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Колесниченко А.В. 

Модификация альфа-формализма ШакурыСюняева для коэффициента  

турбулентной вязкости в астрофизическом диске конечной толщины. 
 

В приближении одножидкостной гидродинамики сформулирована замкну-

тая система осредненных по Фавру магнитогидродинамических уравнений, 

предназначенная для численного моделирования сжимаемых турбулентных те-

чений электропроводных сред в присутствии магнитного поля. Особое внима-

ние уделено методу получения в рамках необратимой термодинамики опреде-

ляющих соотношений для турбулентного потока тепла и суммарного (кинети-

ческого плюс магнитного) тензора турбулентных напряжений.  Предложен но-

вый подход к моделированию коэффициента турбулентной кинематической 

вязкости для астрофизического диска, который учитывает влияние внешнего и 

генерируемого магнитного поля, а также процессов конвективного переноса 

тепла на турбулентность в стратифицированном слое конечной толщины и тем 

самым модифицирует альфа формализм Шакуры–Сюняева, разработанный для 

тонкого диска и широко используемый в астрофизической литературе. 

Ключевые слова: магнитная гидродинамика, развитая турбулентность, 

термодинамика необратимых процессов, альфа-диски. 
 

Aleksandr Vladimirovich Kolesnichenko 

Modification alpha formalism of Shakura–Sunyaev for the coefficient of turbu-

lent viscosity in an astrophysical disk of finite thickness. 
 

In the approximation of one-fluid hydrodynamics, a closed system of Favre-

averaged magneto-hydrodynamic equations is formulated, intended for the numerical 

simulation of compressible turbulent flows of electrically conductive media in the 

presence of a magnetic field. Special emphasis is paid to the method of obtaining, 

within the framework of irreversible thermodynamics, the constitutive relations for 

the turbulent flux heat and the total (kinetic plus magnetic) tensor of turbulent stress-

es. A new approach to modeling the coefficient of turbulent kinematic viscosity for 

an astrophysical disk is proposed, which takes into account the influence of an exter-

nal and generated magnetic field, as well as the processes of convective heat transfer 

on turbulence in a stratified layer of finite thickness, and thereby modifies the Shaku-

ra–Sunyaev alpha formalism developed by for a thin disk and widely used in the as-

trophysical literature. 

Key words:  magnetic hydrodynamics, the advanced turbulence, thermodynam-

ics of the irreversible processes, alpha disks. 
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Introduction 
 

A noticeable fraction of gas in the near-solar protoplanetary disk at the very ini-

tial stage of its evolution represents partially ionized plasma; the degree of ionization 

of this plasma is quite sufficient for the development of various plasma instabilities 

(see, e.g., [Sano et al. 2000]), in particular, the hydro magnetic shear instability dis-

covered by Velikhov [Velikhov 1959]. This instability, as applied to astrophysical 

disks, was called Balbus–Hawley magneto rotational instability [Balbus, Hawley 

1991]; it occurs if there exists a magnetic field component perpendicular to the disk 

rotation plane, and the angular velocity of rotation decreases with increasing distance. 

As a result, a large amount of unstable small-scale (as compared to the disk thick-

ness) modes appear, and the development of these modes effectively generates turbu-

lence in the differentially rotating disk (see, e.g., [Eardley, Lightman 1975; Alfven, 

Arrhenius 1979; Galeev et al. 1979; Coroniti 1981; Tout, Pringle 1992; Brandenburg 

et al. 1996; Lesche 1996; Bisnovatyi–Kogan, Levelace 2001; Armitage et al. 2001]). 

The existence of a magnetic field (even a weak one, 
2 2/ 4 sc B 4 πμρ ) 

considerably complicates hydrodynamic flows in the gravitational field of the proto-

star. The large-scale magnetic forces acting on the conducting layers of the disk no-

ticeably influence the dynamics of the astrophysical processes taking place in the 

disk, such as the angular momentum transfer to the disk periphery, the character and 

rate of accretion from the ambient space (from the diffusion medium or some mass-

losing satellite of the star), jet flows from the disk corona (MHD active upper layer) 

of the magnetized rotating wind, and so on.  

It is quite probable that in the internal regions of the protoplanetary disk (for 

small values of   ) at the early stage of its formation and in its upper layers (at large

z  there exist chaotic magnetic fields generated by a turbulent dynamo mechanism or 

just introduced into the disk with accreted interstellar plasma. These fields (whose 

energy could be comparable with the energy of hydrodynamic turbulence), mixed due 

to the differential rotation of the weakly ionized matter of the disk which experiences 

reconnection at its boundary, made a considerable contribution to the turbulent vis-

cosity both in the internal region of the disk and at the external layers of its corona, 

where a high matter ionization degree was reached. The efficiency of MHD turbu-

lence as the dissipation mechanism essentially depends on magnetic reconnection. 

We recall that the reconnection of magnetic field force lines (which represents the 

fundamental physical process in the space plasma responsible for many manifesta-

tions of its activity) is possible only in the case of complex plasma motion when 

magnetic force lines with different directions can closely approach each other. In this 
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case, near the approaching point of force lines with different magnetic field direction, 

a rather high electric current density is achieved. In this plasma, before the beginning 

of reconnection there exists some accumulated magnetic energy, and after that the so-

called tearing instability begins to develop; this instability finally results in force lines 

reconnection and the transformation of the excessive energy of the magnetic field in-

to the kinetic or thermal energy of the plasma (see [Kadomtsev, 1987]). 

In the protoplanetary disk, a large-scale magnetic field (whose characteristic size 

considerably exceeds the characteristic size of turbulent pulsations and is comparable 

with the size of the proto-Sun) is present in the protoplanetary disk along with the 

chaotic magnetic field; due to turbulent transfer, this field may be extended at least to 

the internal edge of the disk. This field penetrates into some region at both sides of 

the disk surface. In this case, the external region is influenced by magnetic stress 

caused by both small-scale field perturbations related with the turbulence in the disk 

and large-scale shear flow. As a result, not only effective turbulent viscosity and tur-

bulent magnetic diffusion, but all of the effects related with the electrodynamics of 

average fields occur (see, e.g., [Zeldovich et al., 2006]). In particular, since the effec-

tive magnetic diffusion in the rotating conducting medium is necessarily accompa-

nied by turbulent electromotive force B (the so-called  -effect related in the end 

with the influence of kinematical and magnetic helicity on the generation of the in-

duced magnetic field, see [Moffatt 1980; Kolesnichenko, Marov, 2007]), it should be 

expected that the turbulent dynamo mechanism strongly influences the structure and 

evolution of the “young” proto planetary disk. It is known [Parker, 1955] that the 

small-scale reflection–non invariant (gyrotropic) turbulence in a rotating disk creates 

“loops” (the  -effect) when any magnetic field tube under the action of the local hel-

ical motion acquires the form of a twisted   symbol. This magnetic loop is accom-

panied by a current which is antiparallel (parallel) with respect to the applied average 

magnetic field component for right-skew (left-skew) random helical motions. The en-

ergy of Joule heat produced by these currents is a powerful source of heating for 

which, in particular, the disk corona with a thickness of an order of the disk thickness 

[Heyvaerts, Priest, 1992; Inverauity et al., 1995] is created. In reality, the corona may 

be much thicker, in spite of the fact that the “primary loops” floating to the surface in 

the turbulent medium under the action of the lifting force have this characteristic size. 

