

ИПМ им.М.В.Келдыша РАН • Электронная библиотека

Препринты ИПМ • Препринт № 90 за 2020 г.

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

Д.М. Буланов, В.В. Сазонов

Периодическая аппроксимация вращательного движения спутника Фотон-12

Рекомендуемая форма библиографической ссылки: Буланов Д.М., Сазонов В.В. Периодическая аппроксимация вращательного движения спутника Фотон-12 // Препринты ИПМ им. М.В.Келдыша. 2020. № 90. 43 с. https://doi.org/10.20948/prepr-2020-90 https://diibrary.keldysh.ru/preprint.asp?id=2020-90

РОССИЙСКАЯ АКАДЕМИЯ НАУК ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ им. М.В.Келдыша

Д.М. Буланов, В.В. Сазонов

ПЕРИОДИЧЕСКАЯ АППРОКСИМАЦИЯ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ СПУТНИКА *ФОТОН-12*

Буланов Д.М., Сазонов В.В.

Периодическая аппроксимация вращательного движения спутника Фотон-12

Построена аппроксимация фактического неуправляемого вращательного движения спутника Φ отон-12 (находился на орбите 09.09 - 24.09.1999) периодическими решениями обобщенно-консервативной системы дифференциальных уравнений. С этой целью проведена повторная обработка выполненных на его борту магнитных измерений. При повторной обработке использовалась упрощенная математическая модель вращательного движения. Фактическая орбита спутника (высота апогея 380 км, высота перигея 220 км) заменена круговой орбитой, упрощено выражение для действующего на спутник аэродинамического момента. Лежащая в основе новой модели система дифференциальных уравнений автономна и оказалась достаточно точной для реконструкции движения спутника по магнитным измерениям. На некоторых отрезках движения, объединение которых охватывает примерно четверть полета (3 сут), эту систему можно свести к обобщенно-консервативной. Такое сведение делает более определенным набор ее решений, подходящих для приближенного описания реального движения спутника. Для этой цели удалось использовать периодические решения, продолженные из периодических решений Ляпунова.

Ключевые слова: искусственный спутник Земли, вращательное движение, реконструкция движения по данным измерений, периодические движения

Bulanov D.M., Sazonov V.V.

Periodic approximation of spacecraft Foton-12 attitude motion

We constructed the real uncontrolled attitude motion of Photon-12 spacecraft (was in orbit from 09.09 to 24.09.1999) by periodic solutions of a conservative system of differential equations. For this purpose, we repeated processing of the magnetic measurements made on board the spacecraft. At repeated processing the simplified mathematical model of attitude motion was used. The actual satellite orbit (apogee altitude 380 km, perigee altitude 220 km) was replaced by a circular one, the formula of aerodynamic torque acting on the spacecraft was simplified. The system of differential equations underlying the new model is autonomous and provides a fairly accurate reconstruction of the spacecraft motion by magnetic measurements. On some segments of the motion, the conjunction of which covers about a quarter of the flight (3 days), this system can be reduced to a conservative one. Such a reduction leads to a more specific set of its solutions, suitable for an approximate description of the real movement of the spacecraft. We used for this purpose periodic solutions, continued numerically from Lyapunov's periodic solutions.

Key words: spacecraft, attitude motion, reconstruction of motion by measurement data, periodic motions

- 1. Введение. Данный препринт является продолжением работ [1, 2]. В [1] проведена повторная обработка магнитных измерений, выполненных в 1999 г. на спутнике Φ отон-12. Первоначальная обработка была сделана вскоре после полета [3]. В [1] использовалась более простая и несколько менее точная модель, чем в [3], которая позволила дать более ясную трактовку эволюции фактического движения этого спутника. Ниже используется еще более простая модель, в которой фактическая орбита спутника (высота апогея 380 км, высота перигея 220 км) заменена круговой орбитой. Такая замена позволила использовать для описания движения вращательного спутника автономную систему дифференциальных уравнений, которую на некоторых отрезках движения, объединение которых охватывает примерно четверть полета (3 сут), можно свести к обобщенно-консервативной. Такое сведение делает более определенным набор ее решений, подходящих для приближенного, но достаточно точного описания реального движения спутника. А именно, для этой цели удается использовать периодические решения, продолженные из периодических решений Ляпунова. Подходящие для этой цели периодические решения Ляпунов упомянутой обобщенно-консервативной системы уравнений были изучены в [2]. Там же говорилось об их сходстве с фактически вращательным движением Фотон-12. Именно для этой цели эти решения рассматривались. Однако такое сходство не было исследовано детально. Ниже такое исследование проводится.
- **2.** Упрощенные уравнения вращательного движения спутника. Спутник считаем осесимметричным твердым телом, центр масс которого движется по неизменной круговой орбите. Для записи уравнений движения спутника введем четыре правых декартовых системы координат.

Система $Ox_1x_2x_3$ образована главными центральными осями инерции спутника. Точка O — центр масс спутника, ось Ox_1 — ось материальной симметрии спутника. Эта ось близка к продольной оси спутника и направлена от спускаемого аппарата к приборному отсеку. Моменты инерции спутника относительно оси Ox_1 обозначим I_1 , равные моменты инерции относительно осей Ox_2 и Ox_3 обозначим I_2 .

Вспомогательная система координат $Oy_1y_2y_3$ служит для записи уравнений вращательного движения спутника. Ось Oy_1 совпадает с осью Ox_1 ; оси Ox_2 , Ox_3 получаются из осей Oy_2 , Oy_3 поворотом системы $Oy_1y_2y_3$ на угол χ вокруг оси Oy_1 . Кинематическая связь между системами $Ox_1x_2x_3$ и $Oy_1y_2y_3$ задается условием, что проекция абсолютной угловой скорости второй из них на ось Oy_1 равна нулю. Проекции этой угловой скорости на оси Oy_2 , Oy_3 обозначим w_2 , w_3 . Пусть абсолютная угловая скорость спутника $\mathbf{\omega}$ имеет в системе $Ox_1x_2x_3$ компоненты $(\omega_1, \omega_2, \omega_3)$. Тогда $\dot{\chi} = \omega_1$ и

$$\omega_2 = w_2 \cos \chi + w_3 \sin \chi , \quad \omega_3 = -w_2 \sin \chi + w_3 \cos \chi . \tag{1}$$

Здесь и ниже точкой обозначается дифференцирование по времени t .

В приборной системе координат $Oz_1z_2z_3$ интерпретируются данные измерений бортовых магнитометров. Эту систему можно перевести в систему $Ox_1x_2x_3$ двумя последовательными поворотами. Первый поворот выполняется на угол α_c вокруг оси Oz_2 , второй поворот – на угол β_c – выполняется вокруг оси Oz_3 , получившейся после первого поворота. В общем случае, чтобы задать положение одной системы координат относительно другой, необходимы три угла. В данном случае можно было бы ввести еще угол поворота приборной системы вокруг ее оси Oz_1 , получившейся после первых двух поворотов. Однако поскольку направление одной из осей Ox_2 , Ox_3 можно выбирать произвольно, третий угол удобно принять равным нулю, фиксировав тем самым положение системы $Ox_1x_2x_3$ относительно системы $Oz_1z_2z_3$. Переход от системы $Ox_1x_2x_3$ к системе выполняется по формуле

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} \cos \alpha_c \cos \beta_c & -\cos \alpha_c \sin \beta_c & \sin \alpha_c \\ \sin \beta_c & \cos \beta_c & 0 \\ -\sin \alpha_c \cos \beta_c & \sin \alpha_c \sin \beta_c & \cos \alpha_c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Вращательное движение спутника изучается относительно орбитальной системы координат $OX_1X_2X_3$. Ее оси OX_1 и OX_3 направлены по геоцентрическим скорости и радиус-вектору точки O. Переход от системы $Oy_1y_2y_3$ к орбитальной системе задается формулой

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
(2)

Строки использованной здесь матрицы образованы компонентами ортов осей OX_1 , OX_2 и OX_3 в системе $Oy_1y_2y_3$. Элементы этой матрицы будем выражать в функции углов ψ , θ и δ , которые введем так, чтобы система $OX_1X_2X_3$ переводилась в систему $Oy_1y_2y_3$ тремя последовательными поворотами: 1) на угол ψ вокруг оси OX_3 , 2) на угол θ вокруг новой оси OX_2 , 3) на угол δ вокруг новой оси OX_1 , совпадающей с осью Oy_1 . Таким образом, θ — угол между осью Oy_1 и плоскостью OX_1X_2 , ψ — угол между проекцией оси Oy_1 на плоскость OX_1X_2 и осью OX_1 . Эти два угла задают направление оси Oy_1 в орбитальной системе координат. Имеют место соотношения

$$\begin{split} \alpha_1 &= \cos\psi \cos\theta, & \alpha_2 &= \cos\psi \sin\theta \sin\delta - \sin\psi \cos\delta, \\ \beta_1 &= \sin\psi \cos\theta, & \beta_2 &= \sin\psi \sin\theta \sin\delta + \cos\psi \cos\delta, \\ \gamma_1 &= -\sin\theta, & \gamma_2 &= \cos\theta \sin\delta, \end{split}$$

$$\alpha_3 = \cos\psi \sin\theta \cos\delta + \sin\psi \sin\delta,$$

$$\beta_3 = \sin\psi \sin\theta \cos\delta - \cos\psi \sin\delta,$$

$$\gamma_3 = \cos\theta \cos\delta.$$

Система уравнений вращательного движения спутника образована динамическими уравнениями Эйлера для угловых скоростей w_2 , w_3 и кинематическими уравнениями Пуассона для величин α_i , γ_i . В уравнениях Эйлера учитываются гравитационный и восстанавливающий аэродинамический моменты, а также постоянный момент вдоль оси Ox_1 . При вычислении аэродинамического момента атмосфера считается неподвижной в абсолютном пространстве, внешняя оболочка спутника принимается сферой с центром на оси Ox_1 . Система уравнений вращательного движения имеет вид [4, 5]

$$\dot{w}_{2} + \lambda \omega_{1} w_{3} = -3\omega_{0}^{2} (1 - \lambda) \gamma_{1} \gamma_{3} + p \alpha_{3},$$

$$\dot{w}_{3} - \lambda \omega_{1} w_{2} = 3\omega_{0}^{2} (1 - \lambda) \gamma_{1} \gamma_{2} - p \alpha_{2},$$

$$\dot{\alpha}_{1} + w_{2} \alpha_{3} - w_{3} \alpha_{2} = -\omega_{0} \gamma_{1},$$

$$\dot{\alpha}_{2} + w_{3} \alpha_{1} = -\omega_{0} \gamma_{2}, \quad \dot{\alpha}_{3} - w_{2} \alpha_{1} = -\omega_{0} \gamma_{3},$$

$$\dot{\gamma}_{1} + w_{2} \gamma_{3} - w_{3} \gamma_{2} = \omega_{0} \alpha_{1},$$

$$\dot{\gamma}_{2} + w_{3} \gamma_{1} = \omega_{0} \alpha_{2}, \quad \dot{\gamma}_{3} - w_{2} \gamma_{1} = \omega_{0} \alpha_{3},$$

$$\omega_{1} = \Omega + \varepsilon (t - t_{0}), \quad \lambda = \frac{I_{1}}{I_{2}}.$$
(3)

Здесь ω_0 — орбитальная частота, p — аэродинамический параметр, Ω и ε — постоянные величины. В (3) использован явный вид решения одного из уравнений Эйлера $\dot{\omega}_1 = \varepsilon$ с начальным условием $\omega_1(t_0) = \Omega$. Выбор t_0 будет указан ниже.

При численном интегрировании уравнений (3) единицей измерения времени служит 10^3 с, единицы измерения других величин: $[\omega_i] = [w_i] = 10^{-3}$ с $^{-1}$, $[\varepsilon] = [p] = 10^{-6}$ с $^{-2}$. Элементы второй строки матрицы в (2) вычисляются как векторное произведение ее третьей и первой строк. Формулы (1) и соотношение $\chi = \Omega(t - t_0) + \varepsilon(t - t_0)^2/2$ позволяют найти функции $\omega_2(t)$, $\omega_3(t)$ и движение системы $Ox_1x_2x_3$, решая уравнения (3).

Переменные α_i и γ_i зависимы, они связаны условиями ортогональности матрицы в (2). По этой причине начальные условия $\alpha_i(t_0)$ и $\gamma_i(t_0)$ выражаются через углы ψ , θ и δ .

Параметр λ известен: $\lambda \approx 0.24$. Тем не менее, он и параметры p и ε определяются из обработки данных измерений наряду с неизвестными начальными условиями движения спутника, т. е. служат параметрами согласования.

Уравнения (3) и некоторые другие принятые ниже математические модели проще, чем уравнения движения и модели в [3] и даже в [1]. Это сделано, чтобы уменьшить число уточняемых параметров и избежать использования

априорной информации и методов регуляризации в статистических процедурах. Для компенсации сделанных упрощений ограничимся реконструкцией сравнительно простых движений спутника, в которых компонента угловой скорости ω_1 достаточно велика. Уравнения (3) — упрощенный вариант аналогичных уравнений вращательного движения [1], записанных для реальной орбиты спутника. Переход к круговой орбите не изменил основных результатов [1], где обработка измерений выполнена по той же схеме, что и в данной работе.

