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П. А. Бахвалов
Метод локальных разбиений для дискретизации диффузионных членов

в рёберно­ориентированных схемах
Предлагается метод локальных разбиений для аппроксимации

диффузионных членов уравнений Навье – Стокса на неструктурированных
сетках, состоящих из элементов различных типов. Этот метод является
линейным; он схож с классическим методом Галёркина с кусочно­линейными
базисными функциями и совпадает с ним на симплициальных сетках.
На структурированных сетках доказывается второй порядок точности
применительно к уравнению теплопроводности; на сетках общего
вида доказывается только первый порядок точности, хотя численные
результаты не показывают существенной потери точности по сравнению
с методом Галёркина. На декартовых сетках новый метод применительно к
аппроксимации лапласиана в 3D вырождается в 7­точечную схему, тогда как
метод Галёркина имеет 27­точечный шаблон. Это даёт методу локальных
разбиений существенное преимущество при использовании неявных схем,
основанных на методе Ньютона, а именно, позволяет без потери сходимости
исключить из якобиана элементы, не входящие в 7­точечный шаблон.

Ключевые слова: неструктурированная сетка, рёберно­ориентированная
схема, классический метод Галёркина, метод Ритца, диффузионный член

Pavel Alexeevich Bakhvalov
Method of local element splittings for diffusion terms discretization in edge­

bases schemes
Method of local element splittings is proposed for the discretization of the diffu­

sion terms of the Navier – Stokes equations on mixed­element unstructured meshes.
It is applicable when mesh functions are defined in nodes. This method is a linear
method, which has much in common with the classical P1­Galerkin method. In the
case of simplicial meshes, these methods coincide, but the new method yields a 7­
point approximation of the 3D Laplace operator on a Cartesian mesh. On structured
meshes the second order of accuracy is proved for the model heat equation. For gen­
eral unstructured meshes, only the first order of accuracy is proved, however, the
numerical evidence shows that there is no loss in accuracy in comparison with the
classical P1­Galerkin method. The new method has an important advantage in the
case of implicit time integration based on the Newton method, which implies solving
linear algebraic systems with flux Jacobian. It allows to truncate flux Jacobian to a
7­point stencil for a much wider range of Reynolds and Courant numbers without
loss of iterations convergence, compared to the P1­Galerkin method.

Key words: unstructured mesh, edge­based scheme, classical Galerkin
method, Ritz method, diffusion term
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[Added 12.05.22] Lemma 14 and Theorem 2 of this paper are in error. Revised
version can be found in: Bakhvalov, Surnachev, Method of averaged element
splittings for diffusion terms discretization in vertex­centered framework // JCP,
Vol. 450, 110819, https://doi.org/10.1016/j.jcp.2021.110819.

1. Introduction
This paper addresses the simulation of high Reynolds number flows on mixed­

element unstructured meshes. Although the numerical methods in CFD are progress­
ing towards the very high­order methods (2­exact or higher for smooth problems), the
schemes with linear reconstructions of any kind are still in practical use due to their
simplicity and lower computational costs. This especially holds for trans­ and super­
sonic flows, and, in less extent, also for subsonic flows.

The numerical methods for solving compressible Navier – Stokes equations are
mainly represented by two main classes, namely vertex­ and cell­centered. In cell­
centered schemes, the variables are defined in mesh elements. There can be one set
of variables per cell (multislope MUSCL­type methods [1, 2], WENO schemes [3–
7]) or several sets per cell (discontinuous Galerkin [8–11], flux reconstruction [12],
etc.). In contrast, in vertex­centered schemes (also called cell­vertex or node­based
schemes) the mesh variables are associated with mesh nodes. In the vertex­centered
finite­volume framework, computational domain is divided into dual cells (or control
volumes), each of them containing only one mesh node. The shapes of dual cells in
the case of 3D unstructured meshes are too complicated to use k­exact polynomial­
based vertex­centered schemes. An alternative is the edge­based framework.

In edge­based schemes, the mesh variables are treated as nodal values of fields,
and the numerical flux between two control volumes approximates with the first order
the point value of the flux function in the center of the corresponding mesh edge (not
the integral average over the common boundary of these control volumes). Supris­
ingly, Roe [13] and Barth [14] found that this approach leads to 1­exact schemes
if barycentric control volumes are used. A generalization to mixed­element meshes
(however, not suitable for anisotropic meshes) can be found in [15]. Edge­bases
schemes are used for solving high Reynolds number problems in many in­house and
commercial codes: NOISEtte [16], FUN3D [17], TAU [18], Edge [19], etc. In the last
decade, there are two development directions: FC (flux correction scheme) [20–23]
and schemes with quasi­one­dimensional reconstruction [24–29].

Availability of the nodal values in edge­based schemes makes it possible to use
the P1­Galerkin method for discretization of diffusion terms. Usually, mass­lumped
version of the method is in use. This is a traditional approach [14], simple and robust,
but limited to the second order of accuracy. Below it will be considered in detail. A
high­order approximation of diffusion terms is also possible (see [22] for example).
However, the need for the enhanced accuracy for the viscous and heat conductivity

https://doi.org/10.1016/j.jcp.2021.110819
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terms in aerodynamic or aeroacoustic applications has never been shown in practice.
Note also the novel HNS approach [30,31], where gradients are stored in mesh nodes
in addition to the conservative variables.

A minor shortcoming of the P1­Galerkin method is its wide stencil for mixed­
elementmeshes. In the case of simplicial meshes, the discretization of diffusion terms
in a mesh node contains, besides this node, all the neighboring nodes connected to
it by an edge. In the case of mixed­element meshes, it contains all the nodes of the
incident mesh elements. For example, on Cartesian hexahedral meshes the stencil
consists of 27 nodes, although 7 nodes are sufficient. This problem was considered
in [32], where it was suggested to drop some terms in governing equations and use the
mesh structure properties, and in [33], where some simplification of the numerical
method is proposed. Both approaches lead to improvement in efficiency but with no
guarantee of correctness.

Now the discretization of the viscous terms for edge­based schemes is revisited,
and a novel finite­element scheme is proposed, namely, the method of local element
splittings. This method was implemented in the NOISEtte code [16] and has been
successfully used in many simulations (see, for instance, [34–36]), but has not yet
been published. It coincides with the mass­lumped P1­Galerkin method on simpli­
cial meshes and exhibits similar behavior on mixed­element meshes. On Cartesian
meshes the new method applied to the 3D Laplace operator yields a 7­point approxi­
mation. However, on deformed hexahedral meshes the stencil is 27­point, the same as
for the P1­Galerkin method. The excessive terms can’t be generally dropped. How­
ever, the method of local element splittings has an important advantage in the case of
implicit time integration based on the Newton method, which implies solving linear
algebraic systems with flux Jacobian. It allows to truncate flux Jacobian to a 7­point
stencil for a much wider range of Reynolds and Courant numbers without loss of
iterations convergence, compared to the P1­Galerkin method.

This paper is organized as follows. In Sections 2 and 3 we describe the P1­
Galerkin method and the method of local element splittings. In Section 4 we prove
the convergence of the latter with the order 1 − ϵ (for general meshes) and 2 − ϵ
(for structured meshes) for the model heat equation with a constant coefficient. In
Section 5, the method of local element splittings is applied for the diffusion terms
in the Navier – Stokes system. Section 6 contains verification results. Finally, in
Section 7 we consider an implicit time discretization and demonstrate the possibility
to drop excessive elements of the flux Jacobian.

2. P1­Galerkin method
Consider the initial problem for the heat equation

∂u

∂t
(t, r) = ∇ · (µ(r)∇u(t, r)), u(0, r) = v0(r). (1)
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For the sake of simplicity, we imply the periodic boundary conditions and the conti­
nuity of v0.

Consider a mixed­element mesh that consists of triangles and quadrilaterals in
2D or of tetrahedrons, quadrilateral pyramids, triangular prisms and hexahedrons in
3D. We do not assume the faces of 3D elements to be planar. Let N be the set of
mesh nodes and E be the set of mesh elements. For j ∈ N and e ∈ E we write
j ∈ e if the node j is a vertex of the element e. Denote by E(j) the set of mesh
elements containing node j, by ν(e) the number of vertices of element e, and by
nm(e), m = 1, . . . , ν(e), the vertices of element e. Let rj, j ∈ N , be the radius­
vector of node j. Let Ω = ∪e be the computational domain, ∂Ω be its boundary.

We begin with the description of the mass­lumped classical (continuous)
Galerkin method with piecewise­linear basis functions for the sake of comparison.
Let ϕj(r), j ∈ N , be the set of basis functions such that the following properties
hold:
(a) ϕj is a continuous function on Ω̄;
(b)

∑
j∈N

ϕj(r) ≡ 1 and
∑
j∈N

rjϕj(r) ≡ r for r ∈ Ω;

(c) ϕj(rj) = 1, ϕj(rk) = 0 for j 6= k;
(d) suppϕj =

⋃
e∈E(j)

e.

For a simplicial mesh these properties uniquely define the set of basis functions.
However, for a mixed­element mesh there are at least three approaches to construct
basis functions satisfying these conditions.

A. For each type of mesh elements, introduce a canonical element:
• right triangle with nodes (0,0), (1,0), and (1,1);
• square with nodes (0,0), (1,0), (1,1), and (0,1);
• tetrahedron with nodes (0,0,0), (1,0,0), (0,1,0), and (0,0,1);
• pyramid with nodes (0,0,0), (1,0,0), (1,1,0), (0,1,0), (1/2,1/2,1);
• prism with nodes (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1), (0,1,1);
• cube with nodes (0,0,0), . . . , (1,1,1).

For each canonical element, define a set of basis functions satisfying (a)–(c). For
example, for the triangle they are ψ1(ξ) = 1− ξ1 − ξ2, ψ2(ξ) = ξ1, ψ3(ξ) = ξ2 and
for the cube they are ϕ1(ξ) = (1− ξ1)(1− ξ2)(1− ξ3), ϕ2(ξ) = ξ1(1− ξ2)(1− ξ3),
. . ., ϕ8(ξ) = ξ1ξ2ξ3. Then the basis functions are defined by

ϕnm(e)(r) = ψm(ξ(r, e)), r ∈ e,

where ξ(r, e) is given by identity

r ≡
ν(e)∑
m′=1

rnm′(e)ψm′(ξ(r, e)),
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and ϕj(r) = 0, r ∈ e, j 6∈ e.
B. For each edge, each face and (in 3D) each volume element, define the center

as a point, each coordinate of which is the average of the vertices’ coordinates. Let
the value of each basis function at these points be the average of its values in the
corresponding vertices. Then use these points to split all the mesh elements into
simplices, and let each basis function be linear inside each simplex.

