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Hymaunkosa T.B.

ITpocTpaHCcTBEHHO-BpEMEHHbBIE CTATUCTUYECKNE PEITeHns IS
raMIJIbBTOHOBOII CHCTEMBI ‘“I10oJjie — KPUCTAJLT’

PaccmarpuBaeTcst InHAMUKa CKAJISIPHOTO 0I5, B3aNMOIECTBYIONIETO C rap-
MOHIUYECKUM KPUCTAJIJIOM C 1 KOMIIOHeHTaMu pasMmepuoctu d, d,n > 1. [Iunammka
CUCTEMBI ABJIAETCS TPAHCISIIMOHNHO-UHBAPUAHTHON OTHOCUTEILHO JIUCKPETHOMN
noarpyrmsl Z¢ B R?. Usyuaercs 3agaua Komm co coydaifHBIMI HauaIbHBIMI
nannbiMu.  [Ipejosiaraercs, 9To HavabHas Mepa UMEET KOHEYHYIO CPEJTHION0
IJIOTHOCTH SHEPTUH, & HadaJbHbIe KOPPEJIATTUOHHBIC (DYHKIINT TPAHCIAIUNOHHO-
MHBAPHAHTHBI OTHOCUTEIbHO HOArpyIibl Z%. JloKasblBaeTcs CXOANMOCTD IIPOCT-
PAHCTBEHHO-BPEMEHHBIX CTATUCTUUECKUX PENIeHHil K rayCCOBCKOI Mepe.

Karouesvie caosa: TapMOHUMYECKHUIT KPUCTAJLI, B3aUMOJIEHCTBYIONINIT CO
CKaJIIPHBIM II0JIeM, 3aJ1a4a, Ko, ciaydaiiible HadaabHbIe JaHHbIE, IPOCTPaHCT-
BEHHO-BPEMEHHBIE CTATUCTUYIECKUE PeIleHns, cjiabast CXOAMMOCTb Mep

Tatiana Vladimirovna Dudnikova

Space—time statistical solutions for the Hamiltonian field—crystal
system

We consider the dynamics of a scalar field coupled to a harmonic crystal
with n components in dimension d, d,n > 1. The dynamics of the system is
translation-invariant with respect to the discrete subgroup Z¢ of R?. We study the
Cauchy problem with random initial data. We assume that the initial measure has
a finite mean energy density and the initial correlation functions are translation
invariant with respect to the subgroup Z?. We prove the convergence of space-time
statistical solutions to a Gaussian measure.
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random initial data, space-time statistical solutions, weak convergence of measures
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1. Introduction

We study the linear Hamiltonian system consisting of a real scalar field ¥ (x)
and its momentum 7(z), x € R, and a “simple lattice” described by the deviations
u(k) € R" of the “atoms” and their velocities v(k) € R", k € Z?. The Hamiltonian
functional of the coupled field-crystal system reads

H(y,u, m,v) = Hp(¢, 7) + Hy(u, v) + Hi (¢, u),

where Hp (¢, ) (Hy(u,v)) denotes the Hamiltonian for the field (for the crystal,
respectively),

He(v.m) =5 [ (V6@ + (@) + mdu(o)?) do,

d
He(u,0) =5 3 (S lulk + ) — u() + LB’ + (b)),

kezd  j=1

mo, vy > 0, ej € 74 stands for the vector with the coordinates e;'- = 5; Hi(v), u)
denotes the interaction term,

Hi(v,u) = Z /R(:U — k) - u(k)y(x) dx,
keZt pa

where R(x) is a R"-valued function. Taking the variational derivatives of
H(¢, u, 7, v), we obtain the following system:

(. oH

V(x,t) = s = m(z,t), r € RY, t eR,
u(k,t) = g—lj = ov(k,t), I RWAS t € R,
9 SH (1.1)
ﬁ(xa t) - _w - (A - m%)¢(m, t) - k’de u(kla t) ) R(.I - k/)a
o(k,t) = —Z—I;I = (Ap —v))u(k,t) — /R(:L‘/ — k(2 t) da’.