3. Реконструкции движения спутника по магнитным измерениям. На борту Φ отона-12 находилась аппаратура "Мираж" с несколькими трехкомпонентными магнитометрами. Поскольку движение спутника было неуправляемым, данные измерений этой аппаратуры и уравнения (3) можно использовать для определения фактического вращательного движения спутника по обычным статистическим методикам. Методика, использованная ниже, состоит в следующем [1, 4]. По измерениям, выполненным на некотором отрезке времени $t_0 \le t \le t_0 + T$, строились функции $\hat{h}_i(t)$, которые задавали на этом отрезке компоненты вектора местной напряженности магнитного поля в системе координат $Oz_1z_2z_3$. Среднеквадратичные ошибки аппроксимации не превышали 200γ ($1\gamma=10^{-5}$ Э). Затем вычислялись псевдоизмерения $h_i^{(n)}=\hat{h}_i(t_n)$, $t_n=t_0+nT/N$, где n=0,1,2,...N. Обычно было $T=100\div300$ мин, $T/N\approx1$ мин. Псевдоизмерения служили исходной информацией для отыскания решений уравнений (3), описывающих фактическое движение спутника.

В соответствии с методом наименьших квадратов реконструкцией фактического движения спутника считалось решение уравнений (3), доставляющее минимум функционалу

$$\Phi = \sum_{i=1}^{3} \left\{ \sum_{n=0}^{N} [h_i^{(n)} - h_i(t_n)]^2 - (N+1)\Delta_i^2 \right\}, \quad \Delta_i = \frac{1}{N+1} \sum_{n=0}^{N} [h_i^{(n)} - h_i(t_n)]. \quad (4)$$

Здесь Δ_i — оценки постоянных смещений в псевдоизмерениях, $h_i(t)$ — компоненты напряженности МПЗ в точке O в системе координат $Oz_1z_2z_3$, рассчитываемые с помощью модели IGRF2005.

Расчет функционала выполнялся следующим образом. Предварительно фактическая орбита спутника на отрезке $t_0 \le t \le t_0 + T$ аппроксимировалась круговой орбитой. Аппроксимация строилась методом наименьших квадратов по достаточно точным значениям реального фазового вектора центра масс спутника, заданным на равномерной сетке с шагом 3 мин. По этой аппроксимации определялась орбитальная частота ω_0 . Вдоль круговой орбиты вычислялись компоненты напряженности МПЗ в системе координат $OX_1X_2X_3$ на моменты t_n . Эти компоненты использовались при многократном вычислении функционала (4) в процессе его минимизации. С помощью решения уравнений (3) они пересчитывались в систему $Oy_1y_2y_3$ и затем в систему $Oz_1z_2z_3$ — в ком-

поненты $h_i(t_n)$. В качестве t_0 в уравнениях (3) всегда использовалась начальная точка обрабатываемого отрезка данных.

Функционал (4) минимизировался по 11 величинам: начальным условиям решения системы (3) $\psi(t_0)$, $\theta(t_0)$, $\delta(t_0)$, $w_2(t_0)$, $w_3(t_0)$ и параметрам Ω , λ , p, ε , α_c , β_c . Заключительный этап минимизации выполнялся методом Гаусса—Ньютона. Точность аппроксимации псевдоизмерений и разброс в оцениваемых величинах характеризовались соответствующими стандартными отклонениями. Стандартные отклонения рассчитывались в предположении, что ошибки в псевдоизмерениях $h_i^{(n)}$ некоррелированы и имеют одинаковые дисперсии, средние значения ошибок в псевдоизмерениях с одинаковым нижним индексом i одинаковы (величины Δ_i в (4) — оценки этих средних значений). Стандартные отклонения вычислялись так. Пусть Φ_{\min} — значение функционала (4) в точке минимума, C — матрица системы нормальных уравнений метода Гаусса — Ньютона в этой точке (матрица 2C приблизительно равна матрице квадратичной формы $d^2\Phi$ в точке минимума Φ). Тогда дисперсия ошибок в псевдоизмерениях оценивается величиной

$$\sigma_H^2 = \frac{\Phi_{\min}}{3N - 11}.$$

Стандартные отклонения оцениваемых величин равны квадратным корням из соответствующих диагональных элементов матрицы $\sigma_H^2 C^{-1}$. Эти стандартные обозначим σ_{ψ} , σ_{θ} , σ_{δ} , σ_{w2} , σ_{w3} , σ_{Ω} , σ_{λ} , σ_{p} , σ_{ε} , $\sigma_{\alpha c}$, $\sigma_{\beta c}$.

Движение спутника Φ отон-12 описанным выше способом было реконструировано на 25 временных интервалах. Некоторые результаты реконструкции приведены на рис. 1-6 и в табл. 1, 2. В подписях к рисункам и в табл. 1 использовано Всемирное координированное время (UTC). Параметры интервала t_0 и T указаны в табл. 1. Длины интервалов выбраны таким образом, чтобы значения σ_H для них были не слишком велики, τ . е. принятая модель движения была достаточно адекватна. Так как принятая модель является упрощенной, τ 0 с ее помощью реконструировались достаточно быстрые движения спутника, которые образовались через τ 1.5 сут после начала неуправляемого движения. На рисунках τ 1 об представлены реконструкции, на которых движение уже явно похоже на регулярную прецессию Эйлера.

Рисунки иллюстрируют качество аппроксимации псевдоизмерений с помощью найденных решений уравнений (3) и описываемое этими решениями движение спутника относительно орбитальной системы координат. Рисунки естественным образом разбиваются на три части – левую, среднюю и правую. В правой части сплошные кривые суть графики функций $h_i(t)$ на отрезке $t_0 \le t \le t_0 + T$ (t_0 служит началом отсчета времени), маркеры указывают точки ($t_n, h_i^{(n)} - \Delta_i$), n = 0, 1, 2, ... N. Количественно аппроксимация псевдоизмерений характеризуется стандартным отклонением σ_H , значения которого приведены

в табл. 1 и в подписях к рисункам. Дополнительные сведения о точности построенных реконструкций можно получить из табл. 1, 2. В этих таблицах размерные величины выражены в единицах, использованных при интегрировании уравнений (3). В табл. 1 приведены стандартные отклонения оценок параметров, задающих начальные условия найденных решений системы (3); в табл. 3 приведены оценки параметров p, λ , ε , α_c , β_c и их стандартные отклонения. Приведенные примеры демонстрируют менее точную, чем в [1, 3], аппроксимацию псевдоизмерений. Значения σ_H в табл. 1 несколько выше, чем в [1, 3]. Тем не менее, достигнутая точность достаточна для целей данной работы.

В средней части рисунков помещены графики компонент угловой скорости ω_1 , w_2 и w_3 в найденных решениях уравнений (3). По мере увеличения угловой скорости спутника его движение становилось все больше похоже на регулярную прецессию Эйлера осесимметричного твердого тела. В левой части рисунков находятся графики зависимости от времени угла $\Lambda = \arccos \beta_1$ между осями Ox_1 и Ox_2 и углов ψ , θ , задающих положение оси Ox_1 относительно орбитальной системы координат. Последние два угла рассчитывались с использованием формул

$$\cos\theta = \sqrt{\gamma_2^2 + \gamma_3^2}, \quad \sin\theta = -\gamma_1, \quad \cos\psi = \frac{\alpha_1}{\sqrt{\alpha_1^2 + \beta_1^2}}, \quad \sin\psi = \frac{\beta_1}{\sqrt{\alpha_1^2 + \beta_1^2}}.$$

Движение спутника по углам установилось только спустя 3 суток после начала неуправляемого полета. Однако ниже будут рассматриваться не эволюция вращательного движения спутника, а некоторые отрезки этого движения, которые можно аппроксимировать периодическими решениями обобщенно-консервативной механической системы.

4. Обобщенно-консервативная модель вращательного движения спутника. На некоторых обработанных отрезках данных оценки параметра ε малы, и данные магнитных измерений можно аппроксимировать решениями уравнений (3) при $\varepsilon = 0$. Примеры такой аппроксимации приведены на рис. 7 – 12 и в табл. 3, 4. Рисунки иллюстрируют движение на тех же интервалах, что и рис. 1 – 6; таблицы организованы аналогично табл. 1, 2. Графики компонент магнитного поля и углов θ, ψ на рис. 7 – 12 и рис. 1 – 6 построены по единым правилам. Остальные графики на рис. 7 – 12 представляют переменные переменных δ , $\dot{\delta}$, Ω_2 и Ω_3 , которые не рассматривались ранее. Чтобы пояснить смысл этих переменных, рассмотрим некоторые преобразования уравнений (3). Далее в этом разделе полагаем в (3) $\varepsilon = 0$, $\omega_1 = \Omega$ и считаем Ω параметром.

Уравнения (3) дополним уравнениям Пуассона для компонент орта оси OX_2 в системе $Ox_1x_2x_3$:

$$\dot{\beta}_1 + w_2 \beta_3 - w_3 \beta_2 = 0$$
, $\dot{\beta}_2 + w_3 \beta_1 = 0$, $\dot{\beta}_3 - w_2 \beta_1 = 0$

и получившуюся систему обозначим (3').

Уравнения (3') допускают интегральные соотношения, выражающие условия ортогональности матрицы в (2) и обобщенный интеграл энергии

$$\frac{1}{2}(w_2^2 + w_3^2) - \omega_0(\lambda\Omega\beta_1 + w_2\beta_2 + w_3\beta_3) - \frac{3}{2}\omega_0^2(1-\lambda)\gamma_1^2 - p\alpha_1.$$
 (5)

Эти уравнения имеют также семейства частных решений, в которых α_1 , β_1 и γ_1 – постоянные величины, связанные соотношениями

$$\alpha_1^2 + \beta_1^2 + \gamma_1^2 = 1, \qquad \gamma_1 [3\omega_0^2 (1 - \lambda)\alpha_1 + p] = 0,$$

$$\omega_0(\omega_0 \beta_1 - \lambda \Omega)(1 - \beta_1^2) + \beta_1 [3\omega_0^2 (1 - \lambda)\gamma_1^2 - p\alpha_1] = 0,$$
(6)

а остальные элементы матрицы в (2) определяются соотношениями

$$\dot{\beta}_{2} + \omega_{0}\beta_{1}\beta_{3} = 0, \qquad \dot{\beta}_{3} - \omega_{0}\beta_{1}\beta_{2} = 0,$$

$$\alpha_{2} = \frac{\gamma_{1}\beta_{3} - \alpha_{1}\beta_{1}\beta_{2}}{1 - \beta_{1}^{2}}, \qquad \alpha_{3} = -\frac{\gamma_{1}\beta_{2} + \alpha_{1}\beta_{1}\beta_{3}}{1 - \beta_{1}^{2}},$$

$$\gamma_{2} = -\frac{\alpha_{1}\beta_{3} + \gamma_{1}\beta_{1}\beta_{2}}{1 - \beta_{1}^{2}}, \qquad \gamma_{3} = \frac{\alpha_{1}\beta_{2} - \gamma_{1}\beta_{1}\beta_{3}}{1 - \beta_{1}^{2}}.$$
(7)

Пусть соотношения (6) выполнены. Уравнения (7) для переменных β_2 и β_3 имеют решение $\beta_2 = \sqrt{1-\beta_1^2}\cos\beta_1\omega_0(t-t_0)$, $\beta_3 = \sqrt{1-\beta_1^2}\sin\beta_1\omega_0(t-t_0)$, где t_0 – произвольная постоянная, переменные α_2 , α_3 , γ_2 , γ_3 находятся по формулам (7). Орт оси Ox_1 в системе $OX_1X_2X_3$ имеет компоненты $(\alpha_1,\beta_1.\gamma_1)$, поэтому решения (6), (7) описывают покой оси Ox_1 в этой системе. При p=0 эти решения совпадают с известными решениями, называемыми конической, цилиндрической и гиперболоидальной прецессиями [5]. Их сложный вид и неожиданный период связаны со способом введения системы координат $Oy_1y_2y_3$. Эта система, удобная в задаче обработки магнитных измерений, плохо подходит для описания движения спутника относительно орбитальной системы координат. Для описания таких движений в случае, когда ось Ox_1 отклоняется от оси OX_2 менее чем на 90°, положение системы $Ox_1x_2x_3$ относительно системы $OX_1X_2X_3$ удобно задавать введенными выше углами ψ и θ ; третий угол, поворот на который вокруг оси Ox_1 завершает преобразование системы $OX_1X_2X_3$ в систему $Ox_1x_2x_3$, обозначим φ . Преобразование $OX_1X_2X_3 \to Ox_1x_2x_3$ можно представить в виде суперпозиции преобразований $OX_1X_2X_3 \rightarrow Oy_1y_2y_3$ и $Oy_1y_2y_3 \rightarrow$ $Ox_1x_2x_3$. Первое преобразование задается углами ψ , θ и δ , второе преобразование — углом χ . Повороты на углы δ и χ выполняются вокруг оси $Ox_1 = Oy_1$ в одном направлении, поэтому $\varphi = \delta + \chi$.