This is related with the fact that in the course of the reconnection of small loops, 

loops with a larger size may be formed [Galeev et al., 1979]. The corona keeps the 

magnetic connection of the remote regions of-the disk via large-scale force lines go-

ing through it, which are reconnected in the disk. Such a magnetic connection is a 

possible additional source of stress in the corona and, thus, its heating. Thus, because 
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of viscous stress occurring due to the differential rotation of the magnetized accretion 

disk and the action of the turbulent dynamo, its corona is heated similar to the heating 

of the solar corona. The hot corona is capable of generating jet matter and field out-

flow. Actually, such a jet is a magnetized plasma wind outflowing the accreting disk 

(see, e.g., [Pudritz, Norman, 1986; Campbell, 2005]). In turn, the rotating wind trans-

fers to infinity, together with matter and the magnetic field, the considerable angular 

momentum of the disk, thus allowing the disk to compress slowly and providing, 

along with the viscous transfer of the angular momentum outside, another possibility 

of removing the angular momentum from the disk [Konigl, Pudritz, 2000]. Note that 

the magnetic stress in the wind may also cause the very efficient focusing of the mat-

ter motion, jets (e.g., [Wang et al., 1990]). 

As applied to the problem of the reconstruction of the evolution of the preplane-

tary gas–dust accretion disk, we developed in a number of papers [Kolesnichenko 

2000, 2001, 2003-2005; Kolesnichenko, Marov, 2006-2008; Marov, Kolesnichenko, 

2002, 2006] an approach to the solution of the problem of an adequate mathematical 

simulation of the turbulized disk medium taking into account the combined influence 

of magnetohydrodynamic effects and the effects of hydrodynamic turbulence on the-

dynamics and processes of heat and mass transport in the differentially rotating space 

gas–dust plasma, the inertial properties of the polydispersive admixture of solid parti-

cles, the processes of coagulation and radiation, and a number of additional effects 

occurring during turbulent plasma motion in a magnetic field. 

In particular, in the paper [Kolesnichenko, Marov, 2008] in the framework of 

the basic cosmogony problem related with the reconstruction of the protoplanetary 

accretion disk surrounding the Sun at the early stages of its existence, a closed system 

of magneto hydrodynamic equations with the scale of average motion was obtained 

in the approximation of the single-fluid magnetic hydrodynamics; this system is des-

ignated for the simulation of shear and convective turbulent flows of the weakly ion-

ized disk medium in the presence of the magnetic field. This system of equations was 

used for a number of schematic formulations and numerical solutions of special prob-

lems on the self-consistent simulation of the structure and evolution of the turbulized 

matter in the magnetized disk and the related magnetized corona and in the case of 

matter accretion from ambient space. Thus, for example, if there is an ordered mag-

netic field with a noticeable perpendicular component in the disk, both the angular 

momentum and the energy can be carried away via magnetized plasma flows moving 

perpendicular to the disk plane, which results in the radial redistribution of the angu-

lar momentum and the matter of the disk and the angular velocity of the disk rotation 

different from the Keplerian one. In turn, the magnetic stress created in the corona by 
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the conducting disk due to the relative shear in the magnetic force line bases results in 

the heating of local corona regions (via the turbulent dissipation mechanism) and in-

fluences the disk dynamics. Thus, in the case of the strict formulation of the above 

problems, it is necessary to take into account the existing magnetic connection of the 

protoplanetary disk and its corona. 

In this paper, which continues the cycle of papers on the subject, we consider 

mainly the following four aspects of the problem of construction of the model of the 

structure and evolution of the protoplanetary disk of the Sun: 

(i) the formulation of the basic system of averaged MHD equations for devel-

oped turbulence designated for setting and numerically solving various problems on 

the mutually consistent simulation of the structure and evolution of the disk and relat-

ed corona at the early stages of their existence; 

(ii) the development of a new approach to the simulation of the turbulent 

transport coefficient in the conducting disk which provides an account of the effects 

of the influence of the large-scale magnetic field generated by the turbulent dynamo 

mechanism and convective heat transport on the turbulence development in the densi-

ty-stratified layer with a finite thickness, and thus allows one to reject the Shakura–

Sunyaev  - formalism widely used in astrophysical literature; 
 

1. Original equations of the problem 
 

Based on results obtained in the paper [Kolesnichenko, 2008], we first present 

the complete system of averaged magnetohydrodynamic equations for the developed 

turbulence, in the framework of which a number of key models will be developed for 

the reconstruction of the course of evolution and the structure of the protoplanetary 

accretion disk near the young Sun. Below, we use two symbols for averaged parame-

ters of the problem: the bar above a quantity means the conventional probability theo-

retical averaging of this quantity ( , )tx  over an ensemble of possible implementa-

tions (time and/or space), while a tilde above a quantity means the weighted Favre 

averaging [Favre, 1969] determined by the relation /      (where 

= =     ;  ,  are the corresponding turbulent pulsations; 0 

, =0  ; the properties of weighted averaging used in this paper can be found in 

[Kolesnichenko, Marov, 1999]). In the inertial reference frame, the averaged hydro-

dynamic equations for the developed turbulent flow and the magnetic induction equa-

tions for average magnetic field ( , )tB x   in the absolute Gaussian system take the fol-

lowing form: 
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  0
t


   


u ,                                        (1) 

1
( )M К

turb G

d
p p

dt с

 
       

u
R j B ,             (2) 

K( ) ( ) :turb M
rad turb

d
p p

dt

 
           q q u R u  

2

0 e

1 1
:

4
M  

 
R B j ,                                       (3) 

  2M
M

d

dt

 
         

 

B
B u R B ,    0 B  ,            (4) 

p T  .                                               (5) 

Here, / /d dt t      u  is the substantial time derivative for the averaged con-

tinuum; ( , )t x , ( ,t) : /    u x u  are, respectively, the averaged density and aver-

age weighted hydrodynamic velocity of the space matter in the disk (     ; 

( , )t    u x u u ; u is the Favre-averaged turbulent velocity pulsation); ( , )tB x  is 

the averaged vector of the pulsating magnetic field (average magnetic field)
1)

 

strength; 
 

 ( , ) :M t    R x u B Bu                                            (6) 

is the so called Reynolds magnetic tensor; 
2

0 e: /4M c     is the molecular mag-

netic viscosity coefficient; c  is the light velocity; 0  is the magnetic permeability; 

e  is the specific molecular electric conductance coefficient (it will be assumed be-

low that 0 , M  and e  are constant); ( , )p tx , 
2

0( , ) : / 8M
turbp t  x B  are, respec-

tively, the average gas-dynamic pressure and the turbulent magnetic pressure; 
 