C. For each type ν of mesh elements, introduce sν splittings into simplices such
that each face is split sν/2 times by one diagonal and sν/2 times by another diagonal.
The details of the splittings will be described in the next section. For each splitting,
the basis functions inside the element are defined uniquely by linearity. It remains to
average obtained basis functions over all splittings in consideration. Note that this
type of basis functions is not suitable for practice because the measure of suppϕj ∩
suppϕk can be nonzero even for nodes j and k that do not belong to a common
element.

The basis functions on the uniform Cartesian mesh obtained by these ap­
proaches are shown in Fig. 1. Left subfigures correspond to “A” basis function; right
ones to the “B” one, which coincides with the “C” one on Cartesian meshes.

Note that if four vertices of a mesh face do not lay on a plane, then all the
variants “A”, “B”, and “C” prescribe the form of the mesh face differently: “A”
makes it bilinear; “B” prescribes it as four triangles; “C” makes the boundary double­
valued. The last can be interpreted as following: if four vertices of a quadrilateral face
do not lay on a plane, then they are vertices of a tetrahedron, and the characteristic
function of elements sharing this face is equal to 1/2 inside this tetrahedron.

Speaking about numerical results obtained by the Galerkin method, below
we imply the use of the basis functions of type “B” for the sake of simplicity of
implementation.

Since the basis functions are defined, we are ready to approximate the model
equation (1). To impose the periodic boundary conditions, we extend the basis func­
tions ϕj(r) and the solution to the whole space by periodicity. Multiply (1) by a basis
function ϕj(r) and take the integral over Ω:

d

dt

∫
Ω

ϕj(r)udV =

∫
∂Ω

ϕj(r)
∂u

∂n
µdS −

∫
Ω

(∇ϕj) · (∇u)µdV. (2)

The boundary term is zero by periodicity. The muss­lumped Galerkin method with
the basis {ϕj} leads to the following scheme: find uh(t) = {uj(t), j ∈ N}, such that
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Figure 1.Basis function on the Cartesian mesh with unit steps. Left: bilinear function
(“A” approach); right: piecewise­bilinear function (“B” and “C” approaches). Top:
isovalues; bottom: 3D plot.

uj(0) = v0(rj) and

duj
dt

=
1

Vj

∑
k∈N

∑
α=x,y,z

Gjk,αα[µ]uk, Vj =

∫
Ω

ϕjdV, (3)

where
Gjk,αβ[µ] = −

∫
Ω

(∇αϕj)(∇βϕk)µdV. (4)

3. Method of local element splittings
Consider a 2D mixed­element mesh first. Each quadrilateral element of the

mesh can be split into two triangles in two ways: e = τ
(1)
e,1 ∪ τ (1)e,2 and e = τ

(2)
e,1 ∪ τ (2)e,2 .

Introduce two simplicial meshes generated by splitting of the original mesh such
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that each quadrilateral element was split differently in generating these meshes. I. e.
define two simplicial meshes (N,E(s)), where

E(s) = {e ∈ E : ν(e) = 3} ∪ {τ (s)e,q , e ∈ E : ν(e) = 4, q = 1,2}.

The basis functions are defined uniquely on these meshes, as well as the mass­lumped
Galerkin approximations (3):

V
(s)
j

duj
dt

=
∑
k∈N

∑
α=x,y

G
(s)
jk,αα[µ] uk, s = 1, 2.

Now take the average of them:

V
(1)
j + V

(2)
j

2

duj
dt

=
∑
k∈N

∑
α=x,y

G
(1)
jk,αα[µ] +G

(2)
jk,αα[µ]

2
uk. (5)

Since the Galerkin approximations are symmetric and positively semidefinite, so is
the new approximation.

The resulting scheme differs from the Galerkin method (3) with any of the sets
of basis functions considered above. Let us demonstrate the difference on the approx­
imation of the Laplace operator on the 2D Cartesian mesh with unit steps. The coef­
ficientsGjk,xx[1] of the Galerkin method (for the approximation of ∂2/∂x2),Gjk,yy[1]
(for the approximation of ∂2/∂y2) and their sum (for the approximation of the Laplace
operator) are shown in Fig. 2 for the basis functions of type “B” and in Fig. 3 for the
basis functions of type “A”. These approximations of the Laplace operator are con­
vex combinations of the “direct cross” 5­point approximation with weight 1−w and
the “skewed cross” 5­point approximation with weight w, where w = 1/4 for the
basis “B” and w = 1/3 for the basis “A”.

In contrast, the Galerkin approximation on a Cartesian mesh of right trian­
gles coincides with the 5­point direct cross. Thus, so does the approximation of the
method of local element splittings (5) on quadrilateral Cartesian mesh.

Now proceed with the 3D case. In 3D, we should split not only mesh elements,
but also their faces. In the general case, it is impossible to split a mixed­element
mesh into a conformal tetrahedral mesh without adding extra nodes. Luckily, we do
not need this.

Consider possible splittings of one element of a mixed­element mesh. We nu­
merate the nodes of an element according to the “neutral” format of the Gambit mesh
generator, see Fig. 4. A tetrahedron has only a trivial splitting: 0123. A pyramid has
two possible splittings:
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Figure 2. Coefficients for the approximation of second derivatives on the unit­step
Cartesian mesh with the use of “B”­type basis. Left: for ∂2/∂x2; center: for ∂2/∂y2;
right: for the Laplace operator

Figure 3. Coefficients for the approximation of second derivatives on the unit­step
Cartesian mesh with the use of “A”­type basis. Left: for ∂2/∂x2; center: for ∂2/∂y2;
right: for the Laplace operator

Figure 4. Numeration of mesh nodes

• 0134 + 0234;
• 1024 + 1324.

A prism can be split into 3 tetrahedrons in 6 ways:
• 0534 + 0541 + 0512;
• 1345 + 1352 + 1320;
• 2453 + 2430 + 2401;
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• 3201 + 3214 + 3245;
• 4012 + 4025 + 4053;
• 5120 + 5103 + 5134.

A hexahedron can be split into 5 or 6 tetrahedrons in many ways. To construct the
scheme it is enough to consider only NGD­type splittings [37], which consist of 6
tetrahedrons with a common edge:

• 1602 + 1623 + 1637 + 1675 + 1654 + 1640;
• 0713 + 0732 + 0726 + 0764 + 0745 + 0751;
• 3420 + 3401 + 3415 + 3457 + 3476 + 3462;
• 2531 + 2510 + 2504 + 2546 + 2567 + 2573.

For the sake of simplicity we duplicate these splittings for each type of mesh elements
to have 12 splittings. Then one can check that each quadrilateral face of an element
is split by each of the diagonals in 6 splittings.

A simplicial splitting specifies a precise form of the element, so let e(ω) ⊂ R3

be this shape. Let ϕ(e,ω)j (r), r ∈ e(ω), be the standard piecewise­linear basis function
associated with node j and defined on a simplicial splitting ω, where ω = 1, . . . , 12,
of an element e. Then the method of local element splittings yields the following
scheme:

duj
dt

=
1

Vj

∑
k∈N

∑
α=1,2,3

Gkj,αα[µ]uk, (6)

where

Gjk,αβ[µ] = −
∑

e∈E(j)∩E(k)

1

12

∑
ω=1,...,12

∫
e(ω)

µ(r)(∇αϕ
(e,ω)
j )(∇βϕ

(e,ω)
k )dV, (7)

Vj =
∑

e∈E(j)

1

12

∑
ω=1,...,12

∫
e(ω)

ϕ
(e,ω)
j dV =

∑
e∈E(j)

1

12

∑
ω=1,...,12

∑
T⊂e(ω),T3j

1

4

∫
T

dV (8)

(compare this with (3), (4)). The last sum is by tetrahedra T belonging to splitting
ω of element e such that j ∈ T . Note that ∇αϕ

(e,ω)
j and ∇βϕ

(e,ω)
k are constant over

each tetrahedron forming e(ω). For simplicial meshes, the method of local element
splittings actually does not use splittings and thus coincides with the P1­Galerkin
method.

Like in 2D, on Cartesian meshes, the formula (7) reduces the approximation of
the Laplace operator to a 7­point direct cross. In comparison with the P1­Galerkin
method, this slightly improves accuracy, but can be considered also as a disadvantage,
because for a small deformation of a Cartesianmesh negative coefficients appear, i. e.
the approximation of the Laplace operator loses discrete maximum principle (DMP).
DMP is not of vital importance for high Reynolds number problems. Moreover, for
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unstructured simplicial meshes, the P1­Galerkin method does not generally satisfy
DMP in the presence of obtuse simplices (see [38], Appendix E), which is almost
inevitable in practical applications.

4. Accuracy proof
In this section we establish a near­optimal accuracy result only for structured

meshes (hexahedral or prismatical). For general unstructured meshes we prove only
the first order of accuracy.

As described in Section 3, for our purpose a mesh element has multiple
shapes defined by its tetrahedral splittings and thus up to this point it is not clear
whether a mesh is non­overlapping. To fill this gap now we complete the defi­
nition of the computational mesh. Let Ω = (0,1)3. A mesh is a pair of finite
sets N and E and an injective mapping rj : N 7→ [0,1)3, j ∈ N . Introduce
the extended set of nodes N̂ = {(j, tx, ty, tz)}, j ∈ N , tx, ty, tz ∈ {0,1}, and
ti = 0 unless i­th component of rj is zero. For j′ = (j, tx, ty, tz), by definition
rj′ = ((rj)x + tx, (rj)y + ty, (rj)z + tz) ∈ [0,1]3. Each e ∈ E (called a mesh ele­
ment) is an ordered ν(e)­tuple of elements of N̂ . Elements of a tuple e (called ver­
tices of the element) are denoted as nm(e) ∈ N̂ , m = 1, . . . , ν(e). For each e ∈ E
and m,m′ ∈ {1, . . . , ν(e)} there holds nm(e) 6= nm′(e) if m 6= m′. For j ∈ N and
e ∈ E we shall write e ∈ E(j) if e contains an element j′ = (j, tx, ty, tz) ∈ N̂ for
some tx, ty, tz. For each e ∈ E there holds ν(e) ∈ {4,5,6,8}. We identify elements
j′ ∈ N̂ with their radius­vectors rj′.