Here A; denotes the discrete Laplace operator on the lattice Z¢,
Avu(k) = 3 (ulk+ ) — u(k)).
e,le]=1

The system (1.1) can be considered as the description of the motion of elec-
trons in the periodic medium which is generated by the ionic cores. Understanding
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of this motion is one of the central problem of solid state physics. Now we briefly
explain our model. Here ¥(x,t) describes the motion of electron field, u(k,t) is
the (small) displacements of the ionic cores from their equilibrium positions. In
our approach, we disregard the displacement of the electric and magnetic fields
generated by electrons and ions, we neglect the potentials of electrons and the
vector potential of ions. For the scalar potential ¢ of ions, (1/02)d5 = A¢ — 47p,
where p is the density of charge of ions, p ~ >, ed(z — k — u(k,t)). In the static

approximation, (1/¢%)¢ & 0, we obtain

¢@gﬂ::2;kt_kjldhw|::Mx—k—uﬁgﬂ)%r@%%ﬂ—Vﬂ@—k)u%J%

and we substitute R(x — k) := Vr(z — k) in the equation of the motion of the
electron field. Note that if n = d and R(z) = —Vr(x), then the interaction term
Hi(v), w) is the linearized Pauli-Fierz approximation of the translation-invariant

coupling
}:/}u—k—u@»m@dx

A similar model was analyzed by Born and Oppenheimer [1| as a model of a solid
state (coupled Maxwell-Schrodinger equations for electrons in the harmonic crystal;
see, for instance, |13] and the references therein).

We study the Cauchy problem for system (1.1) with the initial data

¢($a0) = 1/)0(33)7 77(3370) - 770(33)7 T < Rd7 (1 2)
u(k,0) =uo(k), v(k,0) =uvo(k), keZ. '

Write
PO =), wl—ﬁouo zé, u' =,
o 1 ( ) (¢ ( t)? (kvt)) = (w(x>t)7u(k7t))a
Y@“‘W””Y“W‘Y%>:< Y1) u (k. 1)) = (e ), (k. )

In other words, Y(-,t) are functions defined on the disjoint union P := R? U Z9,

i i ix,t, :.ZUERd, .
Vi) = v = { G T ER i—o

Then, the system (1.1), (1.2) becomes a dynamical problem of the form

Y(t) = A(Y(t), teR  Y(0)="Y. (1.3)



Here Yy = (v, ug, mo, v9) and

0 1 —A+m? S
A:JVH(Y):(_,H()), H:( 4 _AL+V3>,

where

J— < Y ) - Su(z) = Y Rix — kyulk), S7v(k) = / Rz — k)i(z) de,

kezd R4
and (1, Su) 2rey = (S*U, u)pezaye, ¥ € L*(RY), u e [I2(Z7)]".

We assume that the initial data Y belong to the real phase space £ defined
below.

Definition 1.1. H5* = H**(R%), s € R, a € R, is the Hilbert space of distribu-
tions 1 € S"(R) with finite norm

] s.0 = H<$>QASwHL2(Rd) < 00,

where A5 = ngx(@)‘szﬂ(f)), () = /[e]?+ 1, and ¢ := F stands for the
Fourier transform of a tempered distribution 1. For ¢ € D = Cg°(R?), write
Fo(©) = [ ¢ vayde

Remark 1.2. For s = 0,1,2,..., the space H>*(R?) is the Hilbert space of
real-valued functions ¥ (x) with finite norm

> [t e < o,
v|<s
which is equivalent to [|Y||2,.

Definition 1.3. (i) L%, a € R, is the Hilbert space of vector-valued functions
u(k) € R*, k € Z¢, with finite norm

lull2 = > (k) |u(k)]* < oo.

kezd

(ii) £5 = H'T*(RY) @ L ® H>(RY) @ L is the Hilbert space of vectors
Y = (W, u, m,v) with finite norm

IV 0 = Nl s + lllc + 7l + lollG.

(iii) The phase space of problem (1.3) is £ := %<,
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Below we assume that v < —d/2.

Using the standard technique of pseudo-differential operators and Sobolev’s
Theorem (see, e.g., [8]), one can prove that £%¢ = £ C £%F for every s < 0 and
8 < «, and the embedding is compact.

Definition 1.4. (i) Write 0., := Q]}l(w) X ‘,U(ll(u), where

= {0 0] v, 1) € CR; HY(RY), v(x.1) € C(R; H*(RY) },
:{ kt|ul~ct )€ CHR; LY}, o< —d/2.

