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УДК 517.93+531.314

Александр Дмитриевич Брюно

Семейства периодических решений и инвариантных торов системы Гамильтона.

Препринты ИПМ им. М.В. Келдыша, Москва, 2020.

Вблизи неподвижного решения, вблизи периодического решения и вблизи

инвариантного тора аналитической системы Гамильтона рассматривается нор-

мальная форма функции Гамильтона. Обычно нормализующее преобразование

расходится в полной окрестности каждого указанного исходного объекта, но

существуют сходящиеся преобразования, которые нормализуют функцию Га-

мильтона лишь на некоторых множествах, примыкающих к исходному объекту.

Эти множества аналитичны, включают все формальные семейства периодиче-

ских решений, а при некотором условии на малые знаменатели они включают

некоторые формальные семейства инвариантных торов с подобными базисами

частот. Поэтому в случае общего положения вещественная система Гамильтона

с n степенями свободы имеет: а) однопараметрические семейства периодиче-

ских решений, б) однопараметрические семейства n-мерных неприводимых
инвариантных торов и в) (l + 1)-параметрические семейства k(< n)-мерных
неприводимых инвариантных торов с ровно 2l собственными значениями, име-
ющими нулевые вещественные части, и все их мнимые части соизмеримы с

частотами.

Ключевые слова: система Гамильтона, стационарное решение, периодиче-

ское решение, инвариантный тор, нормальная форма.

Alexander Dmitrievich Bruno

Families of Periodic Solutions and Invariant Tori of Hamiltonian System.

Near a stationary solution, near a periodic solution and near an invariant torus

of an analytic Hamiltonian system we consider the normal form of its Hamiltonian

function. Usually, the normalizing transformation diverges in the whole neighborhood

of each mentioned initial object, but there exist convergent transformations, which

normalize the Hamilton function only in some sets adjoining the initial object. The sets

are analytic, include all formal families of periodic solutions and under a condition on

small divisors, they include some formal families of invariant tori with similar bases

of frequencies. So generically the real Hamiltonian system with n degrees of freedom
has: (a) one-parameter families of periodic solutions, (b) one-parameter families of

n-dimensional invariant irreducible tori and (c) (l + 1)-parameter families of k(< n)
dimensional irreducible invariant tori with exactly 2l eigenvalues having zero real
parts, and for all of them imaginary parts are commensurable with frequencies.

Key words: Hamiltonian system, stationary solution, periodic solution, invariant

torus, normal form.
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1. Introduction

We consider the real analytic autonomous Hamiltonian system with a finite

number of degrees of freedom and without parameters near its stationary solution

(Section 2), near its periodic solution (Section 3) and near its invariant torus (Section 4).

Our aim is to study families of periodic solutions and families of invariant tori

adjoining the mentioned above initial objects.

For that, we reduce the Hamiltonian system to its normal form. Using it, we

select such formal sets, for which there exist convergent normalizing transformations

and so the sets are analytic. They are the set Ã, if small divisors are absent, and the
set B, if small divisors present and satisfy a condition. The set Ã contains all families

of periodic solutions.

It appeared that in general case a periodic solution lies at an one-parameter family

of periodic solutions with near periods and invariant irreducible torus of the maximal

possible dimension also lies at an one-parameter family of such tori with similar bases

of frequencies, but formal families of invariant tori of non-maximal dimension are

analytic, only if their eigenvalues satisfy an additional condition: all eigenvalues with

zero real part have imaginary parts commensurable with set of frequencies.

• Huygens in XVII century began to study periodic solutions.

• Kolmogorov [Kolmogorov, 1954] began to study analytic invariant tori.

• His successors Arnold, Moser and others developed a theory named KAM.

Here another approach from the [Bruno, 1989, Part II] is used. In the present

work there are three new methods:

• a division of a formal set Ak into components Ak
I ;

• an introduction of the reduced normal form, not depending on time;

• writing the sets Ak
I and Bk for the reduced normal form.

2. A neighbourhood of a stationary solution

2.1. Normal form. Consider the Hamiltonian system

ξ̇j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξj
, j = 1, . . . , n (2.1)

with n degrees of freedom in a neighborhood of the stationary point

ξ = (ξ1, . . . , ξn) = 0, η = (η1, . . . , ηn) = 0. (2.2)

If the Hamiltonian γ(ξ,η) is analytic at this point, then it can be expanded in
the power series

γ(ξ,η) =
∑

γpqξ
pηq, (2.3)

where p = (p1, . . . ,pn), q = (q1, . . . ,qn) ∈ Zn, p,q > 0, ξp = ξp11 ξp22 · · · ξpnn , γpq are
constant coefficients.
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Since point (2.2) is stationary, expansion (2.3) begins with quadratic terms.