Each e ∈ E has 4 (if ν(e) = 4), or 5 (if ν(e) = 5 or ν(e) = 6), or 6 (if
ν(e) = 8) faces, which are 3­ or 4­tuples; as shown in Fig. 4. For example, an element
e = < j0, j1, j2, j3, j4, j5, j6, j7 > has faces < j0, j1, j3, j2 >, < j4, j5, j7, j6 >,
< j0, j1, j5, j4 >, < j2, j3, j7, j6 >, < j0, j2, j6, j4 >, < j1, j5, j7, j3 >. Faces of all
elements form the set of mesh faces. If all vertices of a mesh face belong to ∂Ω and
lay on the same face of ∂Ω, then this face is called a boundary face. Boundary faces
are considered planar, so their form is well­defined. The set of boundary faces must
be a decomposition of ∂Ω. We say that two tuplesF1 andF2 are the same face if either
F1 or (if F1 is a boundary face) its translation by a vector (±1, 0, 0) or (0,±1, 0) or
(0, 0,±1) is identical to F2 up to a cyclic shift and the inversion of the order. Thus
triangular faces are unordered 3­tuples and quadrilateral tuples are partially ordered
4­tuples. The mesh must be conformal, i. e. each mesh face is a face of exactly two
mesh elements.

For each e ∈ E there are 12 its tetrahedral splittings (some of them
are identical to each other) defined above. For example, for a pyramidal el­
ement e = < j0, j1, j2, j3, j4 > the first six splittings consist of two tetrahedra:
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T1 = < j0, j1, j3, j4 > and T2 = < j0, j2, j3, j4 > and the remaining six splittings
consist of T3 = < j1, j0, j2, j4 > and T4 = < j1, j3, j2, j4 >. A tetrahedron (as a 4­
tuple) is uniquely represented by the convex hull of its vertices. Thus a tetrahedral
splitting of an element e specifies its shape, denoted by e(ω), ω = 1, . . . , 12. We
assume that each of these tetrahedra has nonzero volume.

Let F be a mesh face and eF,1 and eF,2 be elements sharing this face. Each
tetrahedral splitting of eF,1 and eF,2 generates a triangular splitting of F and thus
prescribes its form, consisting of one or two planar triangles. We assume that the
mesh is non­overlapping, i. e. for each F and for each splittings ω1, ω2 = 1, . . . , 12
of eF,1 and eF,2 generating the same triangular splitting on F the outer unit normal
vectors of ∂eF,1(ω1) and ∂eF,2(ω2) on the face F are oppositely directed.

A tetrahedron T satisfies Křížek angle conditions [39] with a constant γ̄ < π if
the following conditions hold:

• for each vertices j, k, l ∈ T , j 6= k 6= l 6= j, the angle between the vectors
rk − rj and rl − rj does not exceed γ̄;

• the angle between any two faces of T does not exceed γ̄.

Theorem 1. Consider the initial value problem for the heat equation (1) with µ ≡ 1,
in the unit cube Ω = (0,1)3 with the periodic boundary conditions and periodic
initial data v0 ∈ C4(Ω̄). Let (N,E) be a conformal non­overlapping mesh and h be
the maximal edge length. Let γ̄ < π. Suppose that for each element e ∈ E and for
each of its splittings introduced in the previous section the following holds:

• tetrahedra forming this splitting have intersection of zero measure;
• each tetrahedron satisfies Křížek angle conditions with γ̄.

Let Π be the pointwise mapping, i. e. Πu(t) = {u(t, rj), j ∈ N}.
Let uh(t) = {uj(t), j ∈ N} be the solution of (6), (7), (8) with the initial data
uh(0) = Πv0. Then for each ϵ > 0 there holds

‖uh(t)− Πu(t)‖L =

∑
j∈N

Vj(uj(t)− u(t, rj))
2

1/2

⩽ Ch1−ϵ(1 + t), (9)

where C depends on v0, γ̄, and ϵ only.

Theorem 2. Let the conditions of Theorem 1 hold. Suppose that the mesh is either a
structured hexahedral mesh, or a structured prismatic mesh (i. e. a deformation of
a translationally­invariant prismatic mesh), or consists of tetrahedra only. Then for
each ϵ > 0 there holds

‖uh(t)− Πu(t)‖L ⩽ Ch2−ϵ(1 + t), (10)

where C depends on v0, γ̄, and ϵ only.
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Figure 5. Vertices reordering for two prisms

The rest of this section is the proof of Theorems 1 and 2.

Lemma 3. Let the conditions of Theorem 2 hold. Then for each e ∈ E there exists
a permutation ωj(e), j = 1, . . . , 12, such that for each quadrilateral face F sharing
elements e1 and e2 and for each j = 1, . . . , 12, the splittings ωj(e1) and ωj(e2) of
these elements generate the same triangular splitting of F .

If the mesh is tetrahedral, then there is no quadrilateral faces and this the
statement is trivial. Otherwise assume without loss that the mesh is Cartesian and
translationally­invariant. Note that for each type of elements the set of the splittings
preserves when reordering the vertices of the element.

Consider a cubic mesh first. First assume that the order of the vertices preserves
under translation. Then for each splitting of a cube the opposite faces have the same
triangular splittings by construction. Hence ωj(e) ≡ j satisfies the statement of the
lemma. Another order of vertices in a cube leads to a permutation of splittings.

For a prismatic mesh, combine adjacent prisms in order to generate a structured
hexahedral mesh. Reorder the vertices of prisms in order to make the face 1­2­5­4
sharing two prisms forming one hexahedron, see Fig. 5. Then ωj(e) ≡ j will again
satisfy the statement of the lemma.

For each mesh face F , define a one­to­one relation between the splittings of
the elements eF,1 and eF,2 sharing this face. For each quadrangular face, each pair
of related element splittings must generate the same triangular splitting of the face.
In the proof of Theorem 1, this is the only condition to impose. In the proof of
Theorem 2, we will use splittings ωj(eF,1) and ωj(eF,2), j = 1, . . . , 12, given by
Lemma 3.

We call f = {fe,ω, e ∈ E, ω = 1, . . . ,12} an admissible function of order k if
the following conditions hold:

1) fe,ω ∈ W k
2 (e(ω));

2) for a face F sharing elements e1 and e2, for each related element splittings
ω1, ω2, and for each l = 0, . . . , k − 1 there holds
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∂lfe1,ω1

∂nl

∣∣∣∣
F

=
∂lfe2,ω2

∂nl

∣∣∣∣
F

. (11)

These conditions are naturally applied at the periodic boundaries also. LetHk be the
set of admissible functions of order k. In the proof of Theorem 2 the smoothness
condition (11) splits the set of pairs (e, ω) into 12 groups such that each of conditions
(11) involves only elements from the same group. Thus

Hk =
(
W k

2,per(R3)
)12

. (12)

In the setting of Theorem 1 such simple representation is generally impossible.
For each f, g ∈ H0, define the scalar product

(f, g) =
∑
e∈E

1

12

∑
ω=1,...,12

∫
e(ω)

fe,ωge,ω dV, (13)

which induces the norm ‖f‖ = (f, f)1/2. For a vector­function f we will use the
norm ‖f‖2 =

∑
j ‖fj‖2, where the sum is over the components of f .

Let S be the set of f ∈ H1 such that there exists fj ∈ R, j ∈ N , such that fe,ω is
the linear interpolant based on the values fj, j ∈ T , on each tetrahedron T belonging
to e(ω). In addition to (13), for each f, g ∈ S, define the scalar product

[f, g] =
∑
j∈N

fjgjVj,

where Vj is given by (8). It induces the “lumped” norm ‖f‖L = [f, f ]1/2.

Lemma 4. The norms ‖f‖L = [f, f ]1/2 and ‖f‖ = (f, f)1/2 are equivalent on S.

Let T be a tetraherdon and f(r) = f0 +L · r. Obviously,

1

4

∑
j∈T

f(rj)
2 ⩾ 1

|T |

∫
T

(f(r))2dV ⩾ σ

4

∑
j∈T

f(rj)
2,

where σ > 0 does not depend on T and f . Then

‖f‖2 =
∑
e∈E

1

12

∑
ω=1,...,12

∫
e(ω)

f 2e,ωdV ⩽
∑
e∈E

1

12

∑
ω=1,...,12

∑
T∈e(ω)

|T |
4

∑
j∈T

f(rj)
2 =

=
∑
j∈N

 ∑
e∈E(j)

1

12

∑
ω=1,...,12

∑
T∈e(ω),T3j

|T |
4

 f(rj)2 = ‖f‖2L.
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In the last equality, we used the fact that the expression in brackets coincides with Vj,
see (8). Similarly,

‖f‖2 ⩾ σ
∑
e∈E

1

12

∑
ω=1,...,12

∑
T∈e(ω)

|T |
4

∑
j∈T

f(rj)
2 = σ‖f‖2L.

Thus, the equivalence of the norms is proved.

Lemma 5. For each r ∈ Ω there exists exactly 12 pairs (e, ω) such that r ∈ Int e(ω)
unless r ∈ ∂e(ω) for some (e, ω).

Let ξe(ω) be the indicator function of e(ω) and

X(r) =
∑
e∈E

∑
ω=1,...,12

ξe(ω)(r).

By construction X(r) is piecewise­constant, and constant values are separated by
triangles belonging to ∂e(ω), e ∈ E, ω = 1, . . . , 12. We claim that all these values
coincide. Indeed, let τ be one of these triangles. It belongs to a face F shared by
elements eF,1 and eF,2. If all vertices of F lay on a plane (for instance, if F is a trian­
gular face), then τ ⊂ ∂eF,1(ω) and τ ⊂ ∂eF,2(ω) for each ω = 1, . . . , 12. Otherwise
τ ⊂ ∂eF,1(ω) for ω = ω1, . . . , ω6 and τ ⊂ ∂eF,2(ω) for ω = ω′

1, . . . , ω
′
6. Since the

mesh is non­overlapping (i.e. the outer normals to eF,1(ω) and eF,2(ω) have opposite
directions),X(r) has no discontinuity at this triangle. ThusX(r) is constant a. e. in
Ω. Now write∫

Ω

X(r)dV =
∑
e∈E

∑
ω=1,...,12

∫
e(ω)

dV =
1

3

∑
e∈E

∑
ω=1,...,12

∫
∂e(ω)

r · n dΣ,

where n is the outer normal to e(ω). Since the mesh is non­overlapping the internal
faces cancel each other, thus∫

Ω

X(r)dV =
1

3

∑
F∈{Boundaryfaces}

∑
ω=1,...,12

∫
F

r · n dΣ =
12

3

∫
∂Ω

r · n dΣ = 12,

where n is the outer unit normal to Ω. Thus X(r) = 12 a. e. in Ω. From this, the
statement of the lemma is obvious.