Если интересоваться только движением оси симметрии спутника Ox_1 , то удобно использовать углы ψ , θ и комбинации угловых скоростей

$$\Omega_2 = \omega_2 \cos \varphi - \omega_3 \sin \varphi = w_2 \cos \delta - w_3 \sin \delta ,$$

$$\Omega_3 = \omega_2 \sin \varphi + \omega_3 \cos \varphi = w_2 \sin \delta + w_3 \cos \delta$$
,

где

$$\cos \delta = \frac{\gamma_3}{\sqrt{\gamma_2^2 + \gamma_3^2}}, \quad \sin \delta = \frac{\gamma_2}{\sqrt{\gamma_2^2 + \gamma_3^2}}.$$

Такие переменные были использованы в [2]. На рис. 7 — 12 переменные δ , Ω_2 и Ω_3 вычислены вдоль решений системы (3) по выписанным формулам. Для расчета $\dot{\delta}$ использовалась формула

$$\dot{\delta} = \Omega_3 \operatorname{tg} \theta - \omega_0 \frac{\sin \psi}{\cos \theta}.$$

5. Периодические движения оси симметрии спутника. Для переменных ψ , θ , Ω_2 , Ω_3 справедливы уравнения [2]

$$\begin{split} \dot{\theta} &= \Omega_2 - \omega_0 \cos \psi \,, \quad \dot{\psi} = \frac{\Omega_3}{\cos \theta} - \omega_0 t g \theta \sin \psi \,, \\ \dot{\Omega}_2 &= - \bigg(\lambda \Omega + \Omega_3 t g \theta - \omega_0 \frac{\sin \psi}{\cos \theta} \bigg) \Omega_3 + 3\omega_0^2 (1 - \lambda) \sin \theta \cos \theta + p \cos \psi \sin \theta \,, \\ \dot{\Omega}_3 &= \bigg(\lambda \Omega + \Omega_3 t g \theta - \omega_0 \frac{\sin \psi}{\cos \theta} \bigg) \Omega_2 + p \sin \psi \,. \end{split} \tag{8}$$

Выраженные через ψ , θ , Ω_2 и Ω_3 решения системы (3) на интервалах 10 и 14 – 18 похожи на периодические решения системы (8), изучавшиеся в [2]. Решения на этих рисунках отличаются от решений на остальных интервалах тем, что кинетический момент движения спутника относительно центра масс мало отклоняется от нормали к плоскости орбиты. Расчеты угла между этими векторами приведены в [1]. Упомянутое сходство мотивировало попытку аппроксимации движений спутника на указанных интервалах периодическими решениями системы (8).

Для аппроксимации использовались симметричные периодические решения системы (8). Эта система инвариантна относительно преобразования переменных $t \to -t$, $\theta \to -\theta$, $\Omega_3 \to -\Omega_3$, поэтому можно искать ее решения, в которых переменные θ и Ω_3 — нечетные, а переменные ψ и Ω_2 — четные функции времени [2]. Симметричные периодические решения с периодом T определяются краевыми условиями

$$\theta(0) = \Omega_3(0) = \theta\left(\frac{T}{2}\right) = \Omega_3\left(\frac{T}{2}\right) = 0. \tag{9}$$

Параметры системы (8) p, λ , Ω для каждого аппроксимируемого интервала определялись в результате обработки магнитных измерений (см. табл. 4). Зна-

чение периода T находилось в результате анализа решений системы (3), аппроксимирующих магнитные измерения на исследуемом интервале. Переменные системы (3) в этом решении указанным выше способом пересчитывались в функции $\theta(t)$, $\psi(t)$, $\Omega_2(t)$, $\Omega_3(t)$, и для каждой из этих функций определялся пробный период. Опишем определение пробного периода на примере функции $\theta(t)$. Эта функция (как и остальные из приведенного набора) вычислялась на равномерной временной сетке $\{t'_m\}_{m=0}^M$, $t'_m = t_{_0} + mh$, h = 20c, $(M-1)h < T \le Mh$. Строилась ее аппроксимация выражением

$$\theta_{\rm ap}(t) = a_0 + a\cos 2\pi f t + a\sin 2\pi f t, \tag{10}$$

где a_0 , a, b и f — параметры. Значения параметров искались методом наименьших квадратов посредством минимизации выражения

$$\Psi(a_0, a, b, f) = \sum_{m=0}^{M} [\theta(t'_m) - \theta_{ap}(t'_m)]^2.$$

Минимизация выполнялась в два этапа. Сначала в результате решения ряда одинаковых линейных задач наименьших квадратов вычислялись значения функции

$$\Psi_1(f) = \min \Psi(a_0, a, b, f)$$

$$a_0, a, b$$

в узлах достаточно мелкой равномерной сетки на отрезке $0 \le f \le 10^{-3} \Gamma$ ц. Затем на этой сетке находилась точка, где $f_{\min} = \arg\min \Psi_1(f)$. Пробный период находился по формуле $T = 1/f_{\min}$. Если функция $\Psi_1(f)$ имеет несколько значимых минимумов, то исследуемая переменная $\theta(t)$ содержит несколько составляющих вида (10). В этом случае периодическая аппроксимация может оказаться невозможной.

Поиск $\min \Psi_1(f)$ удобно иллюстрировать графиком функции

$$E(f) = \sqrt{\frac{\Psi_1(f)}{M-2}}.$$

Ее минимумы дают оценки средней квадратичной ошибки аппроксимации переменной $\theta(t)$ выражением (13). На приводимых ниже рисунках графики функции E(f) обозначен $E_{\theta}(f)$, аналогичные графики в случае переменных $\psi(t)$, $\Omega_2(t)$ и $\Omega_3(t)$ обозначены соответственно $E_{\psi}(f)$, $E_{\Omega 2}(f)$ и $E_{\Omega 3}(f)$. Такие графики называются периодограммами. Примеры периодограмм приведены на рис. 13 – 16. На рис. 13, 14 приведены периодограммы для движений спутника на интервалах 15 и 18. Судя по рисункам, движения спутника на этих интервалах были одночастотными и, как будет показано ниже, допускают периодическую аппроксимацию. Аналогичным образом выглядят периодограммы на

интервалах 10, 14, 16 и 17. На рис. 15, 16 приведены периодограммы движений на интервалах 7 и 24 (для анализа периодограмм движения были построены при $\varepsilon = 0$). Как видим, эти движения не являлись одночастотными. Периодограммы такого вида типичны для движений на интервалах 1 - 9, 11 - 13 и 19 - 25.

Пробные периоды, найденные по функциям $\theta(t)$, $\psi(t)$, $\Omega_2(t)$ и $\Omega_3(t)$, совпадали достаточно точно. Так как в движениях на интервалах 10 и 16-20 наиболее интенсивно изменялись переменные Ω_2 и Ω_3 , пробный период определялся по периодограммам функций $\Omega_2(t)$ и $\Omega_3(t)$. Для них значения f_{\min} попадали в одни и те же узлы сетки с шагом $2\cdot 10^{-7}$ Гц. Найденное значение пробного периода использовалось для построения аппроксимирующего решения краевой задачи (8), (12). Эта задача решалась методом пристрелки (см. [2]). Начальным приближением неизвестных начальных условий $\psi(0)$ и $\Omega_2(0)$ служили значения переменных ψ и Ω_2 в аппроксимируем решении в точке t_* , определяемой соотношением $\theta(t_*) \approx 0$.

Примеры построенных периодических решений приведены на рис. 17 — 21 и в табл. 5. В таблице указаны параметры решений задачи (8), (1): T/2, $\psi(0)$ и $\Omega_2(0)$, а также орбитальная частота ω_0 на данном интервале и коэффициент a в характеристическом уравнении $(\rho-1)^2(\rho^2-2a\rho+1)=0$, определяющем мультипликаторы периодического решения. Как видим, все найденные периодические решения орбитально устойчивы в первом приближении. На рисунках приведены графики переменных $\theta(t)$, $\psi(t)$, $\Omega_2(t)$ и $\Omega_3(t)$ в периодических решениях на отрезке $0 \le t \le 2T$ и проекции орта оси x_1 и орта кинетического момента спутника на плоскость y_1y_3 . Проекция орта кинетического момента лежит внутри проекции орта оси x_1 . Найденные периодические решения — продолжение по периоду короткопериодических решений Ляпунова [2]. Последние существуют при достаточно большом значении $|\lambda\Omega/\omega_0|$ в окрестности стационарных решений системы (8), для которых $\theta=0$ и $\psi\to\pi/2$ при $a\to0$.

Сопоставление движений, найденных обработкой магнитных измерений, и периодических решений выполнялось по следующей схеме. Переменные $\theta(t)$, $\psi(t)$, $\Omega_2(t)$ и $\Omega_3(t)$ в периодическом решении аппроксимировались дискретными рядами Фурье [6]. Четные функции разлагались в ряд по косинусам, нечетные — в ряд по синусам. В каждом аппроксимирующем выражении использовалось 200 гармоник. Построенные ряды обозначим, $\tilde{\theta}(t)$, $\tilde{\psi}(t)$, $\tilde{\Omega}_2(t)$ и $\tilde{\Omega}_3(t)$. Составлялось выражение

$$\begin{split} F(\tau) &= \sum_{m=0}^{M} \{ [\theta(t'_m) - \widetilde{\theta}(t'_m + \tau)]^2 + [\psi(t'_m) - \widetilde{\psi}(t'_m + \tau)]^2 + \\ &+ [\Omega_2(t'_m) - \widetilde{\Omega}_2(t'_m + \tau)]^2 + [\Omega_3(t'_m) - \widetilde{\Omega}_3(t'_m + \tau)]^2 \}, \end{split}$$

которое минимизировалось по τ на достаточно мелкой сетке. Найденные таким образом значения τ приведены в табл. 5. В левой части рис. 22-27 в единых

системах координат приведены графики функций $\theta(t)$, $\psi(t)$, $\Omega_2(t)$ и $\Omega_3(t)$ и соответствующих аппроксимирующих выражений $\tilde{\theta}(t+\tau)$, $\tilde{\psi}(t+\tau)$, $\tilde{\Omega}_2(t+\tau)$, $\tilde{\Omega}_3(t+\tau)$. В правой части этих рисунков представлены графики разностей $\Delta\theta=\theta(t)-\tilde{\theta}(t+\tau)$, $\Delta\psi=\psi(t)-\tilde{\psi}(t)$ и аналогичных разностей $\Delta\Omega_2$, $\Delta\Omega_3$. Все графики построены по значениям на сетке $\{t_m'\}_{m=0}^M$. Судя по графикам, функции $\Delta\theta(t)$ и $\Delta\psi(t)$ содержат низкочастотную компоненту, которую можно связать с длиннопериодическими решениями Ляпунова [2], существующими в окрестности указанных выше стационарных решений системы (8).

Как видим, в полете *Фотона-12* реализовалась редкая ситуация, когда реальные достаточно сложные вращательные движения спутника удалось аппроксимировать периодическими решениями уравнений движения обобщенно-консервативной механической системы. Этот факт служит очередным оправданием использования упрощенных математических моделей в задачах механики космического полета.

Литература

- 1. Буланов Д.М., Сазонов В.В. Исследование эволюции вращательного движения спутника *Фотон-12* // Препринты ИПМ им. М.В. Келдыша (в печати)
- 2. Нейштадт И.А. Сазонов В.В. Периодические колебания оси симметрии спутника под действием гравитационного и аэродинамического моментов // Известия Академии наук. Механика твердого тела. 2003. № 4. С. 20-35.
- 3. Абрашкин В.И., Балакин В.Л., Белоконов И.В., Воронов К.Е., Зайцев А.С., Иванов В.В., Казакова А.Е., Сазонов В.В., Семкин Н.Д.. Неуправляемое вращательное движение спутника *Фотон-12* и квазистатические микроускорения на его борту// Космические исследования 2003. Т. 41. № 1. С. 45-56.
- 4. Сазонов В.В. Обработка данных измерений угловой скорости и микроускорения, полученных на спутнике *Фотон-12* // Космические исследования. 2011. Т.49. № 5. С.419-435.
- 5. Белецкий В.В. Движение спутника относительно центра масс в гравитационном поле. М.: Издательство МГУ, 1975.
- 6. Ланцош К. Практические методы прикладного анализа. М.: Физматгиз, 1960.