These terms are associated with the linear part of system (2.1). The eigenvalues of

the matrix of the linear system are organized in pairs

λj+n = −λj , j = 1, . . . ,n .

Let λ = (λ1, . . . ,λn). The canonical changes of coordinates

ξ,η −→ x,y (2.4)

preserve the Hamiltonian property of the system.

Theorem 2.1 ([Bruno, 1972, § 12]). There exists a canonical invertible formal trans-

formation (2.4) that reduces initial system (2.1) to the normal form

ẋj =
∂g

∂yj
, ẏj = −

∂g

∂xj
, j = 1, . . . ,n , (2.5)

where the series

g(x,y) =
∑

gpqx
pyq (2.6)

contains only resonant terms with

〈p− q,λ〉 = 0. (2.7)

Here 〈p,λ〉 = p1λ1 + · · ·+ pnλn is the scalar product.

For the real original system (2.1), the coefficients gpq of the complex normal
form (2.6) satisfy special real type relations, and under the standard canonical linear

change of coordinates (x,y)→ (X,Y), system (2.5) takes the real form [Bruno, 1994,

Ch. I].

Let I = {i1, . . . ,im} be a set of increasing natural indices i 6 n. Here 1 6 m 6
n. Consider the coordinate subspace

KI = {x,y : xj = yj = 0 for all j 6∈ I} .

If I = {1, . . . ,n}, then KI is the space C2n with coordinates x,y, which we
denote as Kn.

Let us mention four numerical characteristics of a coordinate subspace KI :

1) Its half-dimensionmI = m.
2) Its multiplicity of resonances κI , as a number of linearly independent integer

relations
∑

i∈I piλi = 0 with integer pi.
3) Its degree of irrationality σI = mI − κI .

4) Its subsets of eigenvalues λI = {λi, i ∈ I} and α = {αi,i ∈ I}.
Below we will consider the case where all eigenvalues λ1, . . . ,λn are pure

imaginary: λj = iαj, αj ∈ R, and all λj 6= 0.
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2.2. Convergency of the normalizing transformation.

Condition ω

Let ωk = min |〈p,λ〉| over 〈p,λ〉 6= 0, ||p|| < 2k, p ∈ Zn, where ||p|| =
∑
|pj|.

Then

−
∞∑
k=1

logωk

2k
<∞.

It is very weak numerical restriction on the eigenvalues λ. It satisfies for almost
all sets λ. In particularly, it satisfies if all λj are pairwise commensurable, then the
multiplicity of resonances κn for the whole space Kn is equal to n− 1. Condition ω
is a restriction on ‘‘small divisors’’ arising in the normalizing transformation.

Condition A

There exists such a power series a(x,y), that in the normal form (2.5)

∂g

∂yj
= λjxja,

∂g

∂xj
= λjyja, j = 1, . . . ,n.

It is a very hard restriction on the right parts of the normal form (2.5). It satisfies

very seldom.

Theorem 2.2 ([Bruno, 1971]). If eigenvalues λ satisfy Condition ω and the normal

form (2.5) satisfies Condition A, then the normalizing transformation converges in a

neighborhood of the stationary point x = y = 0.

According to [Bruno, 1972, § 12] Condition A is equivalent to the condition

that the Hamiltonian g(x,y) of the normal form (2.5) is a power series of one variable
n∑

j=1

λjxjyj.

2.3. Set A. Suppose that the functions f1(x,y), . . . , fr(x,y) are analytic and vanish
at the point x = y = 0. Then the system of equations

fj(x,y) = 0, j = 1, . . . , r (2.8)

defines an analytic set N containing the point x = y = 0. If f1, . . . , fr are formal
power series, we say that (2.8) defines a formal set N .

Problem 2.1. Which invariant formal sets of the system (2.1) are analytic?

The fact is that it is comparatively easy to calculate formal invariant sets using

the normal form (2.5)–(2.7). We need to select among them only those that are analytic

for the initial system (2.1).
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From the normal form (2.5)–(2.7) we form the formal set

A =

{
x,y :

∂g

∂yj
= λjxja,

∂g

∂xj
= λjyja, j = 1, . . . , n

}
(2.9)

where a is a free parameter. We can exclude it from the equations and obtain a

representation of the set A in the form (2.8).