Corollary 6. For each f ∈ Lp(Ω) there holds∫
Ω

|f |pdV =
1

12

∑
e∈E

∑
ω=1,...,12

∑
T⊂e(ω)

∫
T

|f |pdV, (14)

where the last sum is over tetrahedra belonging to splitting (e, ω).
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For f ∈ H1 denote ∇jf = {∇jfe,ω, e ∈ E, ω = 1, . . . , 12}. Obviously, for
f ∈ Hk there holds∇jf ∈ Hk−1. Now we prove the integration­by­parts formula.
Lemma 7. For each f, g ∈ H1 there holds

(f,∇g) + (∇f, g) = 0. (15)

Indeed, for each element by the Gauss theorem∫
e(ω)

f∇gdV +

∫
e(ω)

g∇fdV =

∫
∂e(ω)

fgndΣ.

Taking the average over splittings and the sum over elements we get

(f,∇g) + (∇f, g) = R(f, g),

where
R(f, g) =

∑
e∈E

1

12

∑
ω=1,...,12

∫
∂e(ω)

fgndΣ.

Disjoin the integrals over ∂e(ω) into the sum of integrals over faces and regroup the
resulting sum to faces:

R(f, g) =
∑

F∈{Faces}

1

12

∑
ω=1,...,12

∫
F

fe(F,1),ωge(F,1),ωndΣ−
∫
F

fe(F,2),ωge(F,2),ωndΣ

 .

Here e(F,1) and e(F,2) are the elements sharing faceF , andn is the outer unit normal
to e(F,1). The surfaces of face F are prescribed by the splittings ω of the elements
e(F,1) and e(F,2), correspondingly. Then reorder the sum by splittings to connect
terms associated with related splittings:

R(f, g) =
∑

F∈{Faces}

1

12

∑
j=1,...,12

RF,j(f, g),

RF,j(f, g) =

∫
F

fe(F,1),ωj(e(F,1))ge(F,1),ωj(e(F,1))ndΣ−

−
∫
F

fe(F,2),ωj(e(F,2))ge(F,2),ωj(e(F,2))ndΣ.

The form of face F in the first integral is prescribed by splitting ωj(e(F,1)) of ele­
ment e(F,1), and the one in the second integral is prescribed by splitting ωj(e(F,2))
of element e(F,2). By definition, these forms coincide and so do the traces of
integrands. Thus RF,j(f, g) ≡ 0. This proves that R(f, g) ≡ 0 and thus (15).
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Nowwemove to the interpolation issues. Let ‖ · ‖k,p,T and | · |k,p,T be the usual
norm and seminorm in the Sobolev spaceW k

p (T ). By ΠTf we denote the Lagrange
interpolant on tetrahedron T of function f based on its values at vertices.

Theorem 8 (Acosta [40]). Let T be a tetrahedron satisfying the Křížek angle condi­
tions with γ̄. Then for each 2 < p ⩽ ∞, and each function f ∈ W 2

p (T ) the following
estimate for the interpolation error holds:

‖f − ΠTf‖1,p,T ⩽ cγ̄,p h |f |2,p,T , (16)

Note that this result does not hold for p = 2, see [41, 42].

Lemma 9. The following estimates hold:

‖f − Πf‖ ⩽ ch2 |f |2,2, f ∈ W 2
2,per(Ω); (17)

‖∇(f − Πf)‖ ⩽ cγ̄,p h |f |2,p, f ∈ W 2
p,per(Ω), p > 2. (18)

The inequality
‖f − ΠTf‖0,p,T ⩽ cp h

2 |f |2,p,T (19)
holds for p > 3/2 (see [42]) without any limitations on the tetrahedron shape. To
prove (17) we use (19) for p = 2, then by (14) and the definition of the norm ‖ · ‖ we
get

‖f − Πf‖ ⩽ c2 h
2

(
1

12

∑
e∈E

∑
ω=1,...,12

∑
T⊂e(ω)

|f |22,2,T
)1/2

= c2 h
2|f |2,2.

For f ∈ W 2
p (Ω) by the Hölder inequality we have

‖∇(f − Πf)‖2 =
∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

∫
T

|∇(f − ΠTf)|2dV ⩽

⩽
∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

∫
T

|∇(f − ΠTf)|pdV

2/p

V
1−2/p
T .

Applying (16), the Hölder inequality for sums, and (14) we obtain

‖∇(f − Πf)‖2 ⩽
∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

c2γ̄,ph
2|f |22,p,TV

1−2/p
T ⩽

⩽ h2c2γ̄,p

(
1

12

∑
e∈E

∑
ω=1,...,12

∑
T⊂e(ω)

|f |p2,p,T

)2/p

= h2c2γ̄,p|f |22,p.
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Thus we have (18).

For each f, g ∈ H1, define the “energy” product

a(f, g) = (∇f,∇g) =
∑
e∈E

1

12

∑
ω=1,...,12

∫
e(ω)

(∇fe,ω) · (∇ge,ω) dV. (20)

Obviously, a(f, f) ⩾ 0. Let P : H1 → S be the Ritz projection, i. e. the linear
operator taking each f ∈ H1 to Pf ∈ S giving the minimum of the functional

a(Pf − f, Pf − f) + (Pf − f, 1)2.

By the variational principle, for each v ∈ S there holds

a(Pf − f, v) + (Pf − f,1) (v,1) = 0.

Since a(v,1) ≡ 0, taking v = 1 we get

(Pf − f,1) = 0, (21)

and thus Pf gives the minimum of ‖∇(Pf − f)‖. Taking v such that (v,1) = 0, we
get a(Pf − f, v) = 0. The latter also holds for v = 1. Therefore, for each v ∈ S and
f ∈ H1 there holds

a(Pf − f, v) = 0. (22)

Lemma 10. For each w ∈ S there holds

‖w‖2 ⩽ c(‖∇w‖2 + (w,1)2),

where c does not depend on the mesh and w.

Let ϕj be the basis functions of the P1­Galerkin method of type “C” (see Sec­
tion 2), i. e.

ϕj(r) =
∑

e∈E(j)

1

12

∑
ω=1,...,12

ϕ
(e,ω)
j (r).

This yields Vj =
∫
ϕjdV , where Vj is given by (8). Let G be the interpolation

operator taking each u ∈ S to

(Gu)(r) =
∑
j∈N

ujϕj(r).

By Lemma 5 for each r ∈ Ω there exists not more than 96 triplets (j, e, ω) such
that r ∈ Int suppϕ(e,ω)j . Thus there exists a finite decomposition {Wk} of Ω, i. e.
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Wk ∩Wl = 0 for k 6= l and ∪Wl = Ω, such that for each k the number of triplets
(j, e, ω) such that ϕ(e,ω)j (r) 6≡ 0 onWk is not greater than 96. Hence,

‖∇(Gu)‖2 = 1

144

∫
Ω

(∑
e∈E

∑
ω=1,...,12

∑
j∈e

uj∇ϕ(e,ω)j

)2

dV ⩽

⩽ 96

144

∑
e∈E

∑
ω=1,...,12

∫
Ω

(∑
j∈e

uj∇ϕ(e,ω)j

)2

dV = 8‖∇u‖2.

(23)

The function Gw is single­valued, so using the Fourier representation we get

‖Gw‖2 ⩽ 1

4π2
‖∇(Gw)‖2 + (Gw, 1)2. (24)

The first term on the right­hand side is estimated using (23), and for the second term
we have

(Gw, 1) =

∫
Ω

∑
j∈N

wjϕj(r)dV =
∑
j∈N

Vjwj = (w, 1).

Similarly to Lemma 4 it can be proved that ‖w‖ ⩽ c̃‖Gw‖, where c̃ does not depend
on the mesh and w. This completes the proof of the lemma.

Lemma 11. For each p > 2 and f ∈ W 2
p,per(Ω) there holds

‖Pf − f‖ ⩽ Ĉγ̄,ph|f |2,p. (25)

Put w = Pf − Πf ∈ S. By Lemma 10 we have

‖Pf − Πf‖2 ⩽ c‖∇(Pf − Πf)‖2 + c(Pf − Πf, 1)2. (26)

For the first term on the right­hand side of (26), write

‖∇(Pf − Πf)‖ ⩽ ‖∇(Pf − f)‖+ ‖∇(Πf − f)‖ ⩽ 2‖∇(Πf − f)‖.

The last inequality is by the definition of Pf . For the second term on the right­hand
side of (26), using (21) and the Cauchy–Schwarz inequality we get

(Pf − Πf, 1)2 = (f − Πf, 1)2 ⩽ ‖f − Πf‖2.

Thus
‖Pf − Πf‖ ≲ ‖∇(Πf − f)‖+ ‖f − Πf‖.
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Figure 6. Reference tetrahedra (the figure is copied from [40])

Now write

‖Pf − f‖ ⩽ ‖Pf − Πf‖+ ‖Πf − f‖ ≲ ‖∇(Πf − f)‖+ ‖Πf − f‖.

The inequality to prove is by (17) and (18), taking into account that h < 1.

Lemma 12. Let T be a tetrahedron satisfying Křížek angle conditions with the con­
stant γ̄ < π and f ∈ W 1

2 (T ). Then for each 0 < ϵ < 1 there holds

|f |0,p(ϵ),T ⩽ c(γ̄)V
−ϵ/3
T

(
|f |0,2,T + (|f |0,2,T )1−ϵ(h|f |1,2,T )ϵ

)
, (27)

where p(ϵ) = ((1− ϵ)/2 + ϵ/6)−1 > 2, and c(γ̄) does not depend on T , f , and ϵ.