Introduce the seminorms in B, by the rule

YLz = max [0 + G DI+ Ol + G 0IE] 7 >0

V0= (P(x,t),u(k, 1)),

(i) Write 0 5 := Q]g’ﬁ(w) X %%(u), where

W 00y = { ¥z, 1) € LRo(R; B HI(RY) (| C(R; HY(RT)) } 5 <0,
Uy = {ulk,t) € C(R; L)}, B <a<—d/2

(iii) Denote by V' the operator V : € — UL such that

V(Y) = Y'(t) = (¢(@, 1), ulk, 1), (1.4)
where (Y(z,t),u(x,t)) is the solution to problem (1.1) with the initial data Yy =
(¢07 Up, 70, UO)'

We assume that the initial date Yj is a random function. By pg we denote a
Borel probability measure on & giving the distribution of Y.

Definition 1.5. Introduce a Borel probability measure P on the space QY by the
rule

P(w) = uo(V~'w)  for any Borel set w € B(W).

Here and below B(X) denotes the o-algebra of Borel sets of a topological space
X. The measure P is called a space-time statistical solution to problem (1.3)
corresponding to the initial measure py. Denote by { Py, 7 € R} the following
family of measures

P.(w) = P(S;'w) for any we B(Y.), 7€R.
Here S, denotes the shift operator in time,

S(YO) =Yt +7), rtER,  Y't)=W(xt),ulk,t)). (L5
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The main goal of the paper is to prove that the measures P, weakly converge
as T — oo to a limit measure on the space Q]SB, s<0,8<a<—d/2,

PT_’P007 T — OQ. (16)

This means the convergence of the integrals

/fYO P.(dY") —>/fYO o(dYY)  as T — o0

for any bounded continuous functional f on mgﬁ. Furthermore, the limit mea-
sure Py, is a Gaussian measure on the space ! supported by the solutions to
problem (1.1). Thus, the convergence (1.6) can be considered as an analog of the
central limit theorem for a class of solutions to the equations (1.1). The proof
of convergence (1.6) is based on the results of [5] and used the technique of the
works [10, 16]. Also, we check that the group S; is mixing w.r.t. the measure Py,
i.e., for any f,g € L*(UL, P..),

lim [ £(5.Y0)g(Y?) Pa(dY?) = / FYO) P (dY) / g(Y*) Po(dY"). (L7)

T—00

pU ., ;,

In particular, the group S, is ergodic w.r.t. the measure P, i.e.,

lim —/f (S.Y") dT—/f (Y9 Po(dY")  (mod Py,).

T—oo T

Note that all results remain true for a more general case in which Hy, is the
Hamiltonian of the harmonic crystal, i.e.,

=03 (30 wlk) - VO~ Kk + Jo(h)P),

keZd k'ez?
where V (k) € R" x R" and V (k) satisfies the conditions from [4], in particular,
V()| < Ce ™ with some v > 0 and VT(—k) = V (k) for any k € Z?,

For continuous models described by partial differential equations, the behavior
of space-time statistical solutions was studied by Komech and Ratanov [10] for
wave equations and Ratanov [14] for parabolic equations. For Klein-Gordon
equations, the result was obtained in [3]. For infinite harmonic crystals, the
time evolution and ergodic properties of their equilibrium states were studied by
Lanford, Lebowitz [11] and by van Hemmen [7]. For system (1.1), the long-time
behavior of statistical solutions p; := [W(¢)]* o, where W (t) stands for the solving
operator of problem (1.3), was investigated in [5]. In this paper, we extend these
results to the space-time statistical solutions of problem (1.3).



2. Main results

2.1. Bloch problem. The dynamics of (1.1) is invariant w.r.t. translations in

Z%. Then, we can reduce system (1.1) to the Bloch problem on the torus. We first
split z € R? in the form z = k+y, k € Z4, y € K¢ :=[0,1], and apply the Fourier

transform Fj_, to the solution Y (k,t) := <w(k—l—y, t),u(k,t), m(k+y,t), vk, t))
?(Qvt) — Fk—>9Y k t Z eZkGY k t ¢(07yat)ua((97t)7%(07y7t)775(67t))7
keZd

6 € R?, which is a version of the Bloch-Floquet transform. The functions zﬁ, T are
periodic with respect to # and quasi-periodic with respect to vy, i.e.,

J(Q,y +m,t) = e_imezZ(@,y,t), 70,y +m,t) = lm9~(<9 y,t), mé€ 7.

