована при моделировании определения орбиты аппарата космического «Луна-Глоб».

Представленный алгоритм первичной обработки для выявления аномальных измерений может быть применен как в математическом моделировании задач навигации в будущих проектах, так и в текущих оперативных работах.

Библиографический список

1. *Аким Э.Л., Горохова А.А., Киселева И.П. и др.* Небесномеханическая интерпретация измерений радиосистемы межпланетных космических аппаратов «Квант-Д» // Препринты ИПМ

- им. М.В. Келдыша. 2002. № 2, 20 с. URL: http://library.keldysh.ru/preprint.asp?id=2002-2.
- 2. *Бажинов И.К.*, *Гаврилов В.П.*, *Ястребов В.Д. и др.* Навигационное обеспечение полета орбитального комплекса «Салют—6» «Союз» «Прогресс» М.: Наука, 1985. 376 с.
- 3. *Тучин А.Г., Горохова А.А.* Локальная обработка измерений дальности для околоземных орбит космических аппаратов скорости // Препринты ИПМ им. М.В. Келдыша. 1990. № 99. 18 с. URL: http://library.keldysh.ru/preprint.asp?id=1990-99.
- 4. Гордиенко Е.С., Ильин И.С., Мжельский П.В., ...Тучин Д.А. и др. Баллистико-навигационное обеспечение полёта малых космических аппаратов «Зонд-ПП» и «Рэлек» // Вестник НПО им. С.А. Лавочкина. 2016. № 2. С.31-43. URL: http://vestnik.laspace.ru/archives/02-2016/
- Тучин Д.А Определение орбиты на борту космического аппарата // Изв. РАН. ТиСУ. 2020. № 3. С. 126–147.
- 6. Комовкин С.В., Лавренов С.М., Тучин А.Г., Тучин Д.А. и др. Небесно-механическая интерпретация запросных радиотехнических измерений радиальной скорости космических аппаратов научного назначения // Вестник НПО им. С.А. Лавочкина. 2015. № 4. С.77–80. URL: https://vestnik.laspace.ru/archives/04-2015/
- 7. *Аким Э.Л., Горохова А.А., Киселева И.П., Степаньянц В.А., Тучин А.Г.* Локальная обработка измерений радиосистемы межпланетных космических аппаратов // Препринты ИПМ им. М.В. Келдыша. 2002. № 11. 20 c. URL: http://library.keldysh.ru/preprint.asp?id=2002-11
- 8. *Колосов М.А., Арманд Н.А., Яковлев О.И.* Распространение радиоволн при космической связи / Под ред. ак. Б.А. Введенского и проф. М.А. Колосова. М.: Связь, 1969. 155 с.
- 9. Космические траекторные измерения. Радиотехнические методы измерений и математическая обработка данных / Под ред. П.А. Агаджанова, В.Е. Дулевича, А.А. Коростелева Советское радио, 1969. 504 с.
- 10. *Себер Дж.* Линейный регрессионный анализ М.: Мир, 1980. 456 с.

Сокращения

АПК ПФОС аппаратно-программный комплекс приема, формирования

и обработки сигнала

БА – бортовая аппаратура БЦ – баллистический центр

ДМВ — декретное московское время ДС — доплеровское смещение

ИПМ – Институт прикладной математики им. М.В. Келдыша РАН

ИТНП — измерения текущих навигационных параметров

ИФКТ – информация функционального контроля

КА – космический аппарат

КИС – командно-измерительная система НРТК – наземный радиотехнический комплекс

HC – наземная станцияп/к – полукомплект

ПЧ – пониженная частота СК – система координат

ФЗС – фазовая задержка сигнала

ЦМОС – цифровой модуль обработки сигналов

WGS World Geodesic System

Денис Андреевич Тучин к.ф.-м.н., ведущий научный сотрудник ИПМ им. М.В.Келдыша РАН

e-mail: den@kiam1.rssi.ru den