Таблица 1. Результаты обработки измерений МПЗ на спутнике Φ отон 12

Пата	$t_{\rm o}$. UTC	T MITH	9. 7	ρ	ρ	ь Б	ρ	P	P
11.09.99	03:32:48	150	2499	0.032	0.020	0.024	0.022	0.020	0.037
11.09.99	13:14:35	210	2996	0.031	0.013	0.012	0.015	0.020	0.021
12.09.99	03:14:34	210	2332	0.020	0.0057	0.014	0.0099	0.039	0.035
12.09.99	15:57:21	210	3472	0.026	0.012	0.018	0.015	0.033	0.084
13.09.99	01:57:09	210	2160	0.014	0.013	0.012	0.0094	0.026	0.049
13.09.99	13:59:31	210	2417	0.030	0.012	0.022	0.010	0.027	0.018
14.09.99	05:38:46	210	2548	0.021	0.015	0.017	0.011	0.026	0.057
14.09.99	18:56:55	210	2757	0.018	0.014	0.014	0.012	0.042	0.044
15.09.99	02:18:35	210	2407	0.015	0.012	0.012	0.015	0.037	0.044
15.09.99	13:18:34	210	2835	0.024	0.012	0.018	0.023	090.0	0.055
15.09.99	23:40:47	210	2308	0.019	0.020	0.013	0.012	0.073	0.021
16.09.99	11:40:41	210	2296	0.017	0.0099	0.012	0.018	0.030	0.050
16.09.99	16:59:44	210	2409	0.017	0.011	0.014	0.022	0.032	0.063
17.09.99	19:05:14	210	2043	0.011	0.0085	0.018	0.026	0.042	0.042
18.09.99	18:33:07	210	2181	0.015	0.0087	0.021	0.017	0.053	0.059
18.09.99	21:54:51	210	2192	0.013	0.0094	0.011	0.017	0.057	0.023
19.09.99	08:54:51	210	1924	0.015	0.0095	0.012	0.014	0.045	0.036
19.09.99	21:55:05	197	1810	0.011	0.010	0.010	0.011	0.030	0.044
20.09.99	07:55:22	206	2248	0.020	0.0099	0.017	0.017	0.032	690.0
20.09.99	19:56:17	210	3260	0.019	0.018	0.015	0.022	0.042	980.0
21.09.99	05:50:08	210	2261	0.014	0.010	0.014	0.011	0.039	0.040
21.09.99	21:13:34	210	2639	0.017	0.0093	0.021	0.015	0.063	0.053
22.09.99	07:55: 02	210	2694	0.024	0.010	0.015	0.016	0.026	0.078
22.09.99	22:54:54	210	2376	0.019	0.0086	0.021	0.012	0.074	0.021
23.09.99	02:53:52	275	3119	0.018	9800.0	0.015	0.017	0.043	0.055

Таблица 2. Оценки и стандартные отклонения параметров уравнений движения

$\sigma_{\mathcal{R}}$	0.0074	0.0075	0.0051	0.0072	0.0050	0.0054	0.0062	0.0061	0.0056	0.0065	0.0056	0.0055	0.0053	0.0045	0.0047	0.0049	0.0053	0.0044	0900.0	0.0073	0.0059	0.0061	0.0074	0.0058	0.0073
β_c	-0.0486	-0.0530	-0.0564	-0.0565	-0.0440	-0.0560	-0.0510	-0.0532	-0.0673	- 0.0665	-0.0568	-0.0654	-0.0618	-0.0563	- 0.0638	-0.0560	- 0.0591	-0.0651	-0.0647	-0.0594	-0.0707	- 0.0683	7690.0	-0.0682	-0.0692
$\sigma_{\alpha c}$	0.0074	0.0074	0.0052	0.0072	0.0050	0.0054	0.0062	0.0061	0.0056	0.0065	0.0056	0.0056	0.0053	0.0045	0.0047	0.0049	0.0053	0.0044	0.0050	0.0074	0.0059	0.0061	0.0074	0.0058	0.0073
α_c	0.0025	-0.0022	-0.0051	-0.0136	0.0100	0.0124	8600.0-	-0.0254	-0.0154	-0.0120	-0.0291	-0.0085	-0.0371	-0.0344	- 0.0149	-0.0296	- 0.0461	-0.0531	-0.0372	- 0.0498	-0.0350	-0.0428	-0.0566	-0.0514	-0.0484
$\sigma_{arepsilon}$	0.0035	0.0019	0.0012	0.0018	0.0016	0.0013	0.0013	0.00094	0.00099	0.0011	0.000.0	0.00088	98000.0	69000.0	0.00079	0.00072	0.00071	0.00070	0.0011	0.0010	0.00082	0.0011	0.0012	0.00099	0.00064
3	0.0393	0.0381	0.0309	0.0512	0.0033	0.0174	0.0221	0.0364	0.0210	0.0185	0.0032	0.0239	0.0203	-0.0044	0.0023	0.0194	0.0070	0.0041	-0.0023	0.0049	-0.0053	-0.0286	0.0164	0.0067	-0.0079
σ_{λ}	0.0021	0.00068	0.00052	0.0010	0.00037	0.00052	0.00058	99000.0	0.0073	0.0013	0.00059	0.00083	0.0010	0.0013	0.00085	0.00075	0.00059	0.00051	0.00077	0.0010	0.00046	69000.0	0.00059	0.00050	0.00071
7	0.2548	0.2617	0.2460	0.2431	0.2454	0.2494	0.2448	0.2423	0.2391	0.2323	0.2386	0.2435	0.2424	0.2362	0.2302	0.2395	0.2403	0.2379	0.2346	0.2372	0.2384	0.2399	0.2429	0.2431	0.2304
σ_p	0.026	0.014	0.024	0.032	0.017	0.015	0.033	0.038	0.038	0.041	0.033	0.036	0.036	0.033	0.043	0.046	0.029	0.029	0.043	0.062	0.039	0.048	0.044	0.041	0.059
d	- 0.0484	0.0113	-0.0569	-0.3708	-0.0219	0.0671	-0.0184	-0.0182	-0.1487	-0.0187	-0.0035	0.1122	0.0352	-0.0300	-0.0802	- 0.0846	0.0216	-0.2518	-0.1455	-0.2035	-0.0817	-0.2436	-0.1875	-0.2449	-0.1432
№ IHT.		71	Е	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Таблица 3. Результаты обработки измерений МПЗ на спутнике Φ отон 12 при $\varepsilon=0$

σ_{w3}	990'0	0.043	0.056	0.039	0.034	0.045
σ_{w2}	0.048	0.042	0.049	0.077	0.049	0.030
σ_{Ω}	0.027	0.026	0.017	0.022	0.030	0.011
C	14.199	16.372	16.920	17.253	17.622	17.739
σ_{ψ}	0.020	0.018	0.021	0.018	0.013	0.010
$\sigma_{ heta}$	0.014	9800.0	0.0088	0.012	0.010	0.010
σ_{δ}	0.018	0.079	0.010	0.014	0.011	0.0082
$\sigma_H,~\gamma$	3393	2107	2193	3228	2063	1862
№ инт.	10	14	15	16	17	18

Таблица 4. Оценки и стандартные отклонения параметров уравнений движения при $\varepsilon=0$

						I
$\sigma_{oldsymbol{\mathcal{R}}}$	8/00'0	0.0047	0.0047	0.0072	0.0056	0.0045
eta_c	-0.0667	-0.0565	-0.0638	-0.0552	-0.0597	-0.0651
$\sigma_{lpha\!c}$	0.0078	0.0047	0.0047	0.0072	0.0057	0.0045
$lpha_c$	-0.0114	-0.0345	-0.0149	-0.0302	-0.0451	-0.0532
σ_{λ}	0.0015	0.0014	0.00085	0.0010	0.00064	0.00052
7	0.2281	0.2362	0.2301	0.2415	0.2398	0.2379
σ_p	0.049	0.033	0.043	990.0	0.031	0.030
p	-0.1388	-0.0372	-0.0813	6960.0	-0.0159	-0.2323
№ инт.	10	14	15	16	17	18

Таблица 5. Параметры периодических решений

№ IIHT.	ω_0	T/2	$\psi(0)$	$\Omega_2(0)$	a	τ
10	1.15738	1.05241	0.70850	2.76801	-0.61081	0.7478
14	1.15362	0.92799	0.86721	2.64021	-0.26236	0.7746
15	1.15883	0.86088	0.80933	3.02129	-0.21134	1.1359
16	1.15688	0.84976	0.92197	2.72420	-0.11559	1.1784
17	1.15787	0.97637	1.072764	1.83328	-0.07819	0.2050
18	1.15976	1.00929	1.06703	1.68321	-0.04319	1.6910

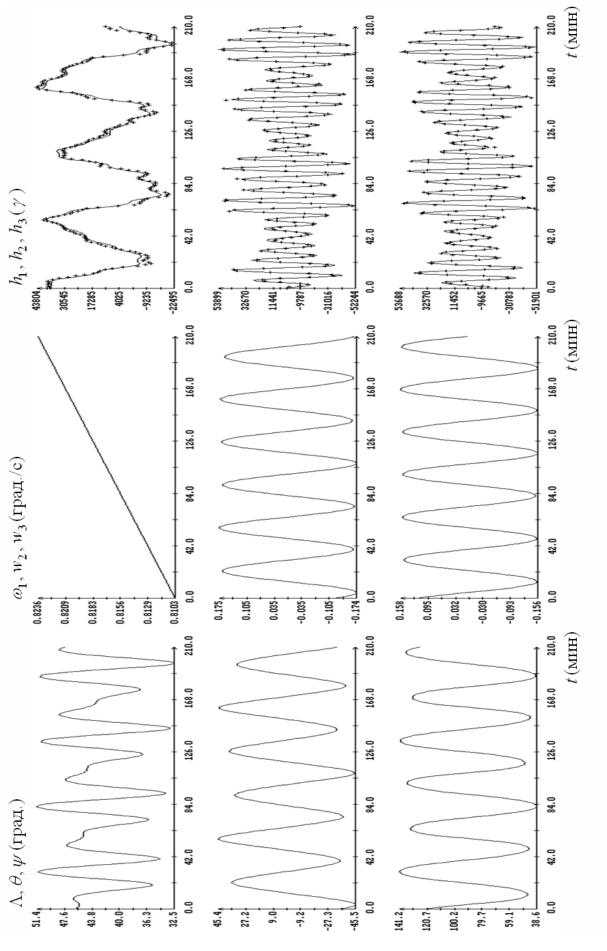


Рис. 1. Интервал 10. Момент t=0 соответствует 13:18:34 UTC 15:09:1999, $\sigma_H=2835\,\gamma$

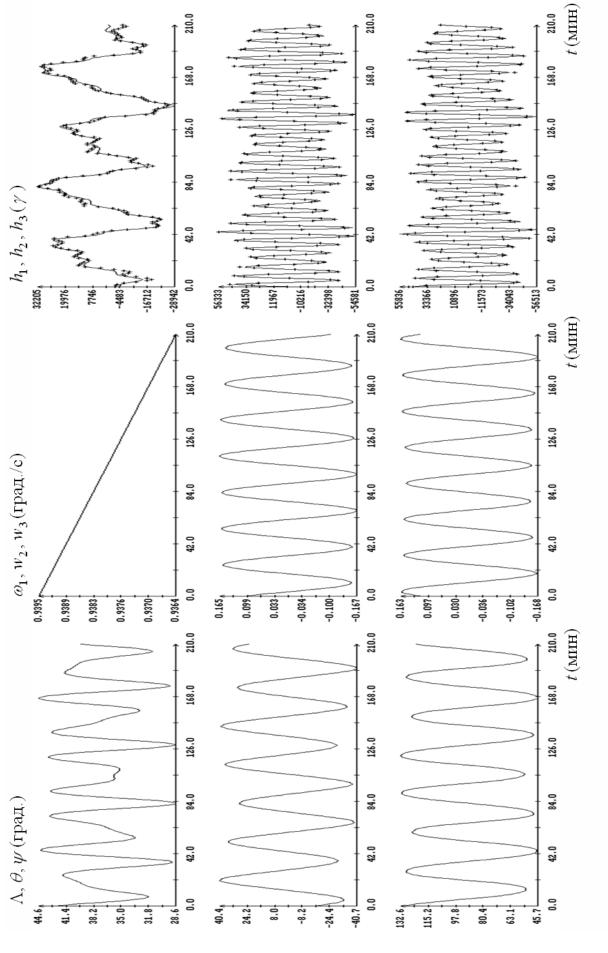


Рис. 2. Интервал 14. Момент t=0 coorветствует 19:05:14 UTC 17:09:1999, $\sigma_H=2043\,\gamma$.