Further, introduce the Zak transform of Y (-,¢) (which is also known as Lifshitz-
Gelfand-Zak transform, cf [18], [13, p.5]) as

ZY(,t) = ?H(eut) = (Jﬂ(eayvt)aa(eut%%ﬂ(e?y7t)7@/(9?t))7 (21)
where &H(Q,y,t) = eiyazz(Q,y,t) and 7(0,y,t) = e¥97(0,y,t) are periodic

functions with respect to y (and quasi-periodic with respect to ). Denote by
T{ := R?/Z? the real unit d-torus. Set

Yiu(0,7,t) = Yu(0, 1) := { nge(’eg)%%’%t%(’&y,t)), "=

Therefore, problem (1.3) is equivalent to the problem on the torus y € T¢ with
the parameter § € K = [0,2n]?,

yn(e t) = A(0)Yn(0,t), teR 0 e K
Yi(6,0) = You(6) |
Here 0 .

and ﬁ(@) = ZHZ s the “Schrodinger operator” on the torus TY,

S (V02 +md S(0)
o= (5 0 )



where
w?(0) == 2(1 — cos0y) + - + 2(1 — cosby) + 15,

(5©)a()) (6, 9) = Fn(6,y) - (o),
(3°©)in(6.))®)i= [ Rn(-0.9)0n(6.y) dy.

(nl6,). SODE. ), . = (5 (6)w)®) - (o),
Un(0,-) € HY(TY), a(9) € C".

2.2. Conditions on the coupled function R. Introduce the space Hi :=
H3(T9) @ C", s € R, where H*(T{) stands for the Sobolev space.
We impose conditions R1-R4 on the coupling function R(z) € R".
R1 R € C®(R? and |R(x)| < Rexp(—¢|z|) with some ¢ > 0 and R < oo.

R2 The operator #H(f) is positive definite for § € K¢ = [0,2x]¢. This is
equivalent to the uniform bound

(X°,HO)X) > 2| X7, for X° € H, 0K,

where £ > 0 is a constant and (-, -) stands for the inner product in HY =
HY(T{) & C", i.e.,

(F.G) = /ﬁ(y)c;l(y) dy+F2.G2, F=(F.FY), G= (GG e H.
™

Remark. (i) Condition R2 ensures that the operator i.A(6) is self-adjoint with

respect to the energy inner product. This corresponds to the hyperbolicity of
problem (1.1).

(ii) Condition R2 holds, in particular, if the following condition R2’ holds.

2

R2’. / ‘ Z R(k + y)‘ dy < vgmg/2. Condition R2’ holds for the functions
0117 peza

R satisfying condition R1 with Re™? < 1.

Proposition 2.1. (see [5]) Let conditions R1 and R2 hold. Then (i) for any
Yo € &, there exists a unique solution Y (t) € C(R, &) to the Cauchy problem (1.3).
(11) The operator W (t) : Yy +— Y (t) is continuous in E for any t € R,

sup W (©)Yollo. < C(T)[[Yollo.a (2:3)

if ais even and o < —2.



Corollary 2.2. [t follows from (2.3) that for any Yy € &,
|V (Y0l < C(T)|[Yolloa, VT > 0.
where the operator V' is defined in (1.4).

It follows from conditions R1 and R2 that, for a fixed 6§ € K ¢ the operator
H(0) is positive definite and self-adjoint in H} and its spectrum is discrete.
Introduce the Hermitian positive-definite operator

Q(0) = \/H () > 0. (2.4)

Denote by w;(6) > 0 and x;(0,-), l = 1,2, ..., the eigenvalues (“Bloch bands”) and
the orthonormal eigenvectors (“Bloch functions”, cf [17]) of the operator () in
HY | respectively. Note that y;(6,-) € H® := C*(T¢) & C".

Lemma 2.3. (sce [17, 5]) There exists a closed subset C, C K% of zero Lebesque
measure such that the following assertions hold.

(i) For every point © € K\ C, and N € N, there exists a neighborhood
O(©) c K%\ C, such that each of the functions w(0) and x;(0,-), I =1,..., N,
can be chosen to be real-analytic on O(0O).

(iii) The eigenvalues wi(0) have constant multiplicity in O(O), i.e., one can
enumerate them in such a way that for any 0 € O(O),

w(f)=...=w,0) <w,1(0)=...=w,(0) < ...,
wra(e) 7_é wru(e) if o 7& v, Toy Ty Z 17

(111) The spectral decomposition holds,
+00
Q6) = Y w(®R6).  0c0@) (25)
=1

where Pi(0) are the orthogonal projectors in HY onto the linear span of x;(0, ),
and P)(0) and w(0) depend on 0 € O(O) analytically.
Assume that system (1.3) satisfies the next conditions R3 and RA4.
R3 For every © € K%\ C,, D;(§) £ 0,1 = 1,2,..., where Dy(0) :=
82(,01(9) d
det ( ) _.0co@)
¢ 00;00; /ij=1 €0(©)
Remark 2.4. Write C; .= |J {0 € O©): D)(#) =0}, | =12,.... If
OeKN\C,
conditions R1 and R2 hold, then mes C; =0, [ =1,2,....
R4 For each [ # I, the identities w;(6) + wy(0) = consty, § € O(O), don’t
hold with constants consty # 0.