By Lemma 2.2 in [40] there exists a linear transformation F (x) = Bx+ b such
that F (K1) = T or F (K2) = T and ‖B‖, ‖B−1‖ ⩽ C(γ̄), where tetrahedra K1 and
K2 are as in Fig. 6. Thus without loss we can consider only tetrahedra of these types.

Let T0 be a tetrahedron of type K1 or K2 with h1 = h2 = h3 = 1 and A be
the diagonal matrix with the elements h1, h2, h3. Let f0(r) ∈ W 1

2 (T0) be such that
f0(r) = f(Ar) holds for almost all r ∈ T0. By the Hölder inequality there holds

|f0|0,p(ϵ),T0
⩽ (|f0|0,2,T0

)1−ϵ(|f0|0,6,T0
)ϵ.

By the Sobolev imbedding theorem [43] we get |f0|0,6,T0
⩽ c(|f0|0,2,T0

+ |f0|1,2,T0
),

thus
|f0|0,p(ϵ),T0

⩽ c
(
|f0|0,2,T0

+ (|f0|0,2,T0
)1−ϵ(|f0|1,2,T0

)ϵ
)
. (28)

By the linear coordinate transformation we get

|f |0,p(ϵ),T = (6VT )
1/p(ϵ)|f0|0,p(ϵ),T0

, |f0|0,2,T0
= (6VT )

−1/2|f |0,2,T ,

|f0|1,2,T0
⩽ (6VT )

−1/2‖A‖ |f |1,2,T ⩽ (6VT )
−1/2h|f |1,2,T
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(here we used VT0
= 1/6). Combining this with (28) and noting that

1/p(ϵ)− 1/2 = −ϵ/3, we get (27).

Lemma 13. For each 0 < ϵ < 1 and each f ∈ H3 there holds

‖∇(f − Πf)‖ ⩽ cγ̄,ϵ h
(
‖4f‖+ ‖4f‖1−ϵ‖h∇4f‖ϵ

)
. (29)

By (16) for each tetrahedron T there holds

‖∇(f − Πf)‖p(ϵ),T ⩽ cγ̄,p(ϵ)h|f |2,p(ϵ),T .

Applying (27) to the Hessian of f , we get

|f |2,p(ϵ),T ⩽ c(γ̄)V
−ϵ/3
T

(
|f |2,2,T + (|f |2,2,T )1−ϵ (h|f |3,2,T )ϵ

)
,

where VT is the volume of T . Besides,

‖∇(f − Πf)‖2,T ⩽ ‖∇(f − Πf)‖p(ϵ),TV
1/2−1/p(ϵ)
T .

Combining these inequalities yields

‖∇(f − Πf)‖2,T ⩽ cγ̄,ϵh
(
|f |2,2,T + (|f |2,2,T )1−ϵ (h|f |3,2,T )ϵ

)
.

Hence,
‖∇(f − Πf)‖2 =

∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

‖∇(f − Πf)‖22,T ⩽

⩽ 2c2γ̄,ϵh
2
∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

|f |22,2,T+

+2c2γ̄,ϵh
2
∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

(|f |2,2,T )2(1−ϵ) (h|f |3,2,T )2ϵ .

Applying the Hölder inequality to the last term we get

‖∇(f − Πf)‖2 ⩽ 2c2γ̄,ϵ h
2
(
‖∇2f‖2 + ‖∇2f‖2(1−ϵ) ‖h∇3f‖2ϵ

)
. (30)

Using (15) we get

‖∇2f‖2 =
∑

j,k∈{x,y,z}

‖∇j∇kf‖2 =
∑

j,k∈{x,y,z}

(∇j∇kf,∇j∇kf) =

= −
∑

j,k∈{x,y,z}

(∇kf,∇j∇j∇kf) =
∑

j,k∈{x,y,z}

(∇k∇kf,∇j∇jf) = (4f,4f) = ‖4f‖2
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and

‖∇3f‖2 =
∑

j,k,l∈{x,y,z}

‖∇j∇k∇lf‖2 =
∑

j,k,l∈{x,y,z}

(∇j∇k∇lf,∇j∇k∇lf) =

=
∑

j,k,l∈{x,y,z}

(∇l∇k∇kf,∇l∇j∇jf) = ‖∇4f‖2.

Substituting these equalities into (30) we get (29).

Next we use the Nitsche trick to obtain an estimate for the approximation error.

Lemma 14. Let the conditions of Theorem 2 hold. Then for each ε > 0 and each
f ∈ W 2

∞,per(Ω̄) there holds

‖Pf − f‖ ⩽ Cγ̄,ϵh
2−ϵ|f |2,∞. (31)

Denote e = Pf−f . Let z ∈ H1 be a solution (unique up to an additive constant)
of the auxiliary problem −4z = e in Ω with the periodic boundary conditions, i. e.

(∇z,∇v) = (e, v), v ∈ H1. (32)

According to (12), H1 consists of 12 functions having no mutual dependency.
Thus (32) is equivalent to 12 classical problems −4zj = ej, ej ∈ W 1

2,per(Ω). By
standard regularity theory we get zj ∈ W 3

2,per(Ω) and thus z ∈ H3. Note that estab­
lishing z ∈ H3 is the only place where we use the additional assumption of Theo­
rem 2.

Then we have

(e, e) = (∇e,∇z) = a(e, z) = a(e, z − Pz) ⩽
⩽ (a(e, e))1/2(a(z − Pz, z − Pz))1/2.

(33)

The first identity in this chain is by (32), the second one is by (20), the third one
is by (22), and finally we use the Schwarz inequality. By the definition of the Ritz
projection, we have

a(z − Pz, z − Pz) ⩽ a(z − Πz, z − Πz) = ‖∇(f − Πf)‖2.

Using (29) to estimate the latter and (18) to estimate a(e, e), from (33) we get

(e, e) ⩽ cγ̄,p(ϵ)cγ̄,ϵh
2 |f |2,p(ϵ)(‖4z‖+ ‖4z‖1−ϵ‖h∇4z‖ϵ) ⩽

⩽ C̃γ̄,ϵh
2 |f |2,p(ϵ)(‖e‖+ ‖e‖1−ϵ‖h∇e‖ϵ).
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In the last inequality we use ∆z = −e. Then, using (18), |f |2,p(ϵ) ⩽ |f |2,∞, and
dividing by ‖e‖ we get

‖e‖ ⩽ Ĉγ̄,ϵh
2|f |2,∞

(
1 + ‖e‖−ϵ(h|f |2,∞)ϵ

)
. (34)

We claim that (31) holds with

Cγ̄,ϵ = Ĉγ̄,ϵ(1 + Ĉ−ϵ
γ̄,ϵ). (35)

Indeed, if ‖e‖ ⩽ Ĉγ̄,ϵh
2|f |2,∞ then (31), (35) is obvious. Otherwise (31), (35) is by

substitution of the inequality ‖e‖ > Ĉγ̄,ϵh
2|f |2,∞ into the last term of (34).

Lemma 15. Let f, g ∈ S. For the bilinear form∆(f, g) = [f, g]− (f, g) there holds

|∆(f, g)| ⩽ Ch2(|∇f |, |∇g|) ⩽ a(f, f) + C2h4a(g, g). (36)

By definition, there holds

∆(f, g) =
∑
j

fjgjVj −
∑
e∈E

1

12

∑
ω=1,...,12

∫
e(ω)

fe,ωge,ωdV.

Using the expression (8) for Vj and regrouping the sum, we get

∆(f, g) =
∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

∫
τ

[(∑
j∈e

ϕ
(e,ω)
j (r)fjgj

)
−

−

(∑
j∈e

ϕ
(e,ω)
j (r)fj

)(∑
j∈e

ϕ
(e,ω)
j (r)gj

)]
dV.

Here T ⊂ e(ω) are tetrahedra used in the splitting ω. For f = const, the integrals
in this sum are zero, and the same holds for g = const. Thus, we can replace fj by
fj − fT , where fT is the value in the barycenter of T . This leads to

∆(f, g) =
∑
e∈E

1

12

∑
ω=1,...,12

∑
T⊂e(ω)

∫
T

(∑
j∈e

ϕ
(e,ω)
j (r)(∇f)T · (rj − rT )(∇g)T · (rj − rT )

)
−

−

(∑
j∈e

ϕ
(e,ω)
j (r)(∇f)T · (rj − rT )

)(∑
j∈e

ϕ
(e,ω)
j (r)(∇g)T · (rj − rT )

)
dV
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and
|∆(f, g)| ⩽ Ch2

∑
e∈E

1

12

∑
ω=1,...,12

∫
e(ω)

|∇f | |∇g|dV ⩽

⩽
∑
e∈E

1

12

∑
ω=1,...,12

∫
e(ω)

(
|∇f |2 + (Ch2)2|∇g|2

)
dV.

Thus we get (36).

Proof of Theorems 1 and 2. Consider the heat equation (1) with µ(r) ≡ 1.
Let u ∈ C1([0,∞);C2

per(Ω)) be the solution of (1); let v ∈ H1. Integrating (1) with
the weight ve,ω, we get ∫

e(ω)

∂u

∂t
ve,ωdV =

∫
e(ω)

ve,ω∆udV.

Taking the average over splittings and the sum over elements, we get(
∂u

∂t
, v

)
+ (v,∆u) = 0.

By (15) we have (v,∆u) = −(∇u,∇v) = −a(u, v). Thus the weak formulation of
(1) is: find a function u ∈ C1([0,∞);H1) such that u|t=0 = v0(r) and(

∂u

∂t
, v

)
+ a(u, v) = 0 ∀v ∈ H1. (37)

Since the solution of this problem is unique, it coincides with the solution of (1).
Now we consider the following numerical scheme: find uh ∈ S such that

uh|t=0 = Πv0 and [
∂uh

∂t
, v

]
+ a(uh, v) = 0 ∀v ∈ S. (38)

Clearly, the solution of (38) is unique and its nodal values satisfy (6). Thus (38) is a
weak formulation of (6).

Substracting (38) from (37) with v = e ≡ Pu− uh, we get(
∂u

∂t
, e

)
−
[
∂uh

∂t
, e

]
+ a(u− uh, e) = 0.