 0( , ) : /4 : ( , ) ( , )K M
turbt t t        R x u u B B R x τ x                       (7) 

                                                           
1)

 In this paper, we do not distinguish between the magnetic field and magnetic induc-

tion, since the magnetic permeability of the disk medium is practically equal to unity. 
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is the Reynolds tensor of kinetic turbulent stress for the turbulized medium in the 

presence of the pulsating magnetic field; ( , ) :t   R x u u  is  the common Reyn-

olds tensor for the gas which has the meaning of additional (turbulent) stress; 

0( , ) : / 4M
turb t   τ x BB   is the magnetic stress tensor for the pulsating component 

of the magnetic field; ( ,t)j x  is the averaged conduction current (current measured by 

the observer moving together with the electro conductive gas) density included in the 

averaged Ampere’s law, 

0( / 4 )c  j B;                                                (8) 

G : 
1/2

G


 x                                                 (9) 

is the potential function of the gravitational field;  is the mass of the proto-Sun; 

G  is the gravitational constant (below, we neglect the disk self-gravitation, which is 

always possible if / 1disk/ h R  ; here ( )h r  and R  are the half thick-

ness and the external radius of the disk, respectively); ( , ) : /t    x  is the Fa-

vre-averaged specific internal energy ( ,t)x  of the disk medium (below, the internal 

energy of the gas is assumed to be proportional to temperature) 
 

( , ) : Vt с T x 1( 1)T    ,                                    (10) 

where : /  R ; R  is the gas constant; μ is the average atomic mass (average mass 

per particle in units of pm ); : / cP Vc   is the adiabatic index; Pc , /( 1)Vc   

are, respectively, the specific heat capacity of the gas at constant pressure and con-

stant volume (below, these quantities are assumed to be constant); ( , )rad tq x  is the 

averaged energy flux transferred by radiation; ( , )turb
Pt c T   q x u  is the turbulent 

heat flux; and ( , ) : pturb turb
*t   q x q u is the reduced heat flux [Kolesnichenko, 

Marov, 1999].  

The following should be noted in relation with the presented MHD equations for 

the averaged motion of the turbulized plasma. Upon the derivation of these equations, 

we did not take into account the radiation pressure and energy for simplicity, alt-

hough sometimes it is necessary to consider the disk medium as a mixture of the ideal 

gas and the blackbody radiation. The generalization of Eqs. (2), (3), and (4) to this 
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case does not present any difficulties. In averaged induction equation (4), the follow-

ing term is included: 

        :M с               R B u u B B u u B  (11) 

 

which plays the role of the additional source generating average magnetic field 

( , ).tB x Here, 

1 1( ,t) : ( / )с с        x u B u B ,                                      (12) 

 

(or in tensor form, : R /2M
i ijk jk с  ) is the additional electromotive force generated 

by the random velocity and magnetic field fluctuations which appears in the averaged 

Ohm’s law  

*( , ) ( )et   j x E ,     
* 1( , ) :t с    E x E u B ;                             (13) 

( , )tE x  is the averaged electric field strength vector; and ijk  is the completely anti-

symmetric third rank tensor (alternating Levi–Civita tensor). Note that one of the 

main objectives of the semi empirical theory of MHD turbulence is the construction 

of a special closing relation for turbulent flux ( , )tx  as a function of average fields 

( , )tB x  and ( , )t u x  so that it would be possible to find ( , )tB x  from induction 

equation (4) for the given field ( , )t u x . Taking into account (12), the last term for 

the averaged motion in heat inflow equation (3) can be represented in the form  
 

0(1/4 ) :M    R B j .                                          (14) 
 

Finally, it is important to note that the substantial internal energy balance equation 

takes form (3) only in the case of the special regime of the strongly developed turbu-

lencein the system, when in the structure of the pulsating fields ( , )tu x  and ( , )tB x  

a quasi-stationary state is established, such that the total turbulent plasma energy 

( , )b t  x  equal to the sum of turbulent gas energy
2

( , ) : / 2b t     x u  and 

2

0( , ) : /8Mb t     x B   turbulent magnetic field energy  

2 2
0: / 2 /8Mb b b               u B ,                         (15) 

 

slightly varies in time and space, / 0d b dt    [Kolesnichenko, Marov, 2008]. Sys-

tem of equations (1)-(5) should be added by the defining relations for turbulent fluxes 
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and the expressions for the necessary thermodynamic characteristics and transport. 

The boundary and initial conditions for the structural parameters do not differ from 

the corresponding conditions for non electro conductive media, but it is necessary to 

use additional conditions for the average magnetic field. 
 

 Total averaged energy conservation law. Further, we will need the balance 

equation for the total averaged energy of the disk system equal to the sum

U U sub M
tot tot         of the Favre-averaged total energy of the conducting gas 

 

2
U ( , ) : / 2sub
tot Gt b            x u                                  (16) 

 

and the average energy of the electromagnetic field  
 

22

0 0( , ) : / ( / 8 ) / / 8M M Mt b               x B B          (17) 

 
 

According to [Kolesnichenko, Marov, 2008], this equation for a developed turbulence 

can be written in the form 

 U Qsub M
tot radt


      


 

 
2

0

U ,
8

sub turb
tot Poyntp b

  
  

                    
  

B
u q u u q R u u   (18) 

where 

: / 4Poynt c  q E B                                           (19) 

 

is the averaged Umov–Poynting vector which has the meaning of the energy flux 

density of the electromagnetic field, 
 

Ω0 0

Q : 4 Brad rad a aI d d d
 

               q Ω ,           (20) 

 

where  , ( , , )I t x Ω and B ( , , )t x Ω , respectively, are the radiation frequency, spec-

tral intensity, and internal source function; Ω  is the direction of motion of photons; 

and a  is the true radiation absorption coefficient for the disk matter (spectral 

opacity). The first ( ) term in expression (20) corresponds to the absorbed, and the 
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second ( ) term, to the spontaneously emitted in unit volume and unit time radiation 

energy. Several radiation transport regimes are possible which are applicable in dif-

ferent regions of the disk and (depending on the accretion rate, protostar mass, etc.) 

different models of the disk. In particular, if the total optical thickness of the disk 

ad ds     along the direction of propagation s exceeds unity, photons are trans-

ferred to the disk surface via diffusion (see relation (26)). In the general case, the 

spectral intensity ( , , )I t x Ω  included in formula (20) should be determined in the 

course of the solution of the radiation transport equation. 

In the MHD approximation, vector can be transformed to the form [Kole-

snichenko, Marov, 2008] 

2 2

M
0 0 08 8 4

M
Mturb

Poynt turb

p
b

   
                
       
   

B B BB
q u I u τ u  

 

 
 
           
   
 

2
2

0 0 0

1
( ) .