All solutions from the set ReA are conditionally-periodic (including periodic

and stationary solutions). In fact, the value of the parameter a is constant in each
solution and we have

xj = x0j expλjat, yj = y0j exp (−λjat) , j = 1, . . . , n.

Definition 2.1. LetKI be a coordinate subspace in x,y. The component AI of the set

A in this subspace is defined by the system of equations

∂g

∂yj
= λjxja,

∂g

∂xj
= λjyja, j ∈ I,

and all xj,yj 6= 0 for j ∈ I . In particularly, there is the component An for the whole

space Kn.

Theorem 2.3. If in the normal form (2.5) Hamiltonian g(x,y) is analytic, then each
component ReAI is a family of irreducible invariant tori of dimension σI with fre-

quencies aαI . Generically the family is either one-parametric (along a) or it is empty.
In degenerate cases it can have more than one parameter.

A torus of dimension 1 is a periodic solution.
A coordinate subspace KĨ is called rational if the corresponding eigenvalues

λĨ are pairwise commensurable. Let K̃ be the union of all rational subspaces, and

Ã = A ∩ K̃

Theorem 2.4 ([Bruno, 1989, Part II, § 3]). There exists an analytic canonical trans-

formation ξ,η → x,y which transforms initial system (2.1) to normal form in the set

Ã and the set is analytic.

2.4. Set B. Let Λ = {λ1, . . . , λn} be a diagonal matrix. In the setA we consider the

2n× 2n matrix

B =


∂2g

∂y∂x
− Λa

∂2g

∂y∂y

− ∂2g

∂x∂x
− ∂2g

∂x∂y
+ Λa

 ,
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where a is the same parameter as in equations (2.9). We define the formal set B as
that subset of the set A in which the matrix B is nilpotent, that is,

B =
{
x,y : x,y ∈ A, B2n = 0

}
.

Theorem 2.5 ([Bruno, 1989, Part II]). Generically B = An.

Theorem 2.6 ([Bruno, 1989, Part II]). If eigenvalues λ satisfies Condition ω then

there exists an analytic canonical transformation ξ,η → x,y which transforms initial

system (2.1) to normal form in the set B and the set is analytic.

2.5. Example 2.1. Suppose that λ1, . . . , λn are linearly independent over integral
numbers, that is, the equation 〈p,λ〉 = 0 has only the trivial solution p = 0 for the
integers p. Then in the normal form (2.5)-(2.7),

g = f (ρ1, . . . , ρn) , where ρj = xjyj, j = 1, . . . , n.

We therefore have

A =

{
x, y : xj

∂f

∂ρj
= λjxja, yj

∂f

∂ρj
= λjyja, j = 1, . . . , n

}
.

We consider the set A in the cartesian coordinates ρ = (ρ1, . . . , ρn). In the gen-
eral case, each coordinate subspace (with respect to ρ ) contains one onedimensional
(with respect to ρ ) component of the set A that does not lie in a smaller coordinate

subspace. Consequently, the setA consists of 2n−1 such components; for each d 6 n
there are exactly n!/[d!(n− d)!] of these components situated in d-dimensional (with
respect to ρ) coordinate subspaces. In particular, there is one component,

An =

{
ρ :

∂f

∂ρj
= λja, j = 1, . . . , n

}
situated outside the coordinate subspaces. B2 = 0 in this component.

In fact,

B =

(
R− Λa 0

0 −R + Λa

)
+

(
U 0
0 V

)(
S S
−S −S

)(
V 0
0 U

)
where the blocks are the following n× n matrices:

R =

{
∂f

∂ρ1
, . . . ,

∂f

∂ρn

}
, U = {x1, . . . , xn} , V = {y1, . . . , yn}
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these are diagonal, and

S =

(
∂2f

∂ρj∂ρk

)
.

In the set A we have

B =

(
U 0
0 V

)(
S S
−S −S

)(
V 0
0 U

)
that is, B2 = 0. In the general case, the matrix B is not nilpotent in coordinate

subspaces, since there for some derivatives ∂f/∂ρj 6= λja. Thus, B = An.

Moreover, the n components

A′j = {ρ : ρi = 0, i 6= j, 1 6 i 6 n} , j = 1, . . . , n,

are coordinate axes with respect to ρ and exhaust all rational subspaces; taken to-
gether, they make up the set Ã. According to Theorem 2.4, the initial system (2.1)

has n analytic one-parameter families A′j of periodic solutions (these are Lyapunov
[Lyapunov, 1892] families).