By (22),[
∂e

∂t
, e

]
+

(
∂u

∂t
− P

∂u

∂t
, e

)
+ a(e, e) +

(
P
∂u

∂t
, e

)
−
[
P
∂u

∂t
, e

]
= 0.
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Using the identity[
∂e

∂t
, e

]
=

1

2

∂

∂t
[e, e] =

1

2

∂

∂t
‖e‖2L = ‖e‖L

∂‖e‖L
∂t

,

we get

‖e‖L
∂‖e‖L
∂t

⩽
∥∥∥∥∂u∂t − P

∂u

∂t

∥∥∥∥ ‖e‖+ ∣∣∣∣∆(e, P ∂u∂t
) ∣∣∣∣− a(e, e).

Applying (36), we obtain

‖e‖L
∂‖e‖L
∂t

⩽
∥∥∥∥∂u∂t − P

∂u

∂t

∥∥∥∥ ‖e‖+ Ch4a

(
P
∂u

∂t
, P

∂u

∂t

)
.

The first term on the right­hand side is estimated using (26) (in the proof of Theo­
rem 1) or (31) (in the proof of Theorem 2). For the second term by (22) we have

a

(
P
∂u

∂t
, P

∂u

∂t

)
= a

(
∂u

∂t
,
∂u

∂t

)
− a

(
P
∂u

∂t
− ∂u

∂t
, P

∂u

∂t
− ∂u

∂t

)
. (39)

The first term on the right­hand side of (39) does not depend on the mesh, and the
second one is bounded by (18) since

a(Pf − f, Pf − f) ⩽ a(Πf − f,Πf − f) = ‖∇(Πf − f)‖2.

Thus, replacing h4 by h2A−2ϵ, whereA = 1 for Theorem 1 andA = 2 for Theorem 2,

‖e‖L
∂‖e‖L
∂t

⩽ C
(
hA−ϵ‖e‖+ h2(A−ϵ)

)
⩽ C

(
hA−ϵ‖e‖L + h2(A−ϵ)

)
.

Clearly, there holds ‖e(t)‖L ⩽ hA−ϵy(tC), where y is the solution of

y
dy

dτ
= y + 1; y(0) =

‖e(0)‖
hA−ϵ

.

The solution of this equation is y− ln(y + 1) = τ + const, so y(τ) ⩽ 2τ + c, where
constant is defined by the initial condions, so it is well­defined for 0 < τ < ∞.
Recall that e ≡ Pu− uh, then e|t=0 = Pv0 − Πv0 and

‖e(0)‖L ⩽ 1

σ
‖e(0)‖ ⩽ 1

σ
(‖Pv0 − v0‖+ ‖Πv0 − v0‖) ⩽ ChA−ϵ.

Here σ is the norms equivalence constant given by Lemma 4. In the last inequality
we have used (26) (in the proof of Theorem 1) or (31) (in the proof of Theorem 2)



– 26 –

to estimate the first term and (17) for the second term. This proves that ‖e(t)‖L ⩽
C(t+ 1)hA−ϵ.

By the triangle inequality

‖uh(t)− Πu(t)‖L ⩽ ‖e(t)‖L + ‖Pu(t)− u(t)‖L + ‖Πu(t)− u(t)‖L ⩽

⩽ C(t+ 1)hA−ϵ + ChA−ϵ + Ch2 ⩽ C(t+ 3)hA−ϵ.

This concludes the proof of Theorems 1 and 2.

5. Implementation for Navier – Stokes solvers
Now we move to the approximation of the Navier – Stokes system

∂Q

∂t
+∇ · F(Q) = ∇ · FV (Q,∇Q), (40)

where Q = (ρ, ρu, E)T , E = ρu2/2 + p/(γ − 1), and

F =

 ρu
ρuu+ pI
(E + p)u

 , FV (Q,∇Q) =

 0
τ

τ · u− q

 . (41)

The tension tensor τ = {ταβ} and the heat flux q = {qα} are defined as

ταβ = µ

(
∇αuβ +∇βuα −

2

3
δαβ∇ξuξ

)
, qα = −γµ

Pr
∇α

(
p

(γ − 1)ρ

)
. (42)

The diffusion terms in Navier – Stokes equations can be represented in a gen­
eral form as Dαβu = ∇α(κ∇βu), where κ can be dynamic viscosity, or dynamic
viscosity times velocity, or heat conductivity, and u can be velocity or temperature.
Turbulence modeling in RANS framework can add one or more diffusive terms of
this form, depending on the specific model in use.

Let Qj be the set of conservative variables in node j, and Q = {Qj, j ∈ N}.
The general form of a semidiscrete scheme is

dQj

dt
+

1

Vj
Φj(Q) =

1

Vj
ΦV

j (Q), (43)

whereΦj andΦV
j are some approximations of convective and diffusive terms of (40).

As in most of the vertex­centered schemes, we use a finite­volume discretization of
convective fluxes and a finite­element discretization of viscosity and heat terms.

Following finite­volume approach, we write the convective terms of the numer­
ical scheme in the flux form

Φj(Q) =
∑

k∈N̂1(j)

Fjk(Q).
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Here N̂1(j) is the set of nodes connected to j by edge or by element, depending on
the construction of control volumes, and Fjk(Q) are convective fluxes between the
control volumes associated with the nodes j and k.

Unless specifically stated, we use “direct” control volumes [15], see also [44]
for a similar approach. Then the control volumes corresponding to edge­connected
nodes have intersections of nonzero 2D measure, and the ones of the diagonal­
connected nodes have not. Then N̂1(j) is the set of nodes connected to j by edge.
In the case of semitransparent control volumes [15], which result from the applica­
tion of local element splittings to convective terms, N̂1(j) is the set of elementwise­
connected nodes. The semitransparent control volumes preserve 1­exactness of edge­
based schemes on arbitrary mixed­element meshes, but they are not suitable for
highly­anisotropic meshes used for the simulation of high Reynolds number flows.
A specific scheme for convective fluxes, Fjk, is of no importance in the framework
of this paper; we will use a suitable one for each test.

The approximation of viscous and heat fluxes ΦV
j (Q) is given by

ΦV
j (Q) =

 0
[∇ · τ ]j

[∇ · (τ · u)]j − [∇ · q]j

 , (44)

([∇ · τ ]j)α =
∑
k∈N

Gjk,βα[µ](uk)β +
∑
k∈N

Gjk,ββ[µ](uk)α −
2

3

∑
k∈N

Gjk,αγ[µ](uk)γ,

[∇·(τ ·u)]j =
∑
k∈N

Gjk,βα[µuα](uk)β+
∑
k∈N

Gjk,ββ[µuα](uk)α−
2

3

∑
k∈N

Gjk,αγ[µuα](uk)γ,

[∇ · q]j = − γ

Pr
∑
k∈N

Gjk,ββ[µ]

(
pk

(γ − 1)ρk

)
(the sum over repeating indices is assumed). The coefficients Gjk,αβ[κ] and Vj are
given by (4) and Vj =

∫
ϕjdV for the P1­Galerkin method and by (7) and (8) for the

method of local element splittings. Note that in practice the definition of Vj does not
matter; one can use its value given by Galerkin method, or by (8), or calculate the
volume of the dual cell used for the approximation of convective fluxes.

There are several terms of the formDαβu = ∇α(κ∇β)u, where κ are dynamic
viscosity, or dynamic viscosity times velocity, or heat conductivity. Clearly,κ are not
constant in space: for dynamic viscosity times velocity this holds unless some trivial
cases, and for dynamic viscosity this holds for RANSmodels, which replace dynamic
viscosity by its sum with a turbulent viscosity. Then the coefficientsGjk,αβ[κ] given
by (4) or (7) should be approximated. The linear interpolation between nodes seems
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to be correct:

Gjk,αβ[κ] = −
∑

e∈E(j)∩E(k)

∫
e

(∇αϕj)(∇βϕk)
∑
l∈e

ϕlκldV (45)

for the Galerkin method and

Gjk,αβ[κ] = −
∑

e∈E(j)∩E(k)

1

12

∑
ω=1,...,12

∫
e(ω)

(∇αϕ
(e,ω)
j )(∇βϕ

(e,ω)
k )

∑
l∈e

ϕ
(e,ω)
l κdV (46)

for the method of local element splittings.
If κ were constant in time, we could compute Gjk,αβ[κ] before the time inte­

gration. But this is not the case. In (45) and (46), the coefficientsGjk,αβ[κ] are linear
functions of {κm}, wherem runs over all nodes of all elements contacting the nodes
j and k, i. e.

Gjk,αβ[κ] =
∑
m

Gjk,αβ,m
dGjk,αβ[κ]
dκm

. (47)

The coefficients dGjk,αβ[κ]/dκm can be calculated before the time integration and
stored in memory. We use another expression, namely,

Gjk,αβ[κ] = −
∑

e∈E(j)∩E(k)

Gjk,αβ,eκe, (48)

where κe is the average over all nodes of element e and

Gjk,αβ,e =
1

12

∑
ω=1,...,12

∫
e(ω)

(∇αϕ
(e,ω)
j )(∇βϕ

(e,ω)
k )dV

(note that integrand is constant). This refers to a piecewise­constant approximation
of κ. In theory, this may be less accurate, but we have never seen a significant
difference.

There are two possible implementations of these methods for the calculation of
diffusion terms: edge­based and elementwise. The conventional approach for simpli­
cial meshes is an elementwise implementation, i. e. computing these terms in a loop
over mesh elements. For each element e, the values |e|∇αϕj and |e|∇βϕk are con­
stant inside the element e, the values of them being equal to linear (2D) or quadratic
(3D) functions of nodal coordinates. So this procedure is very efficient and there is
no need to store additional data of geometric nature.

The situation differs on amixed­element mesh. We have not implemented an el­
ementwise approach for the P1­Galerkin method, but for the method of local element
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Figure 7. Left: mesh of 7 hexahedrons with no possible tetrahedral splittings without
extra nodes. Right: mesh used for the heat equation

splittings, the edge­based implementation with the storage of Gjk,αβ,e is preferable.
Note that Gjk,αβ,e = Gkj,βα,e, so for each element with ν vertices, we need to store
9ν(ν − 1)/2 coefficients. In the case of double­precision floating­point arithmetic,
it consumes at most 2KB of memory per element, which is admissible. The use of
(47) with the storage of Gjk,αβ,m consumes significantly more memory.

6. Verification
To verify the method of local element splittings, we consider a problem for

the heat equation followed by a low Reynolds number problem and a convection­
dominated problem.