4 8 4
M M

M M turb turbp
B BB

B I BB u I I τ  (19*) 

Note that for strongly developed turbulence, two small terms in this expression, in-

cluding “molecular” magnetic viscosity coefficient M , can be omitted for most spa-

tial regions of the accretion disk and the corona (see, e.g., [Lazarian, Vishniac, 

1999]). These terms should be taken into account only in regions with high spatial 

gradients of the magnetic field, for example, in the region of stochastic reconnection 

of magnetic force lines. 

Combining (18) and (19*), we write the conservation law for the total energy of 

the disk system in the following form: 

0

( U ) Q ( )
4

turb M K
tot rad turb

d
p p

dt

  
               

  

BB
q u R u  

 

2

0

1
,

4
b

         
     

B I BB
u u                                  (18*) 

 

and the two correlation terms on the left-hand side of this equation can be neglected 

due to their smallness in the considered problem (see, e.g., [Pudritz, 1981]). 
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2. Stationary nonequilibrium regime of the subsystem of 

turbulent chaos. Derivation of the defining relations 
 

In the paper [Kolesnichenko, Marov, 2008], the turbulent motion of the electro-

conductive gas was described in the framework of a two-fluid thermodynamic con-

tinuum consisting of two mutually open subsystems continuously filling the same co-

ordinate space: the subsystem of the average motion and the subsystem of turbulent 

chaos connected with pulsation motion of the matter and field. It was assumed that 

elementary volume dx  of the subsystem of turbulent chaos can be characterized by 

the generalized thermodynamic state parameters, such as entropy S ( , )turb tx , internal 

energy ( , )turb tx , pressure ( , )turbp tx , and turbulization temperature ( , )turbT tx  (the 

quantity characterizing the degree of intensity of turbulent pulsations [Blackadar, 

1955]). Entropy S ( , )turb tx  and internal energy ( , )turb tx  of turbulization were con-

sidered as the primary concepts and were introduced a priori for providing the con-

sistency of the thermodynamic theory; their exact physical interpretation was not as-

sumed [Jou et al. 2006]. The mentioned quasi-equilibrium regime of motion in the 

subsystem of turbulent chaos was specially analyzed; in this regime, total occurrence 

turb( ) ( ) ( )turb turb

e i
S S S     of turbulization entropy  S ( , )turb tx  is almost absent. This 

condition means that occurrence 
b( )( , )

tur

i
S t x  of entropy S ( , )turb tx  (due to irreversi-

ble processes inside the subsystem of turbulent chaos) is compensated by its outflow 

( )( , )
turb

e
S t x   into the “external medium” (i.e., to the subsystem of averaged motion) 

in such a degree that ( )( , ) 0
turbS t x . Since the following inequality is always satis-

fied, ( )( , ) 0
turb

i
S t x , the following expression is valid ( ) ( )0

turb turb

e i
S S    . This 

yields that for preserving such a stationary–nonequilibrium turbulence regime, the in-

flow of negative entropy (negentropy) from the averaged motion to the chaotic com-

ponent is necessary, ( ) turbT / T 0
turb

e e
S S       [Kolesnichenko, 2003]. Only in 

this case, the balance equation for averaged entropy of the system 

 1( , ) ln /VS t с T      x  takes the “standard” form of the general heat transport 

equation [Marov, Kolesnichenko, 2006], 
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 /turb
S

d S
T

dt  

 
     q  ,                                    (21) 

 

where local occurrence ( , )S t  x  of entropy ( , )S t  x  due to dissipative processes in 

the electroconductive turbulized medium is determined by the expression 
 

   
2

0
2

M3
0

0 ( , )

ln : : Q .
4

S

M
aturb K

rad
e

Т t

Т b b

   

               
   

x

jR
q R I B

 (22) 

 

Here     
0

1
3

: / /
s

         u x I x u  is the shear velocity for the averaged 

motion; I  is the unit tensor;    1
2

/ : / /
s

j k k jjk
u x u x          u x  and 

   1
2

/ : / /
a

j k k jjk
B x B x      B x  are, respectively, the symmetric and anti-

symmetric parts of tensors  u  and B .   

If the Onsager non equilibrium thermodynamics method is used, bilinear form 

(22) for ( , )S t  x  provides the defining relations for the turbulent heat flux 

( , )turb tq x , total turbulent stress tensor ( , )K tR x , and magnetic Reynolds tensor 

( , )M tR x  corresponding to the regime of the stationary–nonequilibrium state of the 

turbulent field. For isotropic turbulence (in this paper, we consider this case only), if 

the Curie–Prigozhin principle is used(according to which the connection between the 

tensors of different rank in an isotropic medium is impossible), these relations take 

the following form (the small cross terms being neglected) [Marov, Kolesnichenko, 

2002]: 
 

( , ) Sturb turb turb turb

P P P

p T
t T T

с с с

     
              

   

g
q x , (23) 

 

      s
2 1
3 3( , ) 2K turb

M Kt b b              R x I u I u ,   (24) 
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 ( , ) 2
aM turb

Mt   R x B ,       turb
Mor с   B ,                     (25) 

 

 where ( , )turb t x , ( , )turb
K t x   and 

rb( , )tu
M t x  are, respectively, the coefficients of 

turbulent heat conduction, turbulent kinematical viscosity, and turbulent magnetic 

field diffusion depending in the general case on the following parameters: , ,  u

0/ 4B  and L  (here, ( )L x  is some geometric characteristic of the position of point 

x , for example, equal to the common “shear path length” [Ievlev, 1975]).  

Below, the defining relation for the radiation vector will be used in the form of 

the radiant heat flux, 

3
B16

( , )
3rad r

T
t T T

  
       


q x  .                                (26) 

This formula is valid in the case of the diffusion of equilibrium radiation (for exam-

ple, in the case of the local thermodynamic equilibrium of radiation and matter inside 

an optically thick disk). Here, B , 
316 / 3r B T       are, respectively, the Stef-

an–Boltzmann constant and the radiant (nonlinear) heat conduction coefficient of the 

medium which strongly depends on the material temperature and density; ( , )T  is 

the total opacity of the medium which depends on   and T  in a complex way, as 

well as on the ionization degree, chemical composition, etc. [Fridman, Bisikalo, 

2008]. In the general case,   is determined as the Rosseland mean with respect to in-

verse spectral opacities 1 /   (see, e.g., [Frank-Kamenetsky, 1959]). It is known that 

the dominating contribution of ff  to opacity   in the accretion disk is introduced 

by the nonrelativistic thermal bremsstrahlung, or “free–free” transitions. Below, the 

absorbed Rosseland mean opacity   related with these processes is determined by 

the Kramers formula  
 

7/2( , )ff T T   K  cm
2
 g

–1
,                                           (27) 

                                 

 where 
230.32 10 K  is the constant. In optically thick disks, the comparable (but 

smaller) quantity 
22 10 (1 X)es
    cm

2
 g

–1
 is introduced by “bound–bound” 

transitions in lines and “bound– free” ionization transitions (where X  is the mass 

fraction of hydrogen in the medium).  
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Let us make an important remark concerning formula (25) for electromotive 

force ( , )tx . This formula is valid only for an isotropic (in the hydrodynamic sense) 

turbulence when pulsating velocity field ( , )tu x  possesses mirror symmetry in the 

whole system. However, in the case of a rotating accretion disk, it is possible that, for 

example, in the upper part of the disk left-rotating turbulent motion is more probable 

than the right-rotating one, or vice versa.  