For example, conditions R3 and R4 hold if R = 0.




2.3. Conditions on the initial measure. We assume that the initial data Y}
in (1.3) is a measurable random function with values in (€, B(E)). Recall that pg
is a Borel probability measure on £ which is the distribution of Yj. Let E stand
for the mathematical expectation w.r.t. this measure.

Definition 2.5. (i) Write D = [Dp ® Di]* with Dr = C°(R?), and let Dy, be
the set of vector sequences u(k) € R", k € 74, such that u(k) = 0 for k € 74
outside a finite set.

(11) For a probability measure p on &£, we denote by [i its characteristic
functional (Fourier transform),

i(2) = / exp(ilY, Z) w(dY),  ZeD.

Here {-,-) stands for the inner product in L*(IP) @ RN with different N = 1,2, ..

°

1

V,2):=> (Y.z), Y="Y" z=(2°2"),
Vi 71y = / Yi(p)Zi(p) dp = / G @) dr+ 3 wi(k) - 1 (k)
P Rd kezd

where Y = (Y u'), Z' = (€, x").
(11i) A measure p is called Gaussian (of zero mean) if its characteristic

functional has the form (Z) = exp{—Q(Z,Z)/2}, where Q is a real-valued
nonnegative quadratic form in D.

Definition 2.6. Denote by Qo(p,p’') = (nyj(p,p’)) the correlation matriz
i,j=0,1
of the measure iy, where

() =E(Yip)@Yi()), =01 ppeP, (20

where the convergence of the integral in (2.6) is understood in the sense of
distributions, i.e., for any Z1, Zs € Dp & Dy,

(QF (p, 1), Z1(p) ® Zo(p')) == E(Y' (), Zu(p)) (Y (1), Za(p')).-

Denote by Qy(Z,Z) a real-valued quadratic form on D with the matriz kernel
QO(pap/)'



We impose conditions S1—-S4 on the initial measure .
S1. pp has zero mean value, i.e., E (Yy(p)) =0, p € P.
S2. The correlation functions Qéj (p,p') satisfy the bound

Qi (. P) <h(lp—11),  pp €P, (2.7)

where h is a nonnegative bounded function and 7% *h(r) € L*(0, +o0).
S3. The correlation matrix Qq(p,p’), p,p’ € P, is translation invariant w.r.t.
the shifts in Z, i.e.,

Qo(p+k,p +k)=Qop,p), pp €P, forany keZ” (2.8)

Definition 2.7. Let A be an open convex set in P. Denote by o(A) a o-algebra in
E generated by the linear functionals Y — (Y, Z), where Z € D with supp Z C A.
Introduce the Ibragimov mizing coefficient of the measure gy by the rule

[10(A N B) — po(A)po(B)] .

p(r) = sup sup
ABCP: Aco(A),BeoaB) po(B)
dist(A, B) > r fo(B) >0

The measure g satisfies Ibragimov’s strong uniform mizing condition if o(r) — 0
asr — oo (cf. [9, Definition 17.2.2]).

S4. The initial mean energy densities are uniformly bounded,

er(x) = E([Veo(@) + (@) + Imo(@)?) < & < o0, aa. o € R,
er = E(|ug(k) [ + [vp(k)[2) < o0, k€ Z°.

Moreover, pg satisfies Ibragimov’s strong uniform mixing condition, and
r?=1pl2(r) € LY(0, +00).
Remark 2.8. (i) Condition S2 implies that for any F,G € L* := [L*(P, dp))?,
L*(P, dp) = L*(RY) @ [*(Z)]",

|Qu(F, G)| = [Qo(p, 1), F'(p) @ G(P))| < CIF ||| Gllre. (2.9)

This follows from the bound (2.7) applying either the Shur test (see, e.g., [12,
p.223]) or Young’s inequality (see, e.q., [15, Theorem 0.3.1]).