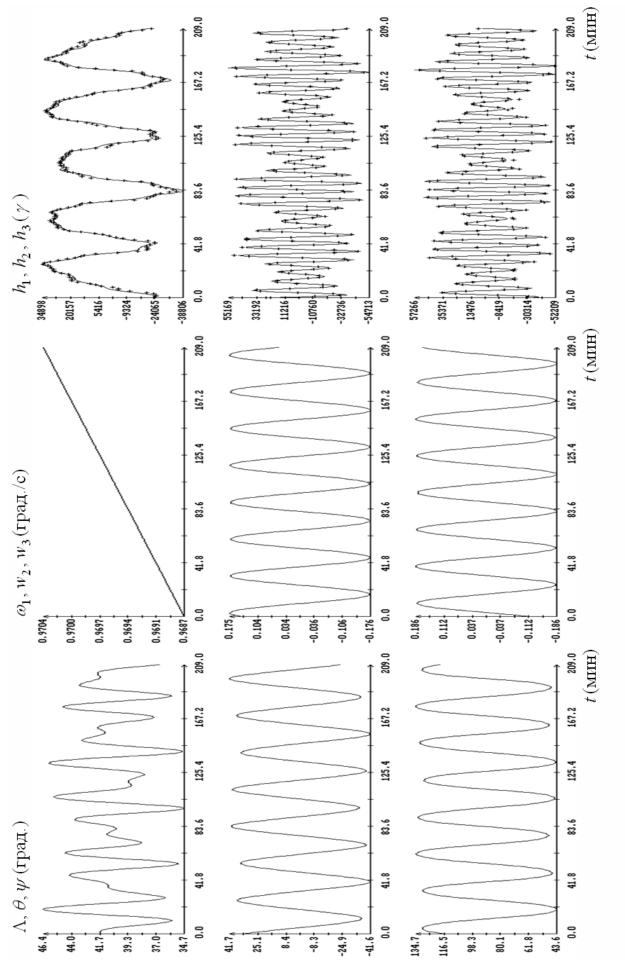


Рис. 3. Интервал 15. Момент t=0 coorветствует 18:33:07 UTC 18:09:1999, $\sigma_H=2181\,\gamma$.

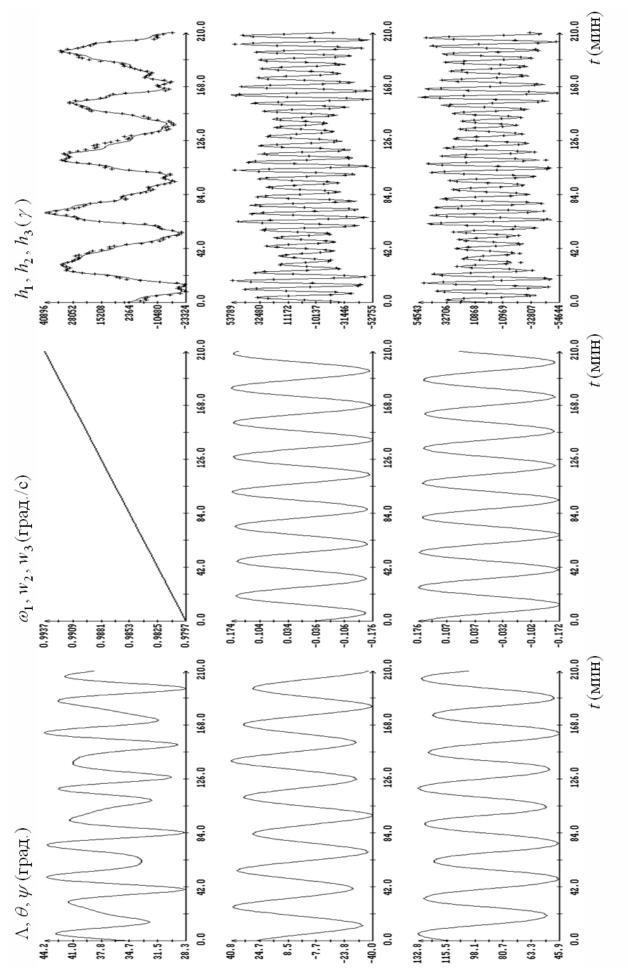


Рис. 4. Интервал 16. Момент t=0 соответствует 21:54:51 UTC 18:09:1999, $\sigma_H=2193\,\gamma$.

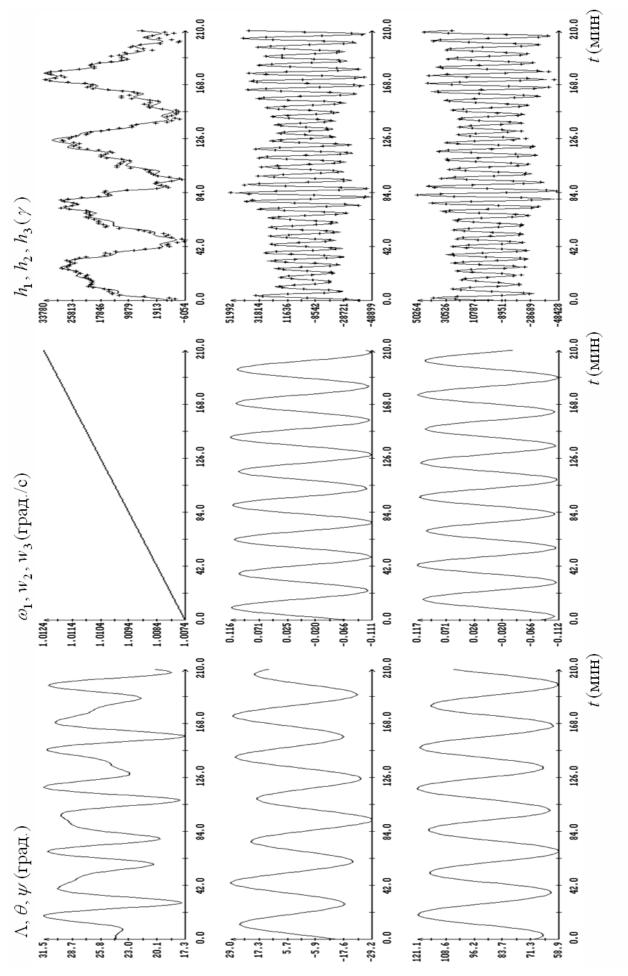


Рис. 5. Интервал 17. Момент t=0 coorветствует 08:54:51 UTC 19:09:1999, $\sigma_H=1924\,\gamma$.

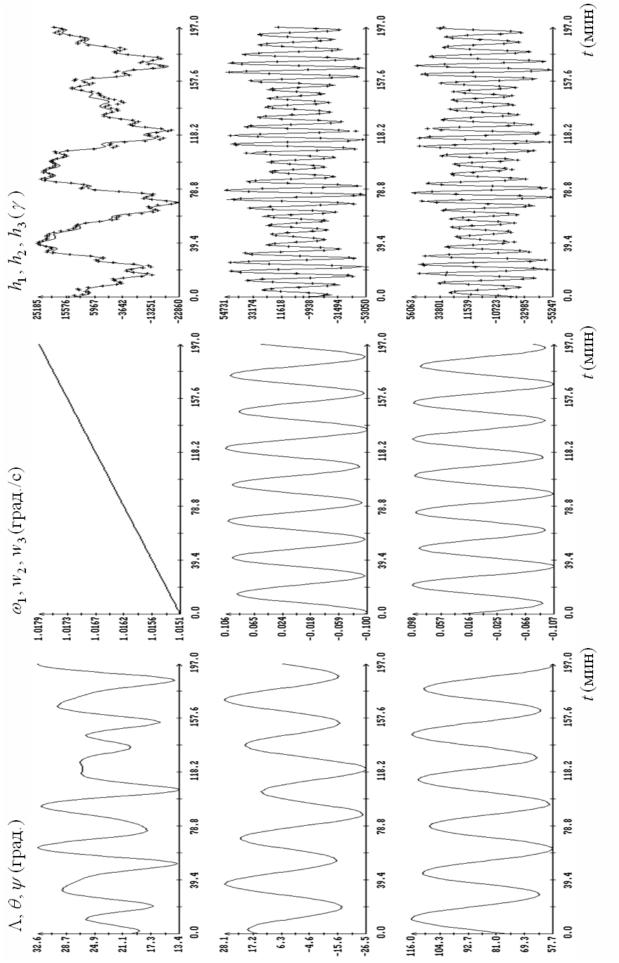


Рис. 6. Интервал 18. Момент t=0 coorветствует 21:55:05 UTC 19:09:1999, $\sigma_H=1810\,\gamma$.

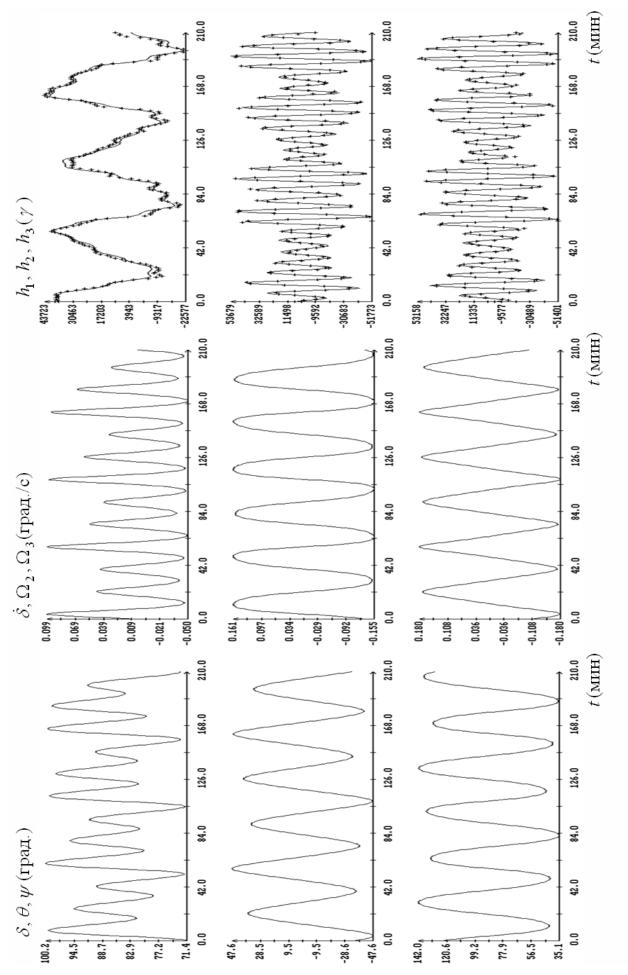


Рис. 7. Интервал 10. Момент t=0 соответствует 13:18:34 UTC 15:09:1999, $\sigma_H=3393~\gamma$, $\varepsilon=0$.

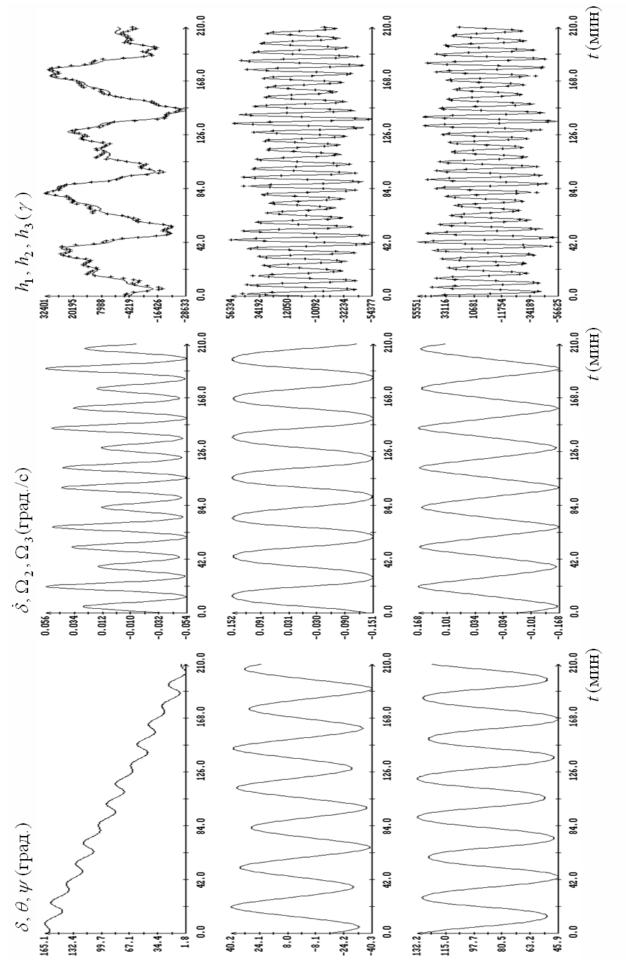


Рис. 8. Интервал 14. Момент t=0 соответствует 19:05:14 UTC 17:09:1999, $\sigma_H=2107~\gamma$, $\varepsilon=0$.