The physical reason of the violation of the reflective symmetry is the influence 

of the Coriolis force on vortices floating up and down in the turbulent medium of the 

disk. In this case, the mirror symmetry of field ( , )tu x  with respect to the central 

plane of the disk is absent and the turbulence can possess the so-called hydrodynamic 

helicity density ( , ) : ( )helh t    x u u , which characterizes the excess of vortices 

of a given sign [Moffatt, 1980; Vainshtein et al., 1980; Krause, Radler 1984; Kole-

snichenko, Marov 2007]. The generalization of formula (25) to the case of mirror-

nonsymmetric turbulence takes the form (see, e.g., [Steenbeck et al., 1966]), 
 

( , ) turb
Mс t    x B B                                                  (25*) 

 

where helicity coefficient   is pseudoscalar. It can be easily seen that the additional 

term in relation (25*) is connected with electric current ( , ) ...et    j x B  directed 

along the magnetic field. Simple considerations show that for the case of isotropic 

and mirror-symmetric velocity field ( , )tu x , helicity coefficient   is equal to zero. 

Indeed, for an isotropic medium the probability of some given implementation of the 

ensemble of this field and the implementation obtained from it by mirror reflection is 

the same. Then, on one hand,   should not change if this reflection is performed, 

since the ensemble has not changed, but on the other hand, α should change sign, 

since it is a pseudoscalar; therefore, 0  . 

Substituting (25*) into induction equation (4) for average fields, we obtain 
 

     2 .turb turb
M M M

d

dt

 
             

 

B
B u B B B    (28) 

 

For a well mixed turbulence (created by a ( , )tu x ' field) when the magnetic field be-

comes tangled and small scale, the process of diffusion is enhanced, 

0turb
M M     (condition of strongly developed turbulence). Below, it will be as-

sumed for simplicity that in Eq. (28) 
turb
M  and   are constant; then 
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  2turb
M

d

dt

 
         

 

B
B u B B .                             (28*) 

 

Then, it can be seen that the reflection–symmetric isotropic turbulence, unlike the gy-

rotropic one, causes only turbulent magnetic field diffusion. 

 It should be noted that due to the pseudoscalar nature, the effect is antisymmet-

ric with respect to the central plane of the disk. The symmetry properties of Maxwell 

equations admit two types of symmetry for eigensolutions (modes) of average field 

dynamo equation (28*): magnetic fields can be antisymmetric with respect to the 

equator (dipole symmetry) and symmetric with respect to the equator (quadruple 

symmetry). In particular, the solar dynamo mechanism, as a rule, excites mainly the 

dipole oscillating mode (the Hale rule).  

If expressions (25*) and (8) are substituted into Ohm’s law (13), we obtain for 

the averaged current 

 * * 1
e e

0

( , )
4

turb turb

turb
M

с
t с


     

 
j x E B E B .                        (29) 

 

Here, turbulent conductivity  e
turb  is determined by the formula 

 

2

e 2
01 4 / 4

turb e e M e M
turb turb turb turb
M e M M M M

с

c

    
    

        
 ,                 (30) 

 

it can be seen from this formula that turbulent conductivity 
rb

e
tu  in the case of de-

veloped turbulence is smaller than molecular conductivity e .  

 

3. Derivation of the correction function to the  turbulent 

viscosity  coefficient for a  conducting  medium 

with a variable  density 
 

General heat transport equation (21) with accounting for defining relations (23)-

(25) acquires the form 

1turb

P

d S
T T p

dt с

     
          

   
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   
2

0 0
M

0

2 : : .
2

turb
a aturb

K rad
e

Q
  

           

j
B B             (22*) 

Since, due to (30) we have  
 

   
2 2 2 2

2

0

:
2

turb turb
a aM e e

turb turb turb
e ee e e e

   
      

     

j j j j
B B j ,   

 

equation (22*) can be rewritten in the following final form: 
 

2
0 0

2 :
turb

turb
K radturb

P e

d S T
T S Q

dt с

       
                 

j
D D , (22**) 

 

where is the specific entropy of the system. Here, the quantity represents the amount 

of heat (per unit volume of the medium) received by the system in unit time, the first 

term on the right is the heat supplied to the considered volume via turbulent heat con-

duction, the second term represents the energy dissipated in the form of heat due to 

turbulent viscosity, the third term corresponding to Joule heating takes into account 

the contribution of the average magnetic field into the system entropy production, and 

finally, the last term :rad radQ  q  is related with the process of radiant heat re-

lease from the system. 

It is known that in the case of isotropic turbulence, the coefficients of turbulent 

kinematical viscosity 
turb
K  and turbulent magnetic field diffusion 

turb
M  are close to 

the product wturb corl  of velocity of turbulent vortices 
2

wturb  u  and their cor-

relation length corl  and helicity coefficient   1
3 hel corh  , where 

  

 helh    u u  

 

is the density of hydrodynamic helicity (pseudoscalar) and τcor is the scale character-

izing the time variation of the turbulent velocity ( , )tu x field (see, e.g., [Krause, 

Radler, 1984]). In particular, if, according to the standard Shakura–Sunyaev hypothe-

sis [Shakura,  1972], it is assumed that corl  is the effective half width of the accretion 

disk and wturb  is expressed in terms of the thermal speed of sound sс , turbulent dif-

fusion results in the characteristic magnetic field damping time (or, more precisely, 
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those of its components which change noticeably on the scale of the disk thickness) 

of an order of the period of Keplerian rotation. In this case, the magnetic Reynolds 

number Re 1M  and turbulent transport is important.  

At the same time, generalizing the known Kolmogorov formula for a noncon-

ducting fluid to the case of MHD turbulence, it can be assumed that kinetic turbulent 

viscosity coefficient turb
K  is calculated using the formula 

turb
K L b  ,                                                         (31) 

where L  is the mixing length according to Prandtl (the numerical factor can be in-

cluded in L ). This assumption is often quite acceptable for practical applications. At 

the same time, the possible influence of the magnetic field on the character of mixing 

is not explicitly taken into account in relation (31), which is inadmissible for devel-

oped MHD turbulence (for example, for largescale perturbations). Therefore, in the 

general case it is necessary to introduce the correction taking into account the inverse 

effect of magnetic field diffusion and heat transport on the turbulence development in 

the electroconductive disk medium in formula (31).  