(11) Conditions S1 and S4 imply the bound (2.7) with the function h(r) =
C max{ep, e }yo"2(r). This follows from [9, Lemma 17.2.3].



2.4. The convergence of space—time statistical solutions. Write D' =
Dy @ Dy. Let [,+] stand for the inner product in L?(R; L*(P;dp)) (or in its
extensions),

[Fl,FQ] = /dt Fl(p, )FQ(p, )dp

¢1xt¢2xtdaz+zu1kt cug(k,t) | dt,
keZd
where F; = Fi(p,t) = (Y;(x, 1), u;(k, 1)), i = 1,2.

J

Definition 2.9. Denote by QF (py, p2, t1,t2), p1,p2 € P, t1,t2 € R, the correlation
functions of the measures P,, 7 € R, introduced in Definition 1.5. For any
Fi,F, € D°, write

QL (R, Fy) = [QF Frw Fi) = [ IV, Y, R Po(aY)
/dt1/dt2/Q (p1, P2, t1, t2) Fi(p1, t1) Fa(pe, t2) dp, T € R.

Introduce the adjoint operator V' to the operator V' by the rule
VY, Fl|=(Y,V'F) for Y €& and F e D"
The main result of the paper is the following theorem.

Theorem 2.10. Let conditions R1-R4 be fulfilled. Then the following assertions

hold.
(1) Let conditions S1 and S2 be fulfilled. Then the bounds are true:
sup/|Y0 1P (dY?) < Cla) <oo, VT >0, (2.10)
70

where the constant C'(a) does not depend on T > 0.

(11) Let conditions S1-S3 be fulfilled. Then the correlation functions of Py
converge to a limit as T — oo. Moreover, for any Fy, F» € D°,

oF (P, F) — QF (I, ) as T — 00, (2.11)



where
OF (F1, ) = Qu(V'F, V'), (2.12)
the quadratic form Q. is defined in (3.3) below.

(111) Let conditions S1, S3, and S4 be fulfilled. Then the convergence (1.6)
holds. The limit measure P, is a Gaussian measure on the space G supported
by the solutions to problem (1.1).

() The measure Py is invariant w.r.t. the shifts in time and the translations
in Z%, and (1.7) holds.

Remark If the initial measure p is Gaussian, then convergence (1.6) follows
from convergence (2.11). In the general case, this doesn’t hold. Furthermore, the
weak convergence of the measures P, doesn’t imply, in general, the convergence of
their correlation matrices. Therefore, the last fact we prove separately.

3. Proof

3.1. The convergence of statistical solutions. Introduce the statistical so-
lutions py, t € R, to problem (1.3).

Definition 3.1. The measure p; is a Borel probability measure in € giving the
distribution of the random solution Y (t),

p(B) = po(W(-t)B), VBeB(E), teR
The correlation functions of the measure p;, t € R, are defined by
QY (p.p) = E(Yi(p, t) ® Yj(p’,t)), i,j=01, ppeP. (31
Here Y'(p,t) are the components of the random solution Y (t) = (Y°(-, 1), Y1(-,1)).
Denote by Qi(Z, Z) a quadratic form on D with the matriz kernel Q¢(p,p’),
0(2.2) = [ WV.2)PuldY) = @), 20) © 26).  ZED,
Since Y(p,t) = (¢'(z,t),u'(k,t)), we rewrite formula (3.1) as follows:
Y (p.0)) =E[Y'(p,t) @ Y/ (', 1)]
E(W(w J@ () B(viet) 2 uw(k,b)
E(u'(k,t) @ 0i(2',0)) E(ui(k,t) @ wl (1))
(

j:z:, )Qtujxk’
@ﬂ(kx) v (kK

) 1,7 =0,1, teR.



Let us rewrite the correlation matrices Q (p, p') using condition S3. Introduce
the splitting p = k + 7, where k € Z? and r € K{ U0, i.e.,

_Jar—[z]e K], ifp=xeR’
"o, if p=k e 74,

Since the group W (¢) commutes with translations in Z¢, condition S3 implies that
Qik+pk+p)=Qpp), teR,  keZ’

Hence,

ij(k—l—?“ k/—l—T/) _. ij(k_k/ r 7“/) _ Q/JW(k K+r.r") q Zu](k K +r)
t 9 . Qt » T — u¢7 . uu_] / .
q = (K —k+1") (k— k)

Using the Zak transform (2.1), introduce the following matrices
070,71, 0 1) = E[YE(0,7,t) @ (0,7, 1)), 6,6 € K% rr' e R=T¢Uo.