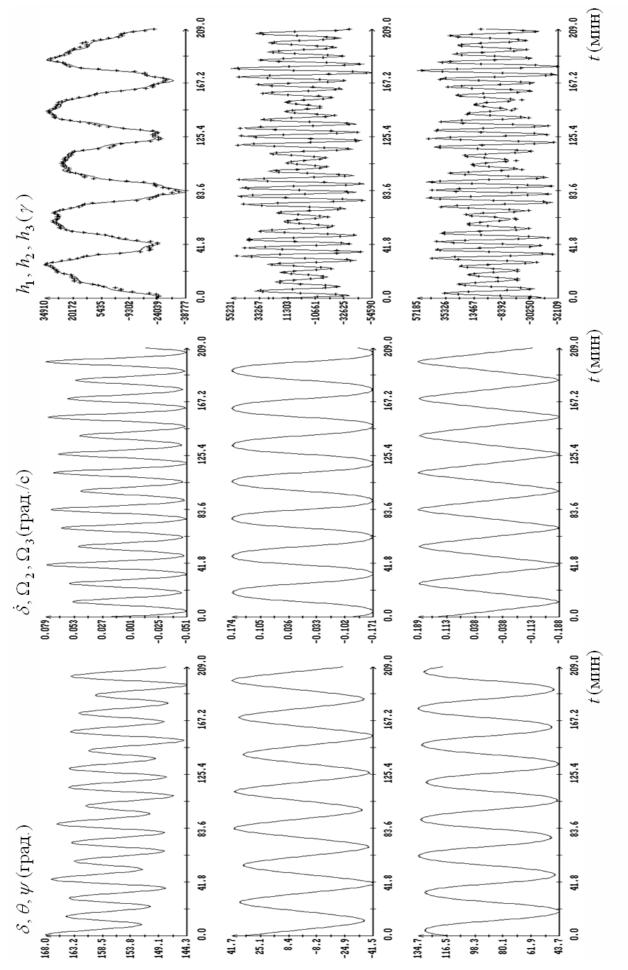
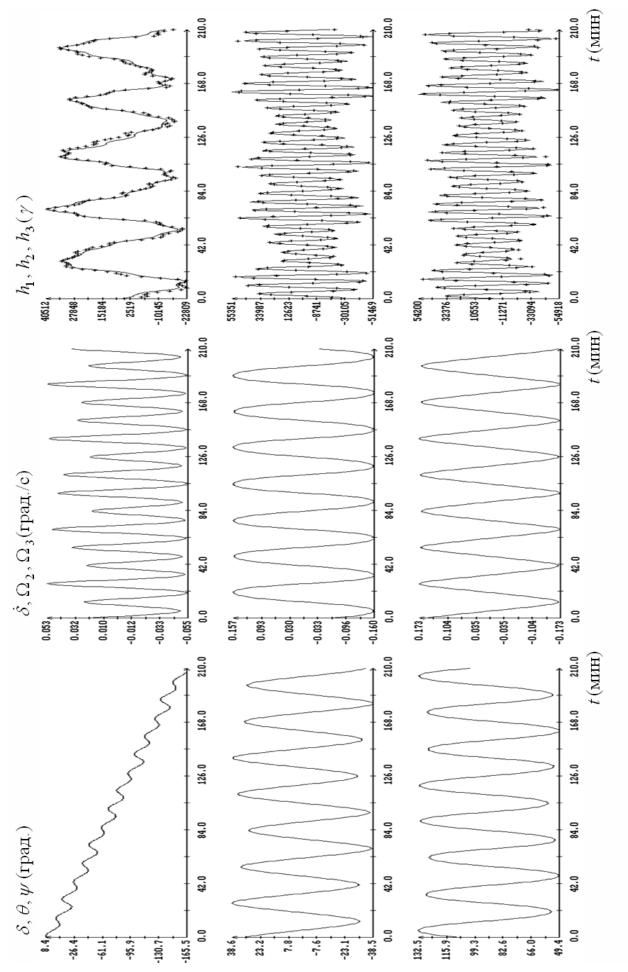


Рис. 9. Интервал 15. Момент t=0 соответствует 18:33:07 UTC 18:09:1999, $\sigma_H=2193\,\gamma,\ \varepsilon=0.$



 $\varepsilon = 0$. Рис. 10. Интервал 16. Момент t=0 cooтветствует 21:54:51 UTC 18:09:1999, $\sigma_H=3228\,\gamma$

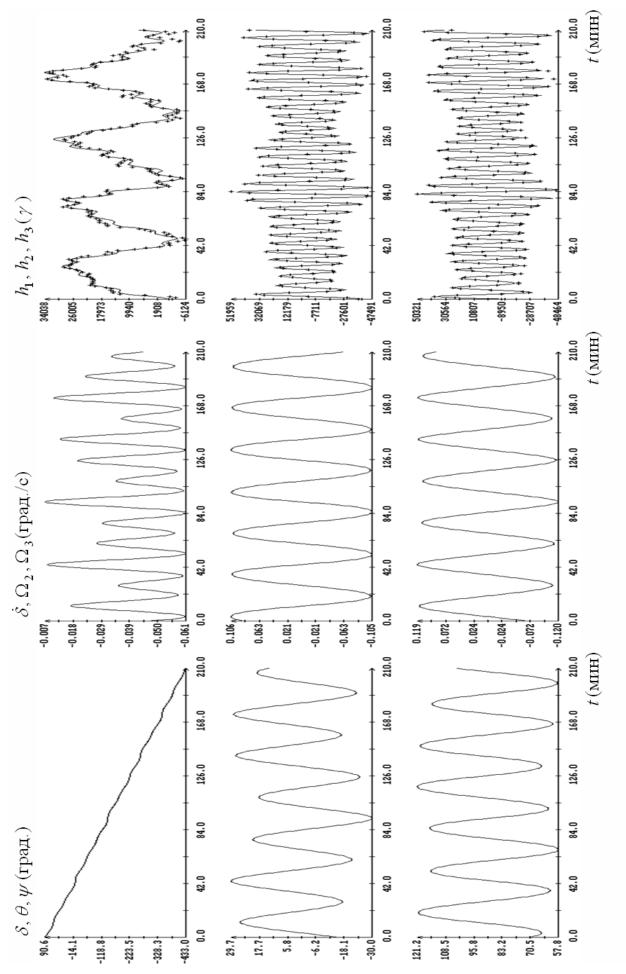


Рис. 11. Интервал 17. Момент t=0 cootветствует 08:54:51 UTC 19:09:1999, $\sigma_H=2063\,\gamma$, $\varepsilon=0$.

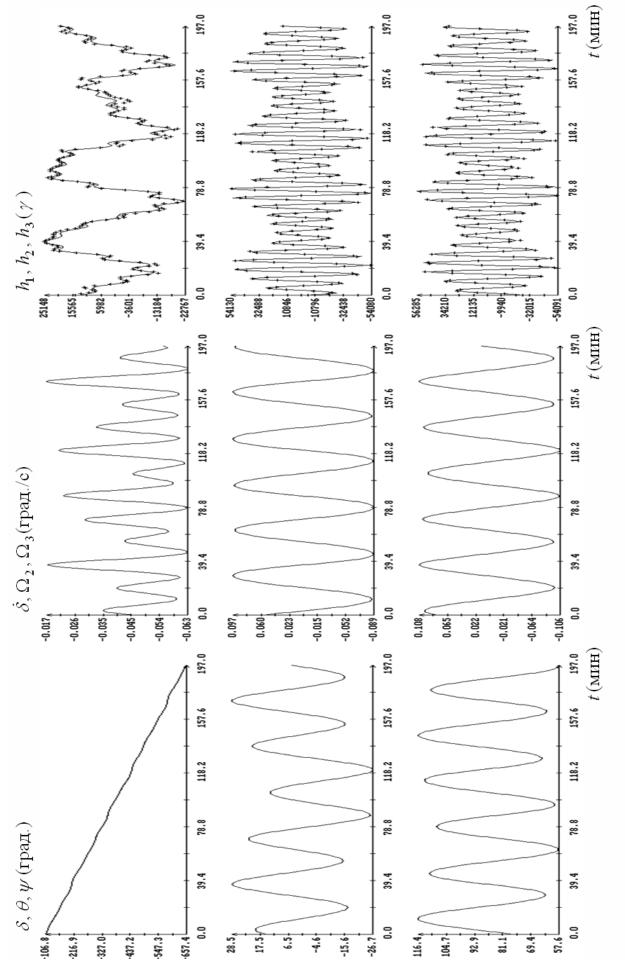


Рис. 12. Интервал 18. Момент t=0 coorветствует 21:55:05 UTC 18:09:1999, $\sigma_H=1862~\gamma$, $\varepsilon=0$.

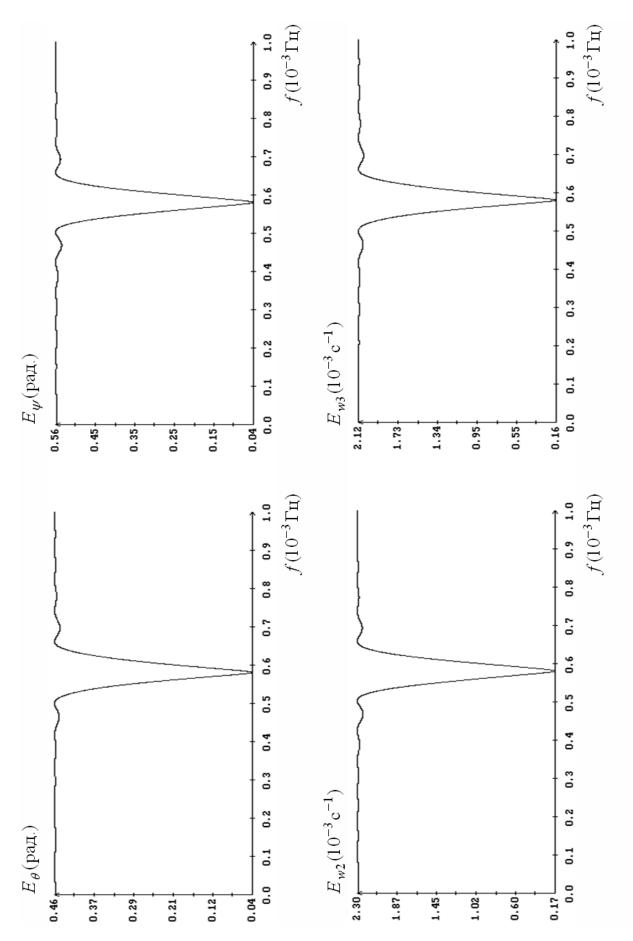


Рис. 13. Периодограммы решения на интервале 14, $f_{\rm min} \approx 0.5808 \cdot 10^{-3} \Gamma {\rm ц}.$

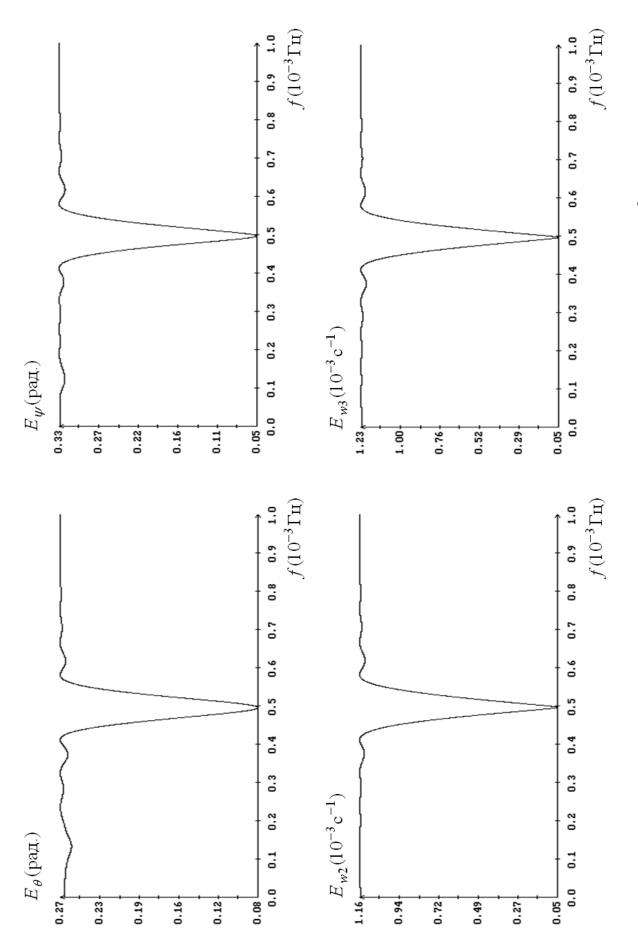


Рис. 14. Периодограммы решения на интервале 18, $f_{\min} = 0.4962 \cdot 10^{-3} \Gamma$ ц.