Consider the initial problem for the heat equation (1) in Ω = (0,1)3 with µ ≡ 1,
v0(r) = sin(2πx + 1) sin(2πy + 2) sin(2πz + 2.5), and the periodic boundary con­
ditions. The exact solution of this problem is u(t, r) = v0(r) exp(−12π2t2). In
Section 4 we proved the convergence with the order 2−ε provided that the statement
of Lemma 3 holds. It is interesting to study the opposite case when it is not possible
to construct simplicial splittings without additional mesh nodes. A well­known mesh
fragment satisfying this condition is shown in Fig. 7 at the left.

Consider a structured cubic mesh with edge length h, 1/h ∈ N, and split one of
these elements into 7 hexahedrons as shown in Fig. 7 at the right. The radius­vectors
for 6 additional nodes are chosen randomly provided that the resulting mesh satisfies
the conditions of Theorem 1, and scaled with the factor h when generating a mesh
with another h.

The norms of the numerical error at t = tmax = (ln 2)/(12π2), namely,

εu,2 = ‖uh(t)− Πu(t, · )‖/
√
|Ω|, εu,∞ = max

j∈N
|uj(t)− u(t, rj)|, (49)
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Table 1. The numerical error for the heat equation

h P1­Galerkin Local elem. splitting
εu,2 εu,∞ εu,2 εu,∞ εP1−Gal.

u,∞ /εMLES
u,∞

1/8 2.38 · 10−2 6.12 · 10−2 6.27 · 10−3 1.61 · 10−2 3.80
1/16 6.22 · 10−3 1.71 · 10−2 1.57 · 10−3 4.41 · 10−3 3.88
1/32 1.57 · 10−3 4.43 · 10−3 3.94 · 10−4 1.22 · 10−3 3.63
1/64 3.93 · 10−4 1.11 · 10−3 9.84 · 10−5 3.20 · 10−4 3.47
1/128 9.84 · 10−5 2.78 · 10−4 2.46 · 10−5 8.17 · 10−5 3.40

are collected in Table 1. Both schemes are of the second order of accuracy on uni­
form Cartesian meshes. The defect in the mesh structure is local and thus it not strong
enough to deteriorate the overall convergence in the L2­norm, so the result εu,2 ∼ h2

is as expected. The method of local element splittings yields 4 times smaller numer­
ical error due to a more compact stencil.

We can also compare the method of the local element splittings with the
P1­Galerkin method by the value of εu,∞. For the method of local element splittings,
the local maximum of the error is located near the splitted elements (except for
h = 1/8). In contrast, for the P1­Galerkin method, the local maximum of the error
is localed near one of the local extrema of the solution, The ratio of the numerical
errors obtained by the P1­Galerkin method and by the method of local element
splittings is shown in the right column of the table. This ratio becomes smaller as
the mesh is refined. This means that the error of method of local element splittings
does depend on the mesh quality more than the error of the P1­Galerkin method.
However, in this test, the order of vanishing of the numerical error is greater than
one even in L∞­norm.

Now consider the Navier – Stokes system with no heat conduction linearized
on the steady uniform field ρ̄ = 1, ū = 0, p̄ = 1/γ, namely,

∂Q′

∂t
+∇ · Flin(Q

′) = ∇ · FV
lin(Q,∇Q),

where Q′ = (ρ′,u′, p′/(γ − 1))T ,

Flin =

 u′

p′I
u′/(γ − 1)

 , FV
lin(Q,∇Q) =

 0
τ
0

 ,

and the stress tensor τ is given by (42). We put µ = 1; the computational domain is
the cube 25x25x25 with edges aligned with mesh axes and the periodical boundary
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conditions. A general solution of these equations is a linear combination of acousti­
cal, vortex, and entropy waves. We consider the solution

Q′ = exp(−µk2t+ik·r)

 0
[c× k]

0

+A exp(iωt+ik·r)

 −k2/ω
k

−k2/(ω(γ − 1))

 ,

where ω is given by the dispersion relation

ω =
2

3
iµk2 ±

(
k2 −

(
2

3
µk2

)2
)1/2

.

We put k = (2π/25, 2π/25, 0)T , A =
√
2, c = (0,0,1/(2π))T , so the exact solution

is independent of z and u′z = 0.
For this test, we use four artificial meshes. The first one is shown in Fig. 8, and

the other three meshes are generated by successive refining of the first one. These
meshes contain all four types of mesh elements. For the discretization of convective
fluxes we use semitransparent control volumes [15]; we present results for the basic
approximation Fjk(Q) = (1/2)(F(Qj) + F(Qk)) · njk, where njk is the geomet­
ric coefficient associated with the pair of nodes j and k, for the EBR3 [28] scheme
and for the Flux Correction method [20]. In the last scheme we used gradient ap­
proximation using third order interpolation polynomials and the pointwise treatment
of the source/time derivative term. This scheme is 2­exact on arbitrary unstructured
meshes.

We will look at the norms of the numerical errors εf,l (see (49)) for f = p′

(pressure pulsation) and f = u′y (y­component of the velocity pulsation) for l = 2
and l = ∞ at t = tmax = 1. They are collected in Table 2 for the basic approximation,
in Table 3 for the EBR3 scheme and in Table 4 for the Flux Correction method.

The Table 4 shows that in the square norm the numerical solution converges
to the exact solution approximately with the second order, while for maximal norm
the numerical order is lower. The results given in Tables 2 and 3 also shows lower
convergence rate due to the lower order of convective terms approximation. For the
sake of this paper, the main result of this test is that there is no significant difference
between the P1­Galerkin method and the method of local element splittings.

Now we move to a high Reynolds number problem. In convection­dominated
problems the numerical error is mostly determined by the choice of convective terms
approximation, so we consider only one case.

Consider a flow around a blade with the profile NACA0012 [45]. The chord
length is unit; Mach number of the background flow isM∞ = 0.15, Reynolds num­
ber is Re = 6 · 106. Molecular viscosity is defined by the Sutherland law with
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Figure 8. Coarse mesh for the linear waves dissipation test

Table 2. The numerical error for the linear waves dissipation test. Basic approxima­
tion for convective terms

h hmin P1­Galerkin Local elem. splitting
εp′,∞ εp′,2 εp′,∞ εp′,2

6.221 0.279 1.66 · 10−1 6.43 · 10−2 1.65 · 10−1 6.48 · 10−2

3.508 0.140 1.13 · 10−1 2.30 · 10−2 1.13 · 10−1 2.32 · 10−2

1.917 0.070 5.53 · 10−2 8.04 · 10−3 5.53 · 10−2 8.09 · 10−3

0.975 0.035 2.70 · 10−2 2.83 · 10−3 2.70 · 10−2 2.84 · 10−3

h hmin P1­Galerkin Local elem. splitting
εu′

y,∞ εu′
y,2 εu′

y,∞ εu′
y,2

6.221 0.279 1.02 · 10−1 4.11 · 10−2 1.02 · 10−1 4.05 · 10−2

3.508 0.140 5.32 · 10−2 1.16 · 10−3 5.28 · 10−2 1.14 · 10−2

1.917 0.070 1.58 · 10−2 2.93 · 10−3 1.58 · 10−2 2.89 · 10−3

0.975 0.035 4.58 · 10−3 7.34 · 10−4 4.54 · 10−3 7.24 · 10−4

T∞ = 300K. The angle of attack is set at 15 degrees, to make the setup more sensi­
tive to the scheme. We solve Reynolds­averaged Navier – Stokes equations with the
Spalart – Allmaras turbulence model. For this test we use two structured quadrilat­
eral meshes (coarse and fine) and a second­order finite volume scheme with no slope
limitation. The number of nodes on the profile is 162 for the coarse mesh and 246
for the fine mesh; the first mesh step normal to the blade is equal to 10−6 for both
meshes.

The results for the drag and lift coefficients are presented in Table 5. We com­
pare them with the result obtained on a very fine mesh (897 nodes on the blade). We
see again that the difference between the P1­Galerkin method and the method of local
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Table 3. The numerical error for the linear waves dissipation test. EBR3 scheme for
convective terms

h hmin P1­Galerkin Local elem. splitting
εp′,∞ εp′,2 εp′,∞ εp′,2

6.221 0.279 1.05 · 10−1 3.24 · 10−2 1.05 · 10−1 3.28 · 10−2

3.508 0.140 4.08 · 10−2 8.15 · 10−3 4.09 · 10−2 8.15 · 10−3

1.917 0.070 1.57 · 10−2 2.31 · 10−3 1.57 · 10−2 2.36 · 10−3

0.975 0.035 6.48 · 10−3 6.70 · 10−4 6.49 · 10−3 6.81 · 10−4

h hmin P1­Galerkin Local elem. splitting
εu′

y,∞ εu′
y,2 εu′

y,∞ εu′
y,2

6.221 0.279 6.71 · 10−2 1.90 · 10−2 6.09 · 10−2 1.85 · 10−2

3.508 0.140 3.59 · 10−2 4.87 · 10−3 3.59 · 10−2 4.86 · 10−3

1.917 0.070 1.29 · 10−2 1.21 · 10−3 1.29 · 10−2 1.18 · 10−3

0.975 0.035 4.72 · 10−3 3.06 · 10−4 4.69 · 10−3 2.92 · 10−4

Table 4. The numerical error for the linear waves dissipation test. Steady FC scheme
for convective terms

h hmin P1­Galerkin Local elem. splitting
εp′,∞ εp′,2 εp′,∞ εp′,2

6.221 0.279 9.81 · 10−2 3.87 · 10−2 9.87 · 10−2 3.83 · 10−2

3.508 0.140 2.93 · 10−2 9.47 · 10−3 2.92 · 10−2 9.32 · 10−3

1.917 0.070 8.66 · 10−3 2.37 · 10−3 8.66 · 10−3 2.33 · 10−3

0.975 0.035 3.35 · 10−3 6.07 · 10−4 3.35 · 10−3 5.97 · 10−4

h hmin P1­Galerkin Local elem. splitting
εu′

y,∞ εu′
y,2 εu′

y,∞ εu′
y,2

6.221 0.279 5.16 · 10−2 1.44 · 10−2 5.20 · 10−2 1.49 · 10−2

3.508 0.140 2.98 · 10−2 5.54 · 10−3 2.98 · 10−2 5.45 · 10−3

1.917 0.070 1.32 · 10−2 1.57 · 10−3 1.13 · 10−2 1.53 · 10−3

0.975 0.035 4.62 · 10−3 4.09 · 10−4 4.59 · 10−3 3.97 · 10−4

element splittings in negligible.