For finding this correction factor to L , we use the balance equation for the tur-

bulization entropy ( , )turbS tx , which in the case of the stationary–nonequilibrium re-

gime of developed turbulence takes the form [Kolesnichenko, Marov 2008] 
 

                                                 0
turb

turb
S

dS

dt
   J  

 

 
2

0 0

2 : .
4

turb turb
Mturb

K
p p

T
с T с 

     
                   

B g g
    (32) 

 

Here,   
2

0: ( / ) : / 4M b M

 
                  

 
τ u B is the total 

specific dissipation rate of turbulent kinetic and turbulent magnetic energy into heat 

(under the action of molecular kinematical viscosity and magnetic field viscosity); 

0 0

v 2 :turb
K

 
     

 

 is the dissipative function, τ  is the viscous stress tensor re-

lated with the processes of molecular transport of the disk matter momentum, and 

3

G /G  g r r . 
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Using the notation wturb  for the characteristic pulsation velocity of the conduct-

ing medium and L for the Prandtl mixing length (in the case of absence of a magnetic 

field), we write 
 

wturb
K turbL  ,    

w

Pr

turb turb
M turb

M

L
  ,    

w

Pr

turb
turb
turb

p K

L

с




 
,    

3

2

w1 turb

ss
L

 


.      (33) 

 

In this case, empirical constant ss  and turbulent numbers of  Prandtl (kinetic and 

magnetic ones) 
 

Pr /turb turb turb
K p Kс    ,     Pr /turb turb turb

M K M   .                             (34) 

 

Substituting these expressions into (32), we obtain for the stationary regime 
 

 
2

20 0

2
K

w
w 2 : 0

4Pr Pr

turb
turb turb turb

pM ss

L L
L T

T с L

      
                    

B g g
 

 

 (35) 

Equation (35)  is separated into two equations: the equation w 0turb   corresponding 

to the laminar flow regime, and the equation 
 

 
2

0 0
2 2 2

0

1 1
w 2 :

4Pr Pr
turb ss turb turb

pM K

L T
T с


    

                   


B g g
     (36)   

 

describing the established turbulent regime. Equation (36) has a real solution if  
 

 
2

0 0

0

1
2 : 0

4Prturb pK

T
T с

 
     

                    
 

B g g
  

which yields  Ri Ri Ri Ri PrturbK M Kcr      where the following notation is 

introduced:  
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 
0 0

/ /
Ri :

2 :

p

K

T с T     
 

 
  
 

g g
,   

 
2

0 0
0

1
Ri

4
2 :

M




   
  
 

B
 .                (37) 

Here RiK and RiM  are, respectively, the hydrodynamic Richardson number (a di-

mensionless quantity determining the relative contribution of thermal matter convec-

tion into turbulent energy generation, compared with energy transfer from averaged 

motion) and the gradient magnetohydrodynamic Richardson number (proportional to 

the ratio of the magnetic energy and the kinetic energy of the plasma), which takes 

into account the influence of the magnetic field on the turbulence formation in the 

flow. 

If Ri PrturbK  , here exists the unique real solution w 0turb   corresponding to 

the laminar regime. For the turbulent regime and, therefore,  Ri Ri
cr  , we ob-

tainfor the turbulent viscosity coefficient of the electro conductive fluid 

0 0
*2 2 :turb

K ssL
 

     
 

,                                                            (38) 

where 
* :L L  ; dimensionless function 

1/4: (1 Ri / Pr )turb
K   takes into account 

the influence of the magnetic field and the inverse effect of heat transport on the tur-

bulence development via the mixing length. Here, the following approximate esti-

mate for the critical Richardson number is obtained: 

  Pr /turb turb turb
K p Kcr

Ri с      . 

The known Prandtl–Nikuradze formula can be used for the calculation of the 

Prandtl mixing length (in the case of an absence of a magnetic field); this formula, as 

applied to the simulation of the disk structure, can be written in the form 
 

2 4/ 0,14 0,08(1 ) 0,06(1 )eff eff effL h z / h z / h     .                   (39) 

 

The closed system of averaged MHD equations presented in this section is the 

basis for the simulation of the structure and evolution of the turbulized protoplanetary 

disk; in the case of the simulation of thin accretion disks, this system can be consid-

erably simplified [Pringle, King, 2007]. 
 

4. Modeling the turbulent transport coefficients 

in an  accretion disk 
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The key problem in astrophysics is related to the mechanism of angular momen-

tum exchange between accretion disc and protostar. The developed thermodynamic 

model of MHD-turbulence in magnetic field is applicable to numerical modeling of 

the structure and evolution of accretion discs, in particular those around T-Tauri stars 

giving birth to planets or binary stars with mass transfer (of dwarfs novae systems). 

Such discs formed by a matter rotating around compact stellar objects and are re-

tained on nearly circular orbit by combined action of gravity and centrifugal forces. 

Independent of what caused protoplanetary disc to set up, at the early stage of evolu-

tion its matter possesses angular momentum sufficient to reside at a circular orbit. At 

the same time, every disc mass element spirals slowly (accretes) towards mother star, 

which should result in the angular momentum transfer from the inner regions out-

ward. 

Indeed, the existing mass and angular momentum distribution in the Solar sys-

tem, as well as in other numerous systems of young stars with discs, argue for the ne-

cessity to invoke an efficient mechanism of mass and angular momentum redistribu-

tion in due course of the planetary system formation. Classical ideas are based on 

friction mechanism of the angular momentum transfer in the accretion disc from pro-

tostar outward and its subsequent distribution in space or, in a case of the binary stars, 

on mechanism of tidal interaction responsible for angular momentum return back to 

its original source—satellite star. Note that friction mechanism can be operational on-

ly if the disc kinematic viscosity exceeds by many orders of magnitude molecular 

viscosity to provide the necessary mass and accompanying angular momentum trans-

fer for T Tauri stars. 

Such a great viscosity can be accomplished in a turbulent protoplanetary disc, 

the turbulent state of disc matter caused by its large-scale shift of velocity in the dif-

ferential rotation relative gravity center being the key concept in astrophysics [see, 

e.g., Zel’dovich, 1981; Fridman, 1989; Dubrulle, 1993; Gor’kaviy, Fridman, 1994; 

Balbus, Hawley, 1991; Richard, Zahn, 1999; Bisnovaty-Kogan, Lovelace, 2001]. Be-

sides, MHD turbulence can contribute significantly to the angular momentum redis-

tribution [Eardley, Lightman, 1975; Galeev et al., 1979; Сoroniti, 1981; Tout, Prin-

gle, 1992; Brandenburg et al., 1996; Lesch, 1996], its efficiency as dissipation mech-

anism depending on magnetic lines reconnection [Kadomtsev, 1987].  