If the eigenvalues λ satisfy Condition ω, then by Theorems 2.6, 2.5 the compo-
nent An = B is also an analytic set.

Let

f = g = 〈ρ,λ〉+ 1

2
〈ρ, Tρ∗〉+ · · · (2.10)

where T is a symmetric matrix. In the general case, det T 6= 0 and the system of

equations in (2.9) has a one-dimensional solution

ρ∗ = T−1λ∗(a− 1) + o(a− 1), (2.11)

where ∗ means transposition.
If the initial system (2.1) is real, the coordinates xj, yj are connected by the reality

relation x̄j = −iyj . Consequently, − argxj = arg yj − π/2, that is, arg (xjyj) = π/2.
Thus, purely imaginary ρj with Im ρj ≥ 0, j = 1, . . . , n correspond to real

values of the initial coordinates. Each set A′j has a real part,

ReA′j = {ρj : Re ρj = 0, Im ρj ≥ 0}

which is a real one-parameter family of periodic solutions. For the real Hamilto-

nian (2.10) the matrix T is also real. If the vector T−1 Imλ∗ has coordinates of
different signs, then according to (2.11), the set B has only a trivial real part, ReB = 0.

If all the coordinates of T−1α∗ are of the same sign, the real set ReB is a one-
parameter family of n-dimensional irreducible invariant tori with frequency basis
α1a, . . . , αna. As a→ 1 the tori of this family tend towards the fixed point x = y = 0.
For a detailed analysis of various situations see in [Bruno, 1989, Part II, § 3].



– 9 –

3. A neighborhood of a periodic solution

3.1. Local coordinates. Let a real Hamiltonian systemwith n+1 degrees of freedom
have a real 2π -periodic solutionM and the Hamiltonian function is analytic in some

neighborhood of it.

According to [Bruno, 1994, Ch. II, Sect. 2.1] near the solutionM we can intro-

duce such real local canonical coordinates ξ = (ξ1, . . . ,ξn) , ψ and η = (η1, . . . ,ηn) , ρ,
that the solutionM is given by equations

ξ = η = 0, ρ = 0, ψ = ψ0 + t

and the Hamiltonian has the form

γ = Σγpql(ψ)ξ
pηqρl = ρ+ · · · , (3.1)

where integers p,q > 0, integer l > 0, real analytic functions γpql(ψ) have in ψ the

period 2π and they are expanded in the Fourier series.

Then the Hamiltonian system is

ξ̇j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξj
, j = 1, . . . ,n,

ψ̇ =
∂γ

∂ρ
, ρ̇ = −∂γ

∂ψ
.

3.2. Normal form. For ρ = 0 and ψ = t quadratic in ξ,η part γ2 of the Hamilto-
nian (3.1) defines 2π-periodic linear in ξ,η system

ξ̇j =
∂γ2
∂ηj

, η̇j = −
∂γ2
∂ξj

, j = 1, . . . ,n. (3.2)

Let ν1, . . . ,ν2n be eigenvalues of its monodromy matrix, i. e. matrix of substitu-
tion of fundamental matrix of solutions to the system (3.2) in the period 2π. Let all

|νj| = 1 and νj 6= −1. We put

αj =
1

2πi
ln νj, αj ∈ R, αj ∈

(
−1
2
,
1

2

)
, j = 1, . . . ,2n.

Using correct numeration one obtains

αj+n = −αj, j = 1, . . . ,n.

Let denote α = (α1, . . . ,αn).
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Theorem 3.1 ([Bruno, 1994, Ch. II]; [Bruno, 2020]). There exists a complex formal

invertible 2π-periodic in ψ and ϕ canonical transformation of coordinates in the form

of Poisson series

ξ,ψ,η,ρ←→ x,ϕ,y, r, (3.3)

which reduces the Hamiltonian γ into normal form

g(x,ϕ,y,r) = r + i

n∑
j=1

αjxjyj +
∑

gpqlmx
pyqrleimϕ, (3.4)

where x,y ∈ Cn, 0 6 p,q ∈ Zn, l > 0 andm are integer, all terms of the second sum

are resonant, i. e.