– 34 –

Table 5. The drag and lift coefficients for NACA0012 profile

Scheme Mesh CL CD
P1­Galerkin coarse 1.505718 0.027731

fine 1.533320 0.023143
Local elem. splitting coarse 1.504825 0.027822

fine 1.533145 0.023170
Local elem. splitting very fine 1.543686 0.022019

7. Implicit time integration
Up to this point we have noticed no advantage of the method of local splittings

compared to Galerkin method. They have approximately similar underlying theory,
approximately the same accuracy, the same computational costs (in our implementa­
tion), and similar implementation complexity. However, implicit time discretization
reveals a difference between them.

In this section, we assume the use of “direct” control volumes for the approxi­
mation of convective terms, then N̂1(j) is the set of nodes connected to j by edge.

Apply the first­order backward difference formula (BDF1) to the scheme (43):

Vj
Qn+1

j −Qn
j

∆t
+ Φj(Q

n+1) = ΦV
j (Q

n+1). (50)

To solve this nonlinear system, one can use an iterative process based on the Newton
method: Q(0)

j = Qn
j ,

Q
(s+1)
j = Q

(s)
j −M−1

(
diag{Vj}

Q(s) −Qn

∆t
+ Φ(Q(s))− ΦV (Q(s))

)
,

M =
1

∆t
diag{Vj} −M conv +M visc,

M conv ≈M conv
exact =

dΦ

dQ
(Q(s)), M visc ≈M visc

exact =
dΦV

dQ
(Q(s)).

(51)

One needs to solve linear algebraic system with the matrixM at each iteration. We
solve it using the preconditioned BiCGStab solver [46].

The true Newton method (i. e. with M conv = M conv
exact and M visc = M visc

exact)
is extremely inefficient in practice due to wide stencils of high­order finite volume
schemes and big condition number of the resulting matrix M . Therefore a reduced
variant of the matrix M conv is commonly used (see [47] for example). We take the
matrix M conv in a reduced form as it be for the “first­order” finite­volume scheme
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and drop the derivatives of eigenvalues and eigenvectors, which are used in the Roe
solver. Then the portrait of M conv contains only the main diagonal and the cells
(j, k) such that j ∈ N̂1(k) (or, which is the same, k ∈ N̂1(j)), here we consider
a 5x5 block related to the set of equations as one matrix element. On a structured
hexahedral mesh,M conv has 7 nonzero elements a row.

Since we use a simplified Jacobian for convective terms, the convergence of the
iterations is far from quadratic, and there is no reason to useM visc = M visc

exact. For a
structured hexahedral mesh each row of the matrixM visc

exact consists of 27 nonzero el­
ements. The idea is to keep only 7 elements per row forM visc. We drop the elements
jk such that the nodes jk are not connected by an edge and preserve zero column
sum. Besides, we drop skew­symmetric part of the tensor Gjk,αβ[κ]. To be precise,
for j ∈ N̂1(k), we put

M visc
jk = ρ−1

k

 0 0 0
−uk ·m m 0

−e · uk − σ(Ek − u2
k/2) eT − σuT σ

 ,

where ρk, uk, Ek are density, velocity and total energy at node K, m = {mαβ[µ]},
e = {eα},

mαα[κ] =
∑

δ=x,y,z

Gjk,δδ[κ] +
1

3
Gjk,αα[κ], mαβ[κ] =

1

6
(Gjk,αβ[κ] +Gjk,βα[κ]),

eα =
∑

β=x,y,z

mαβ[µuβ], σ =
γ

Pr
∑

δ=x,y,z

Gjk,δδ[µ].

Diagonal elements of the matrixMvisc are given by

M visc
jj = −

∑
k∈N̂1(j)

M visc
kj ,

andM visc
jk = 0 for j 6= k and j 6∈ N̂1(k).
The reduction of the martix portrait is almost 4 times, and it proportionally

reduces the computational costs for solving the algebraic system. The memory usage
also reduces significantly.

It turns out that this trick behaves differently for the P1­Galerkin method and
for the method of local elements splitting. We demonstrate this behavior on the 2D
flow around a plate. Consider Navier – Stokes equation in the domain 0 < x <
3, 0 < y < 1. On y = 0 we impose no­slip adiabatic boundary conditions, and
on other boundaries we keep free­stream flow with Mach number 0.1 (namely, we
put ρ∞ = 1, u∞ = (1,0,0)T , p∞ = 100/γ). Viscosity coefficient is µ = Re−1,
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Figure 9. Mesh used for the flow simulation around a plate

where Re is the formal Reynolds number (i. e. based on the mesh length unit).
For the convective terms approximation, we use the basic first­order finite­volume
scheme with the Lax – Friedrichs – Rusanov flux. This allows us to use the exact
flux Jacobian for convective terms.

We use Cartesian rectangular meshes with the nodes (xj, yj), where x0 = y0 =
0, x1 = y1 = hmin, and then the edge lengths grows progressively with the power
1.5. The mesh with hmin = 0.01 is shown on Fig. 9.

For these extremely small meshes we can store a flux Jacobian in the dense for­
mat and use Lapack package to analyze it. We apply block­diagonal preconditioner
to the matrix, i. e. we analyze the matrix M̃ = MΛ, whereM is the flux Jacobian
and diagonal blocks of Λ are the inverses of diagonal blocks of M . The condition
numbers in l2 of the matrices M̃ are collected in Table 6. Here we consider flux Ja­
cobians calculated on the field ρj = ρ∞, pj = p∞, and uj = 0 for the nodes on the
no­slip boundary and uj = u∞ otherwise; the flux Jacobians computed on steady
solutions of the given problem exhibit similar behavior.

The condition numbers themselves do not provide any meaningful information
about the possibility of solving the linear system. By the way, Table 6 shows that
the truncation of the flux Jacobian significantly increases the condition number in
the case of P1­Galerkin method. This is a reason to suspect that the truncation of
flux Jacobian significantly corrupts it. In contrast, for the method of local element
splittings the truncation does not significantly affect the condition number.

This suspicion is confirmed by the numerical experiments for high Reynolds
number flows. The use of full Jacobian for diffusion terms makes it possible to
use high CFL numbers, limited mainly by the convective terms. When using the
P1­Galerkin method, the truncation of the flux Jacobian may either work properly,
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Table 6. Condition numbers of preconditioned flux Jacobians for different schemes
and case parameters

Scheme Jacobian hmin Re CFL cond. number
P1­Galerkin full 10−2 100 10 7.90 · 104

truncated 10−2 100 10 7.74 · 104
P1­Galerkin full 10−2 100 100 8.61 · 106

truncated 10−2 100 100 8.91 · 106
P1­Galerkin full 10−2 10 10 5.69 · 104

truncated 10−2 10 10 6.14 · 106
P1­Galerkin full 10−2 10 100 2.10 · 106

truncated 10−2 10 100 1.95 · 107
Local elem. splitting full 10−2 100 10 8.34 · 104

truncated 10−2 100 10 8.38 · 104
Local elem. splitting full 10−2 100 100 8.87 · 106

truncated 10−2 100 100 8.92 · 106
Local elem. splitting full 10−2 10 10 5.66 · 104

truncated 10−2 10 10 5.66 · 104
Local elem. splitting full 10−2 10 100 2.60 · 106

truncated 10−2 10 100 2.63 · 106
P1­Galerkin full 10−3 100 10 5.60 · 104

truncated 10−3 100 10 3.93 · 106
P1­Galerkin full 10−3 100 100 2.10 · 106

truncated 10−3 100 100 3.28 · 107
P1­Galerkin full 10−3 10 10 2.04 · 105

truncated 10−3 10 10 7.10 · 106
P1­Galerkin full 10−3 10 100 7.87 · 105

truncated 10−3 10 100 5.25 · 107
Local elem. splitting full 10−3 100 10 5.66 · 104

truncated 10−3 100 10 5.66 · 104
Local elem. splitting full 10−3 100 100 2.60 · 106

truncated 10−3 100 100 2.63 · 106
Local elem. splitting full 10−3 10 10 1.75 · 105

truncated 10−3 10 10 1.75 · 105
Local elem. splitting full 10−3 10 100 7.32 · 105

truncated 10−3 10 100 7.41 · 105
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or lead to solver (BiCGStab) unconvergence, or lead to Newton process unconver­
gence, depending on the flow parameters, Courant number, and the mesh resolution
of the boundary layer. In contrast, when using the method of local element splittings,
the truncation of the flux Jacobian does not significantly change the behavior of the
scheme.

For example, consider again the flow around NACA0012 airfoil. Using the full
Jacobian, we can run the computations with the CFL number about 2 · 104 with both
the P1­Galerkin method and the method of local element splittings. The increasing
of the CFL number is possible up to 1 · 106 but this results in some spurious os­
cillations in time, and the further increase of the CFL number leads to the loss of
convergence. This behavior remains the same if we use the truncated Jacobian and
the method of local element splittings. However, if we use the truncated Jacobian and
the P1­Galerkin method, we are unable to run the computations with CFL� 1. Note
that on these meshes we have very well­resolved boundary layer; for poor­resolved
boundary layers higher CFL numbers are possible, but still much less than when the
full Jacobian and/or the method of local element splittings are in use.

8. Conclusion
The method of local element splittings is a novel finite­element method for

the discretization of diffusion terms of the Navier – Stokes system on unstructured
meshes. It is very close to the classical P1­Galerkin method; they coincide for sim­
plicial meshes and have the same stencil. The new method is second­order accurate
on structured meshes and on simplicial meshes, with possible degradation on un­
structured mixed­element meshes. The difference from the P1­Galerkin method also
appears in the approximation of the Laplace operator on Cartesian meshes. The P1­
Galerkinmethod yields a combination of direct and skewed crosses, while themethod
of local element yields the direct cross (5­point in 2D and 7­point in 3D).

Although for the discretization of viscous terms the stencil of the method
cannot be reduced to the set of edge­connected nodes, this approach may be
applied to the approximated flux Jacobian used in implicit schemes, especially
for convection­dominated flows. The numerical results show that for the method
of local element splittings it significantly improves the computational costs
and memory requrements without loss of convergence of a linear system solver
and of the Newton method. This is not possible for the classical P1­Galerkin method.

The author thanksM. D. Surnachev and A. V. Gorobets for their useful remarks.
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