It is reasonable to assume that chaotic magnetic fields caused by the turbulent 

dynamo mechanism or brought by accreting interstellar plasma, occurred in the disc 

at early stage of its evolution. These fields having energy compared to that of hydro-

dynamic turbulence, mixed owing to disc matter differential rotation and experienced 

reconnections at the disc boundary, could contribute substantially to the turbulent 
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viscosity not only in the inner disc regions but also in the outer parts of its corona 

where the matter is ionized. Let us recall that such a fundamental physical process in 

space plasma as magnetic lines reconnection responsible for exhibiting many features 

of plasma activity, is only possible when in an electro-conductive matter magnetic 

lines of opposite direction come close together. This process results in the high elec-

tric current density set up. Note also that before reconnection in plasma having a def-

inite storage of the magnetic energy the so called break (tearing) instability develops 

which ultimately is responsible for the reconnection and transfer of the magnetic en-

ergy into the plasma kinetic or thermal energy. 

Alongside with chaotic magnetic fields, large scale well ordered magnetic field 

in some parts of accretion disc can exist. Due to turbulent transfer such a field ex-

tends to at least the disc inner edge. This field penetrates to both sides of the disc vi-

cinity. These outer regions experience magnetic strengths influence for which both 

small scale disturbances connected with turbulence and large scale shear flows are 

responsible. This results in not only turbulent viscosity and turbulent diffusion pa-

rameters variations but also affects connection with electrodynamics of mean fields. 

In particular, since in the rotating electro-conductive medium effective magnetic dif-

fusion is accompanied by the turbulent electromotive B force set up (the so-called 

a-effect related ultimately to spirality influence on the magnetic field induction gen-

eration), one may expect significant action of turbulent dynamo on the accretion disc 

structure and evolution. It is known that small scale girotropic (reflection non-

invariant turbulence) in the fast rotating disc creates “loops” ( -effect) when any 

magnetic field force tube acquires the form of a distorted O letter (see Parker, 1955). 

This magnetic loop is accompanied by the current having either parallel or anti-

parallel component relative to the applied mean magnetic field for left or right screw 

accidental spiral motions, respectively. Energy of Joule heat release due to such cur-

rents is a powerful source of heating responsible for the disc corona formation that is 

comparable by its thickness to the disk itself [Galeev et al., 1979]. This is just the size 

of “primary loops” produced by the buoyancy force although one should keep in 

mind that in reality the corona can be even thicker. The reason is that in the process 

of small loops reconnection, loops of progressively larger size can be formed. Basi-

cally, this is the well known inverse cascade in the three-dimensional MHD motions 

when turbulence possesses both kinematic and magnetic spirality. At the same time, 

large scale force lines running through the corona and closed in the disc, maintain 

magnetic connection between distant disc regions. Such a connection may be also re-

sponsible for an additional strengths source and hence the disc heating. 
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We therefore see that because of viscous stresses due to differential disc rota-

tion and turbulent dynamo in plasma the disk corona is heated similar to what occurs 

in the solar corona. In turn, hot corona gives rise to outflow (streams) of matter and 

field. Actually, such a stream represents magnetized rotating wind flowing from the 

accretion disc. Together with matter and magnetic field the wind transfers to infinity 

significant part of the disc angular momentum allowing the disk to contract slowly. In 

other words, rotating wind outflow, jointly with viscous friction mechanism, provides 

another opportunity to transport an excess angular momentum from the inner part of 

protostar-disc system outward. Note that an effective focusing of the disc matter flow 

(jets) can be formed by magnetic stresses in the wind.  

In order to reconstruct structure and evolution of the protoplanetary accretion 

disk that surrounded the proto-Sun the representative model involving numerous pro-

cesses in a conducting disk and its corona is required [Kolesnichenko, Marov, 2006, 

2007]. As in the case of a non-conducting disk, modeling the turbulent viscosity coef-

ficient 
turb
K  in a plasma disk medium under the action of a magnetic field is one of 

the problems of paramount importance. This section is devoted to studying this prob-

lem. 
 

Averaged magneto-hydrodynamic equations for a turbulent accretion disk . 

Let us consider the slowly evolving turbulent accretion disk in a vacuum which at 

time instant t  rotates with angular velocity ( , )z   about the 0z  axis. It will be as-

sumed that the disk is electroconductive and there exists initial large-scale slowly 

varying axially symmetric magnetic field B  of the proto-Sun whose dipole momen-

tum coincides with the disk rotation axis. Below, cylindrical coordinate system 

( , ),z  will be used and it will be assumed that the central plane of the accretion 

disk coincides with the equatorial plane of the Sun determined by the condition 0z 
. Here, we consider the model of the thin axially symmetric (...) / 0    accretion 

disk for which the spatial scale of the variation of the structural parameters in the lay-

er perpendicular to the equatorial plane is large, as compared to the disk half thick-

ness, i.e., ( )h  is small as compared to   for all  ,  / / 1h h     . It can be 

shown that the accretion disk thickness depends on the balance of heating and cooling 

(see, e.g., [Shapiro, Teukolsky 1985]). Efficient cooling results in a geometrically 

thin disk. For such a disk, the character of the flow of the conducting disk matter can 

be analyzed using 2D MHD equations. 
 

Let us first analyze viscosity law (38) in the thin accretion disk in which the mo-

tion of matter can be represented as the superposition of the general differential rota-
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tion and the random turbulent motion. It will be assumed for simplicity that the disk 

rotation is so slow that the meridional circulation can be neglected (see, e.g., [Tassoul 

1982]); i.e., the average motion of space matter is realized only in the azimuthal di-

rection, and the true flow velocity pulsates randomly about this average value and 

changes irregularly in the meridional and azimuthal directions; then, u 0   ,   

u ( , ),z       u 0z   . 

Under these assumptions, the   component of kinetic Reynolds tensor (24) 

and dissipative function v  take the form 

( , )
=K turb

K

z
R

 
 


, 

 

2 20 0
2

v

( , ) ( , )
: 2 :turb turb

K K

z z

z

          
                      

 .     (40) 

 

Then, for the larger part of the disk (except for regions close to the proto-Sun) 

the following approximate expression for the turbulent viscosity coefficient is valid: 
 

*2 ( , )
=turb

K ss

z
L

 
  


,    

1/4

* Ri Ri
( ) : ( ) 1

Pr

K M
turb
K

L z L z
  

  
  

,         (41) 

where 
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                (43) 

 

is the adiabatic temperature gradient in the protoplanetary accretion disk. In expres-

sions (42) and (43), the following effective force of gravity is used {0,0, }zg g , 

where 

3/2
2

2
,3 2

1 ( )z K mid

G z z
g z


 

        

;    
2 2 3/2
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z

z
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 
        (44) 
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is the Keplerian angular velocity and 
3

, ( ) ( ,0) /K mid K G      is the 

Keplerian angular rotation velocity in the central plane of the disk.  