Hence,

270,70 1) = (2m)%6(0 — 0 (0,7,7), 6,0 € K%, r1' €R, tER,
where

~¢ a7 0 / ~W 4 0
(0 T, T, T’ ’r‘ 9 Z k0 Z] k T T ( ~ulwg y? ) 3 S y) ) . (32)
kezd 4y (evy) Qf K (9)

Introduce the correlation matrix for the limiting measure . For Z € D,
write

Quc(Z, Z) = (Quolp, 1), Z(p) © Z(p'))
~ (21) / (d(0). Zu(6,) @ Zn(0,) ) do), (3.3)

Kd

where (o (0) is the operator-valued function given by the rule

+00 ~
- L@’ 0) +HO)ap'(0) ' (0) — " (0)
(oo(0) := BQ—(ON . 0 0 P(0),
=200, (e - g Ao +ae )10
(3.4)
for § € K%\ C,. Here the symbol G5 (6) = Op((~”(9 T )) stands for the integral
operator with the integral kernel G (8, r, '), 7,7’ € R = T¢U{0} (see formula (3.2)
with ¢ = 0), and P,(#) is the spectral projection operator introduced in (2.5).



Theorem 3.2. (see [5]) Let conditions R1-R4 hold. Then the following asser-
tions are valid.
(1) Let conditions S1 and S2 hold. Then

su]g/ IV, 1(dY) < C < oo. (3.5)
te

(11) Let conditions S1-S3 hold. Then the correlation functions of the mea-
sures py converge to a limit. For any Z1,Zy € D,

Qt(Zln ZQ) — Qoo(Zla Z2)7 t— o0,

where the quadratic form Q. is defined in (3.3).

(111) The measures p; weakly converge to a limiting measure fin, on the space
ESP with any s < 0 and B < oo < —d/2. The measure s is Gaussian in € = E?,
y ju
its characteristic functional is of a form

fis(Z) = exp{—Q(Z,Z)/2}, Z €D.
(iv) The measure i is time stationary, i.e., [W(t)]* tioo = fioo, t € R,
Proof of Theorem 2.10 (i) At first, note that
Pr(w) = pu(V'w) forany we B(Y.) and 7 >0, (3.6)

where pi, is defined in Definition 3.1 and the operator V' in (1.4). To prove the
bound (2.10), we apply (3.6) and obtain

SR Py = [ VY @) = sup [ WY, ue(av)

- s J I Bt (@¥) < supBW Y I, < € < o0
si<

by the bound (3.5). The assertion (i) is proved.
(ii) Let Y°(t) = (¢ (x,t),u(k,t)) be a solution to problem (1.1) with the
initial data Y. Then, for any F € D°,

YO, F) = VYo, F) = (¥, V'F), (3.7)

where V' is the adjoint operator to the operator V. Using (3.6) and (3.7) gives
the following equality for any Fy, Fy € D

Qf (Fi, Fy) = /[VY, R]VY, Bl pr(dY) = [ (Y, V') (Y, V'Fy) pr (dY)
=(Q:(p, ), V' Fi(p) @ V'Fr(p)) = Q. (V' F1, V' F).
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Then, the convergence (2.11) follows from the following four facts:

(a) the quadratic form Q,(Z, Z) converges to a limit for any Z € D (see
Theorem 3.2 (ii));

(b) D is dense in £ := L3(R?) @ [(2(Z9)]" & HY(R?) & [2(Z9)]" (evidently);

(c) the quadratic forms Q,(Z, Z), 7 € R, are equicontinuous in L;

(d) V'F € L for any F € D°.
To prove fact (c) we introduce the operator W’(¢) which is adjoint to the operator
W (t):

(W)Y, Z) =(Y,W'(t)Z), Yeg, Z eD.

Therefore, the equicontinuity of the quadratic forms Q, follows from bound (2.9).
Indeed,

Q:(2,2)| = |Q(W(1)Z,W(1)Z)| < CIW'(D)Z|[» < Cill ZIlz. (3.8

where the constant C7 doesn’t depend on 7 € R. The last inequality in (3.8) is
proved in [5, formula (5.4)].
To check fact (d) we write the operator V' using the operator W'(t):

+o0o
V'F = / W'(t)F dt, where F :=(F0), FeD" (3.9)
By [5, formulas (5.4) and (7.5)], we have ||W’(¢)Z||; < C||Z||z. Hence, for F € DY,
+00 +00
VFle< [ IWOFCOIed<C [ IFCOled < G <.