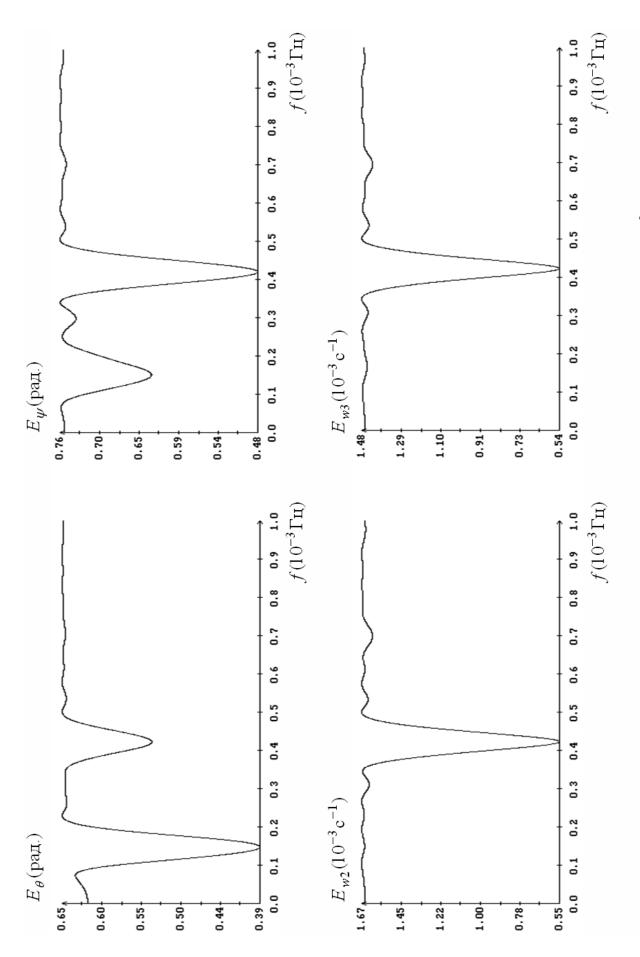


Рис. 15. Периодограммы решения на интервале 7, $f_{\min} \approx 0.423 \cdot 10^{-3}$ Гц.

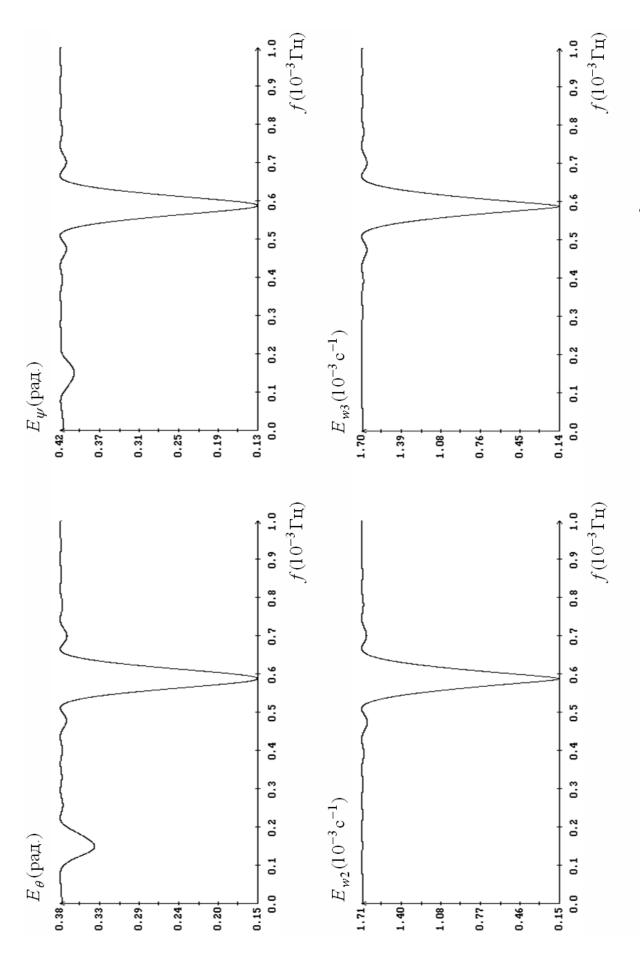


Рис. 16. Периодограммы решения на интервале 24, $f_{\min} \approx 0.587 \cdot 10^{-3} \Gamma ц$.

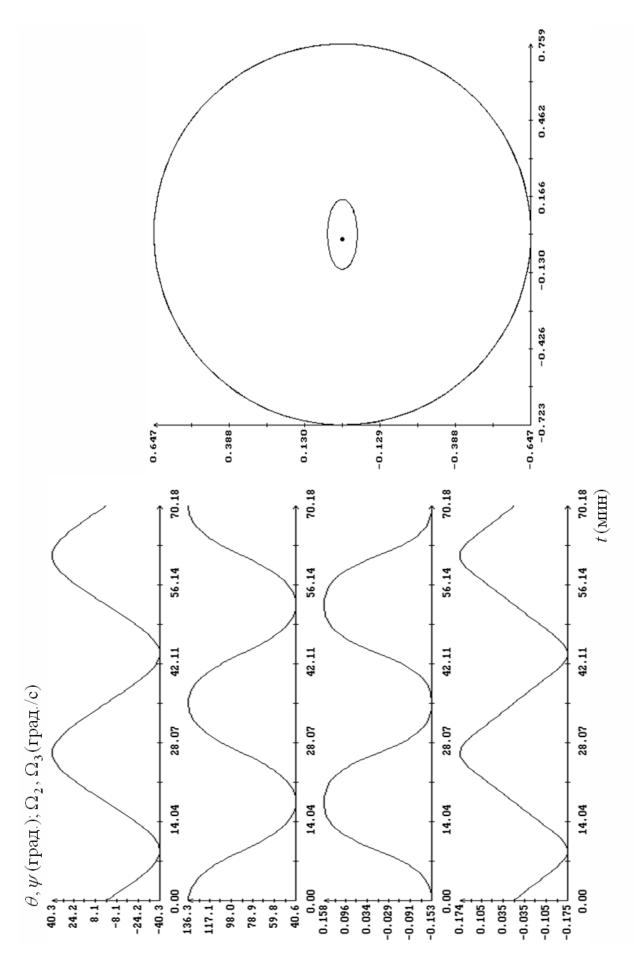


Рис. 17. Аппроксимирующее периодическое решение для интервала 10.

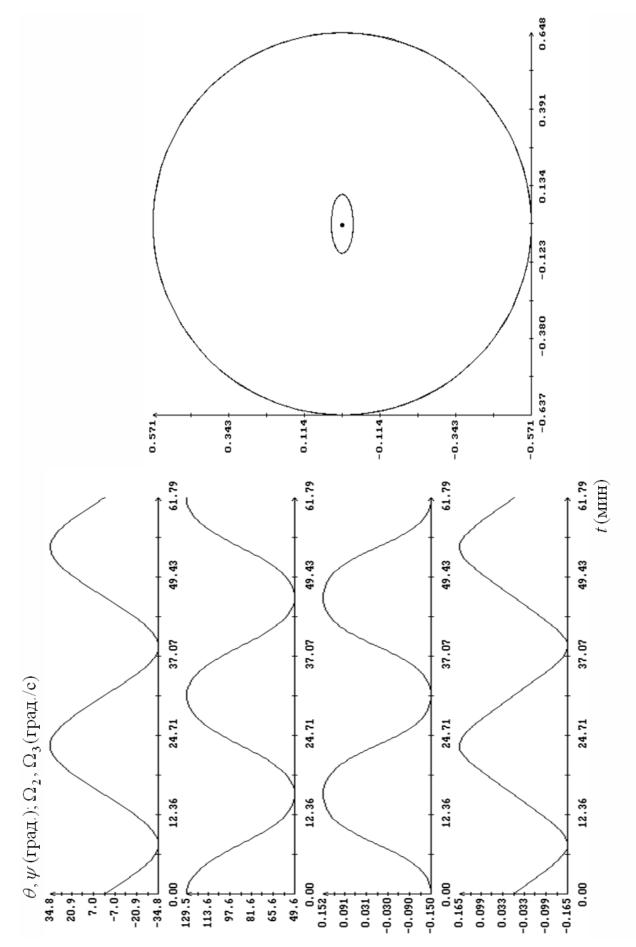


Рис. 18. Аппроксимирующее периодическое решение для интервала 14.

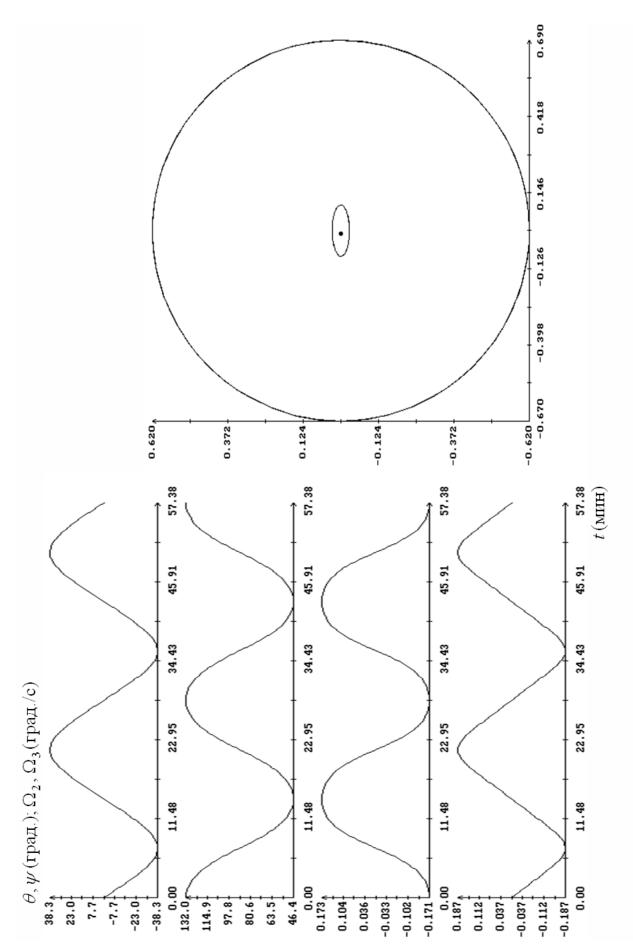


Рис. 19. Аппроксимирующее периодическое решение для интервала 15.

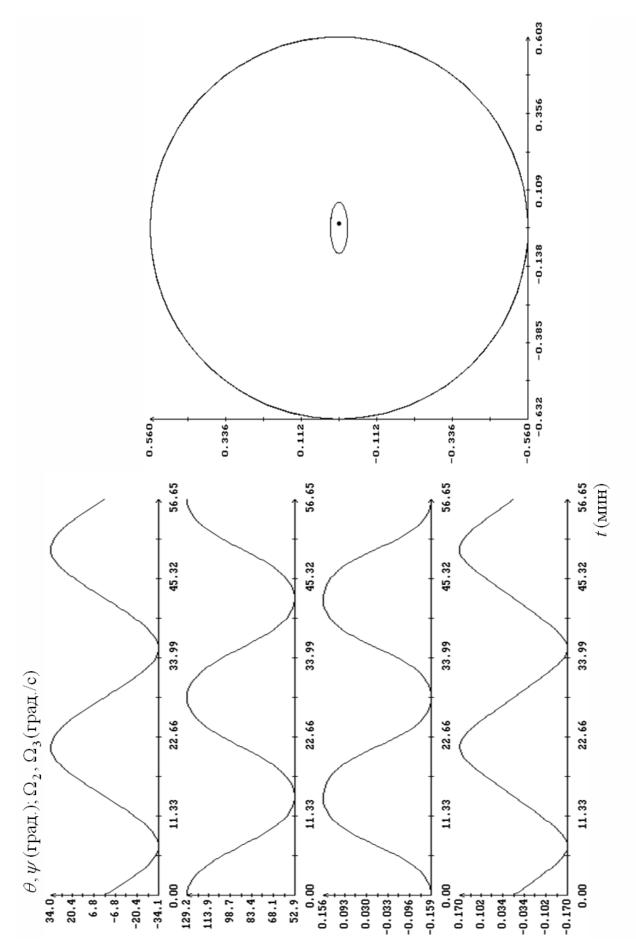


Рис. 20. Аппроксимирующее периодическое решение для интервала 16.

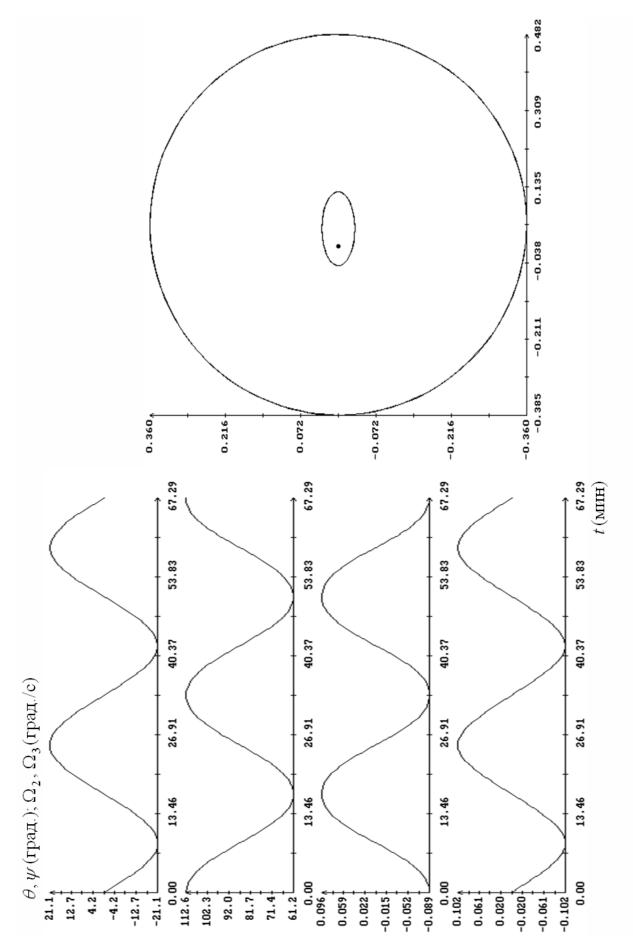


Рис. 21. Аппроксимирующее периодическое решение для интервала 18.