It can be seen from formula (42) that in the case of adiabatic temperature distri-

bution along the height (indifferent stratification) when  / = /
ad

T z T z         

2
, ( ) / cK mid Pz   ,  the Richardson number Ri 0K  , i.e., the temperature gradient in 

the disk does not influence the turbulent transport coefficients. However, in the case 

of the unstable thermal stratification of the accretion disk when super-adiabatic tem-

perature gradients take place, the turbulent energy increases due to the instability en-

ergy in the direction perpendicular to the equatorial plane of the disk (convective 

source of turbulence); in this case, the turbulent viscosity coefficient simultaneously 

increases. At the same time, the spatial inhomogeneity (over height) of the averaged 

magnetic field results in an increase in the turbulent energy, since the magnetic Rich-

ardson number Ri 0M  . The inverse Prandtl–Schmidt number 1/ PrturbK  in formula 

(41) can be taken as equal to unity if the main turbulence mechanism is shear stress 

during differential disk rotation; however, it can be larger by a factor of 2–3 if the 

reason for the turbulence is thermal convection in the vertical direction. 

For obtaining the formal matching of expression (41) and the widely used in as-

trophysical literature Shakura–Sunyaev formula [Shakura, 1972] for simulation of the 

thin layer situated in the central plane of the Keplerian disk, the following should be 

assumed in (41): Ri 0 , Ri 0M  , and the angular velocity of Keplerian rotation 

, ( )K mid   should be substituted in it. If the effective disk half-thickness 

, i0
/eff s K m dz

h c


   (which can be estimated using the force balance in the z direc-

tion, see below) is taken as the turbulence scale, we obtain 
 

 23 3 3
ss , ss 0 ss 0 , i2 2 2 / /turb

K eff K mid eff s z z K m dh h c p                 (45) 

 

Then, the following dependence holds between the   component of Reynolds tur-

bulent stress tensor R  and gas pressure p  : 

  , 0( / )turb
K K mid s zR p                                      (46) 
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Here, 0 0/s z zc p     is the thermal speed of sound and 9
ss4s    is the 

free parameter which cannot be determined more or less precisely and satisfies the 

following constraint: 1s  .  

Astrophysical models constructed using relation (46) are related to the so-called 

viscous   disks. In such models, s  is usually a free parameter in disk structure 

equations. The determination of this parameter based on different assumptions on the 

nature of physical processes in the disk was the topic of multiple studies. The value 

of Shakura–Sunyaev disk parameter αs characterizing the degree of excitation of tur-

bulent motion can be empirically calibrated, in particular, using timedependent spec-

tra obtained during the observation of flashes with mass transfer in binary stellar sys-

tems with dwarf novae. For this case, the values of ss  in the interval s0.1 1    

[Lynden-Bell, Pringle, 1974; Bath, Pringle, 1981] were found. These values agree 

with estimates in [Eardley et al., 1975; Eardley et al., 1978; Heyvaerts et al., 1996; 

Fridman, Bisikalo, 2008], where the viscosity due to velocity shear and the reconnec-

tion of force lines of the chaotic magnetic field was considered. However, for this 

case the following values were obtained: 0.01 1s   . In analytical papers [Coroni-

ti, 1981; Tout, Pringle, 1992], the connection between the viscosity in the disk and 

the process of the reconnection of magnetic fields inside the disk was found.  

It is known that the reconnection rate can be characterized by the quantity 

M u/A Ac , where u  is the matter velocity before the discontinuity and 

/ 4Ac  B  is the Alfven velocity before the discontinuity [Priest, Forbes, 

2005]. Both models use shear flow inside the disk for magnetic field amplification 

and use MHD turbulence as the mechanism of radial matter transport. In Coroniti’s 

model, Keplerian motion in the disk with time creates a magnetic field in the plane of 

the disk, forming elliptical cells. These magnetic cells are continuously created and 

destroyed in the turbulent process, which results in the radial diffusion of the plasma 

in the disk. The Shakura–Sunyaev viscous parameter obtained in this paper is ex-

pressed in terms of the reconnection parameter as 
2/3
AMss  . In the mentioned 

Tout–Pringle model, no special magnetic field geometry is assumed, but sources and 

sinks are estimated for different components. It was shown in this model that there 

exists a reconnection of the vertical field initiated by strong radial shear flows, which 

is a more important process than the reconnection of the azimuthal field, as it is as-

sumed in Coroniti’s model. The Tout–Pringle model yields the following expression 
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for the Shakura–Sunyaev parameter: ss 0.6MA  . In order to cause accretion 

which agrees with observations of different astrophysical phenomena, the Mach 

number MA  should be of an order of 0.1, which assumes very high reconnection 

rates. However, at present there are no grounds to assume that this fast reconnection 

is possible in the regime of turbulent MHD motion taking place in the disk. In order 

to obtain a realistic picture of the relationship between accretion and reconnection, 

probably, numerical simulation is required; this simulation should consider the turbu-

lent dynamo and reconnection processes in a self-consistent way. Other analytical 

models providing the calculation of αss are known in published data; however, all of 

these models cannot be considered proven, since in all of them the result of the simu-

lation of the Shakura–Sunyaev parameter, in essence, is reduced to expressing un-

known quantity ss αss in terms of some other poorly defined quantity.  

Note once more that in the Shakura–Sunyaev approach developed specially for 

thin accretion disks, the inverse influence of the convective heat transport and the 

gradient of the large-scale magnetic field on the turbulence development was not tak-

en into account. In relation with the adequate simulation of the structure and the evo-

lution of the solar protoplanetary disk and its corona, it seemed reasonable to reject 

the   formalism and obtain the generalization of formula (46) to the case of the den-

sity-layered matter of the disk with finite thickness. 
 

Conclusions 
 

Within the framework of the main problem of cosmogony associated with the 

reconstruction of the protoplanetary disk of the Sun at the earliest stages of its exist-

ence, a closed system of MHD equations of the mean motion scale is formulated, 

which is intended for the numerical solution of problems of mutually consistent mod-

eling of the structure and evolution of the accretionary protoplanetary disk and the 

associated corona. A model of a plasma disk of finite thickness is discussed, which 

takes into account turbulence dissipation due to kinematic and magnetic viscosity and 

thermal conduction processes. In contrast to the already classical approach of Shaku-

ra and Sunyaev, which was developed specifically for thin accretion disks and which 

did not take into account the back effect of convective heat transfer, as well as the ef-

fect of the large-scale magnetic field gradient on disk turbulence, in this paper we 

propose a new approach to modeling coefficient of turbulent kinematic viscosity for 

an astrophysical disk, This approach takes into account the influence of the external 

and generated magnetic fields, as well as the processes of convective heat transfer on 
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turbulence in a stratified layer of finite thickness, and thereby modifies the Shakura–

Sunyaev alpha formalism, which is widely used in the astrophysical literature. 

This approach opens wide prospects for the further improvement of the mathe-

matical models of the origin and evolution of the Solar System, which is of primary 

importance for the solution of the problem of the origin of the terrestrial biosphere.  
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