The assertion (ii) of Theorem 2.10 is proved.
(iii) To establish the weak convergence of the measures P, on the space ing{ 3
it is enough to prove the following two assertions (Al) and (A2):
(A1) The family of measures { Py, 7 € R} is weakly compact in %275;
(A2) The characteristic functionals of P, converge to a limit as T — oc.

The first (second) assertion provides the existence (resp., uniqueness) of the limit
measures P..

The bound (2.10) and the Prokhorov theorem (see, e.g., [6]) imply asser-
tion (A1). This can be proved using the technique of [16, Theorem XII.5.2] and
the Dubinskii embedding theorems (see, e.g., [2] or [16, Theorem IV.4.1]).

To prove assertion (A2) we apply (3.6) and (3.7), and obtain for any F' € DY

P (F) := / P (dY?) = / YVE  (dY) =: i (V'F).



Then, convergence of P(F) to a limit as 7 — oo follows from the following facts:
(a”) fi;(Z) converges to a limit as 7 — oo for any Z € D (Theorem 3.2 (iii));
(b") D is dense in L (evidently);
(¢’) the characteristic functionals fi,(Z), 7 € R, are equicontinuous in £;
() V'F € L for any F' € DY (this is proved above).

[t remains to check the equicontinuity of i,(Z), 7 € R. Indeed, by the Cauchy-

Schwartz inequality and (3.8), one obtains

33— 2= | [ (25002 ar)

< /I(Y, Zy = Z)| pr(dY) < \// (Y, Zy — Zo)[* pir(dY)

=\ Q21 — 22, 2y — Zo) < C||Z1 — Zs|1.

A 1 (dY)

Assertion (A2) and then, item (iii) of Theorem 2.10 is proved. The invariance of
the measure P, w.r.t. the shifts in time follows from convergence (1.6). u
Remark. Now we simplify formula (2.12) using (3.4). Denote by G¥(8), i, 5, = 0,1,
the entries of the matrix-valued operator G¢(6) defined by the rule

e cos (0)t sin Q(0)t Q71(0)
Gi(6) = A" (—Q(e)sinﬂ(e)t cos Q(0)1 ) 0 € K",

where the functions A(6) and Q(6) are introduced in (2.2) and (2.4), respectively.
Therefore, by (3.9),

+00 +00
(VIF)(0. 7) = / ATOUF (01 1) dt = / (GY(0), GY(0)) Fu(0, r.t) dt.

Hence, by (2.12) and (3.3),

QL (P, F) = (2m)" [ (2:(6). (VF)u(0,) @ (VEn(®,)) do

Kd
(2m)" / i, / iy [ Z (GR(6) (0)G (), Fn(0,) @ Fan(6.) ) db.

oo Fod 1,7=0
Hence, due to (3.4), the correlation function of the measure Py, has the form

QL (k4r K +r' t1,ty) = ¢ (k=K ,r,r' t1—ty), kK € Z%, r,7' € R, t1,t5 € R,



where g= (0,7,7',t) := cos Q(O)t G20, r,r") —sin QO Q~1(0) L0, 7,7, G are
entries of the matrix G, defined in (3.4).

Now we verify the mixing property (1.7) for the limit measure P,. Since Py
is Gaussian with zero mean value, it is enough to prove that for any Fy, F» € D°,

L :=Ey ([S;Y  B][Y’, F]) -0  as 7 — oo, (3.10)

where E., denotes the integral w.r.t. the measure P, S; is defined in (1.5).
Indeed, using (3.6), (3.7) and (3.3), we obtain

=0 [ (40, (V5T R0, © (VR (0.1)) ao

Kd

=> (2m)* / eFw 07l (9) dp, (3.11)
4,1

Ki\C,
where
| +00 +00 L
4 () = 5 /dtl /eiiwl(e)(tl_tQ) (PZ(Q)MZ(H)PZ(@), Fin(0,-,t1) @ Fan(6, ',t2)>dt2-

Here M;(0) := [¢2(0) % iw; ' (0)3%(0)], wi(f) and P;(#) are introduced in Lem-
ma 2.3. The oscillatory integrals in (3.11) vanish by the Lebesgue-Riemann

theorem, because ¢/, € L'(K?). This can be proved using the technique from |5,
Sec. 7].
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