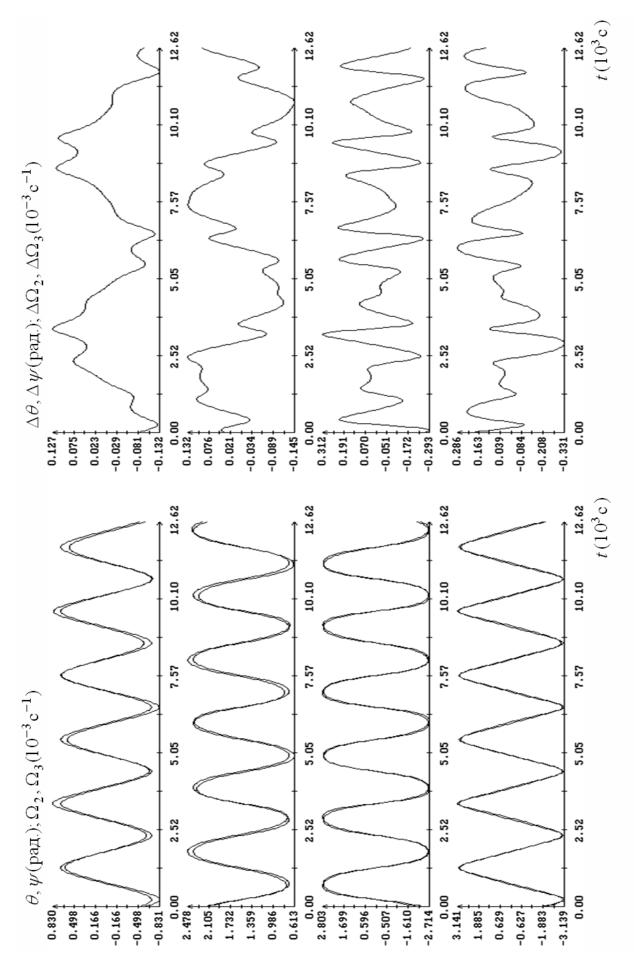


Рис. 22. Интервал 10. Аппроксимация движения спутника периодическим решением.

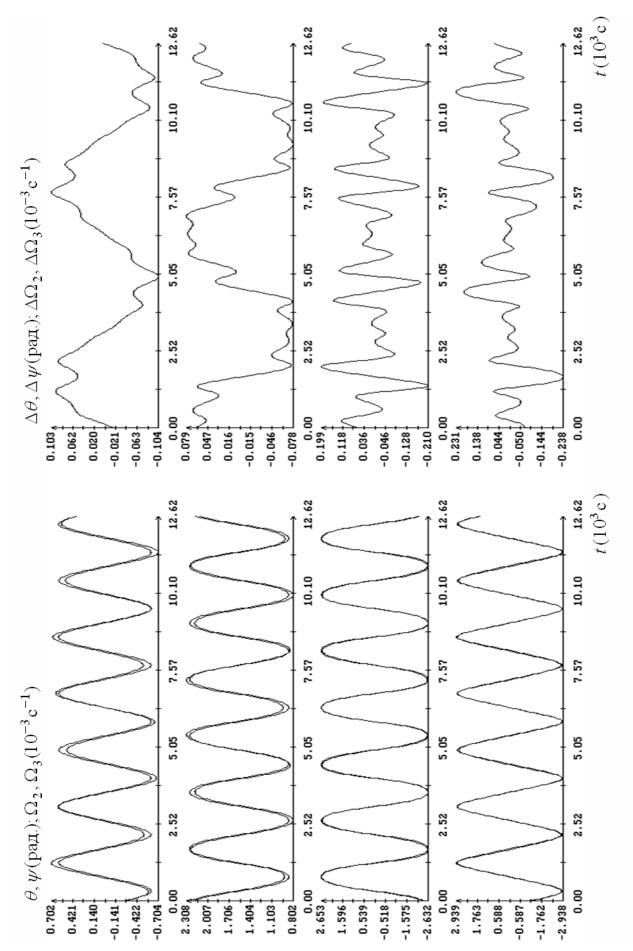


Рис. 23. Интервал 14. Аппроксимация движения спутника периодическим решением.

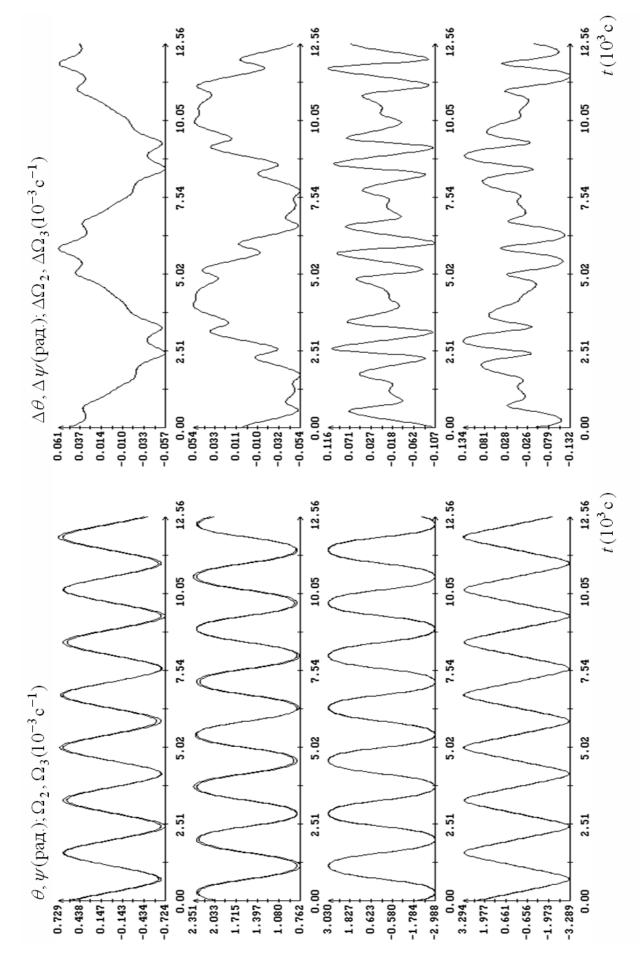


Рис. 24. Интервал 15. Аппроксимация движения спутника периодическим решением.

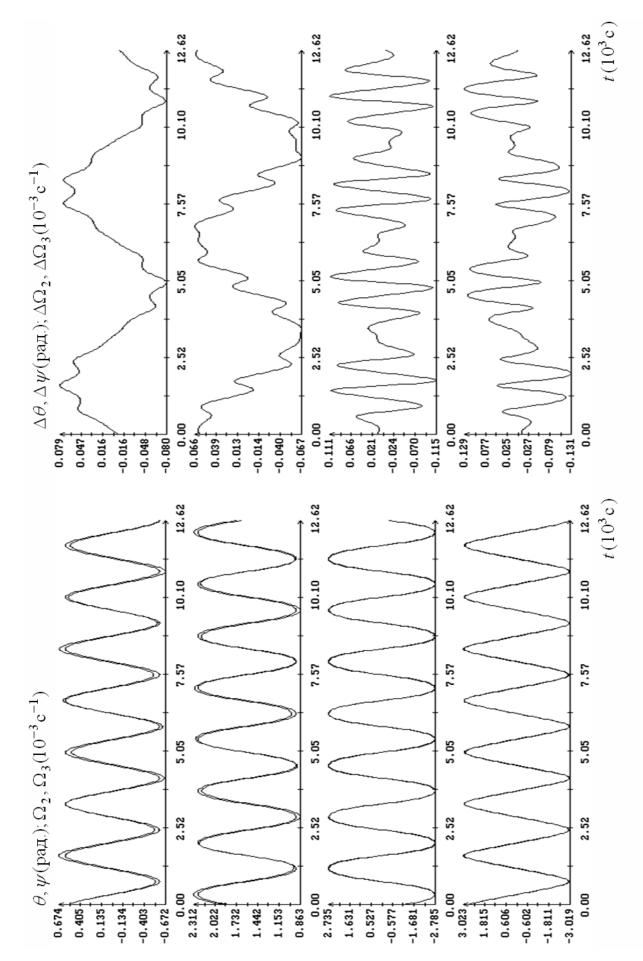


Рис. 25. Интервал 16. Аппроксимация движения спутника периодическим решением.

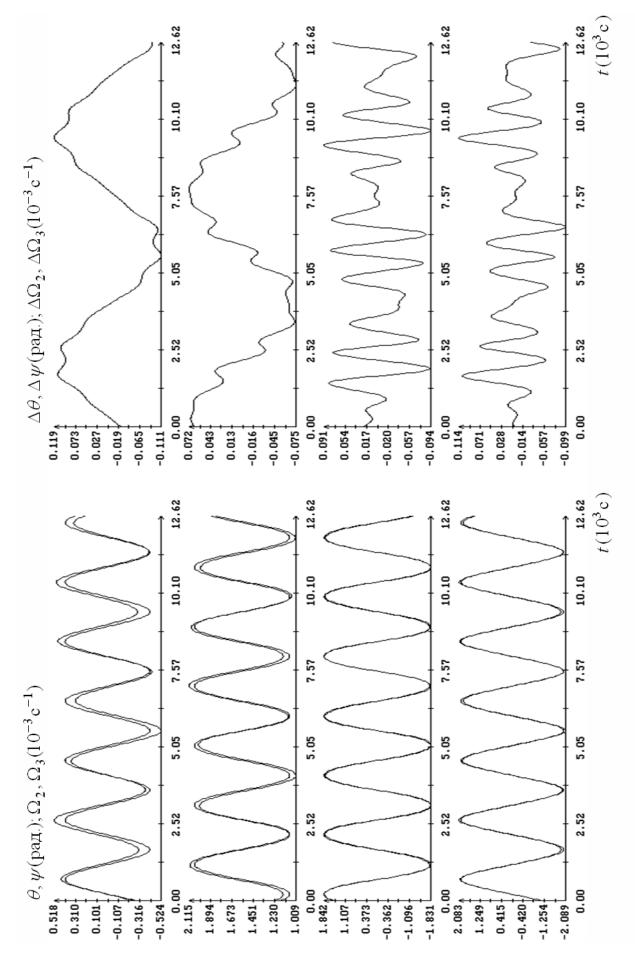


Рис. 26. Интервал 17. Аппроксимация движения спутника периодическим решением.

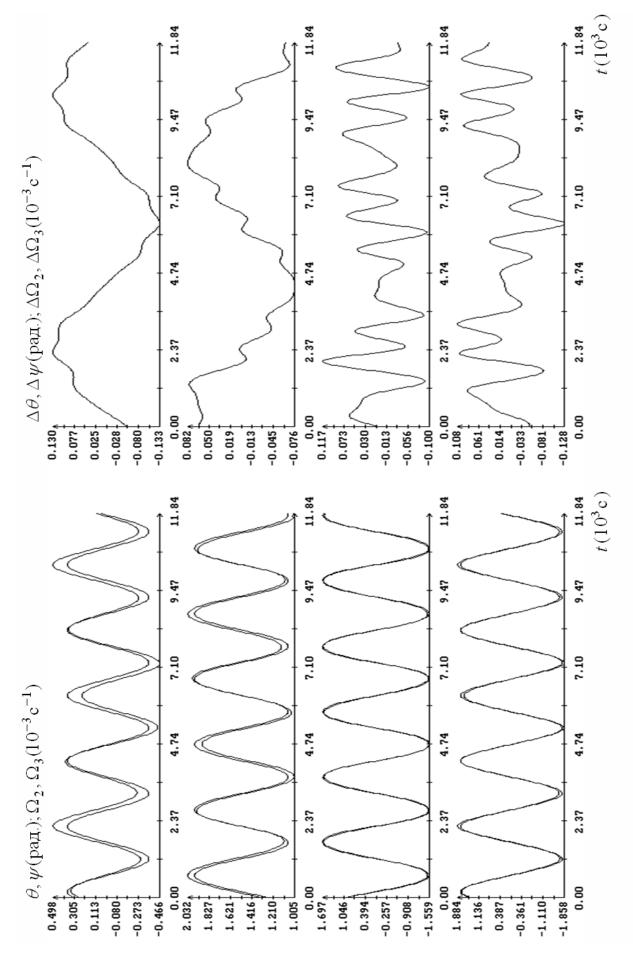


Рис. 27. Интервал 18. Аппроксимация движения спутника периодическим решением.