〈p− q,α〉+m = 0. (3.5)

Theorem 3.2. There exists a canonical transformation

xj = uj exp(−iβjϕ), yj = vj exp(iβjϕ), j = 1, . . . ,n,

r = s− i

n∑
j=1

βjujvj
(3.6)

with rational βj , which reduces the normal form of the Hamiltonian (3.4), (3.5) to an

autonomous power series

h(u,v,s) = s+ i

n∑
j=1

γjujvj +
∑

hpqlu
pvqsl, (3.7)

where in the first sum all nonzero γj are irrational numbers and in the second sum

0 6 p,q ∈ Zn, 0 6 l ∈ Z, hpql = const ∈ C and present only resonant terms with

〈p− q,γ〉 = 0,

where γ = (γ1, . . . ,γn).

Similar theorem is in [Bruno, 2020]. Theorem 3.2 is a particular case of Theo-

rem 4.2 that will be given in Section 4 with the proof.

Variable s now is a formal integral of the following system

u̇j =
∂h

∂vj
, v̇j = −

∂h

∂uj
, j = 1, . . . ,n, (3.8)

ϕ̇ =
∂h

∂s
. (3.9)
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If the initial Hamiltonian γ is real for real coordinates ξ,ψ,η,ρ, then in The-
orem 3.1 variables x, y are complex but variables ψ, ρ and ϕ, r are real. Here ac-
cording to [Bruno, 1994, Chs. I, II] variables x,y are connected with real variables
X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn) by the linear standard transformation

xj =
1√
2i

(iXj − Yj) , yj =
1√
2i

(iXj + Yj) , j = 1, . . . ,n.

3.3. Convergency of the normalizing transformation.

Condition ω1

Let ωk = min |p0 + 〈p,α〉| over |p0 + 〈p,α〉| 6= 0, |p0|+ ||p|| < 2k, p0 ∈ Z, p ∈ Zn.

Then

−
∞∑
k=1

logωk

2k
<∞.

Condition A1

There exists such a Poisson series a(x,ϕ,y,r) that in the normal form (3.4)

∂g

∂yj
= iαjxja,

∂g

∂xj
= iαjyja, j = 1, . . . , n,

∂g

∂ϕ
= 0,

∂g

∂r
= a.

(3.10)

According to [Bruno, 1972, § 11] it equivalents to the condition that Hamiltonian

g is a power series of one variable r + i
∑n

j=1 αjxjyj.

Theorem 3.3 ([Bruno, 1972], § 11). The normalizing transformation (3.3) converges

in a neighborhood of our periodic solution if numbers α satisfy Condition ω1 and the

normal form (3.4), (3.5) satisfies Condition A1.

3.4. SetA1. Let now a is an arbitrary parameter. Then the system of equations (3.10)

defines the setA1. For the reduced normal form (3.7), (3.8), (3.9), the setA1 is defined

by the system

∂h

∂vj
= iγjuja,

∂h

∂uj
= iγjvja, j = 1, . . . , n, (3.11)

∂h

∂s
= a.

Subsystem of equations (3.11) defines the set of all periodic solutions of the

subsystem (3.8). Equation (3.9) ϕ̇ = ∂h/∂s gives dependence of ϕ from t for each
of these solutions.
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To each set of increasing indices I = {i1, . . . ,im}, 1 6 i1, im 6 n, 1 6 m 6 n,
there correspond the coordinate subspaces

K1
I = {x,y, r,ϕ : xj = yj = 0 for all j 6∈ I} ,
L1
I = {u,v, s,ϕ : uj = vj = 0 for all j 6∈ I} .

Now the coordinate r or s corresponds to the frequency 1, so each subspace K1
I

and L1
I corresponds to the set of frequencies {1, αi1, . . . , αim}, {1, γi1, . . . , γim}. As

in Section 2, we define for it multiplicity of resonances κ1
I and degree of irrationality

σ1I = m+ 1− κ1
I .

As in the transformation (3.6) all βj are rational numbers, then these numbers
coinside for K1

I and L
1
I .

As before, in subspaces K1
I and L

1
I we define components A1

I of the set A1,

as parts of intersection of set A1 with the subspace, excluding points lying at the

smaller coordinate subspaces K1
J and L

1
J correspondingly. Sets A1

I in K
1
I and in L

1
I

are the same and connected by the transformation (3.6). If I = {1, . . . ,n}, then K1
I

and L1
I are the whole space C2(n+1), which we denote K1

n = L1
n. For components A1

I

Theorem 2.3 about families of invariant tori is true.

Let Ĩ1 is a set of all indices j with rational αj or zero γj . DefineA1
Ĩ
= A1 ∩L1

Ĩ1
.

Similarly to Theorem 2.4, there exists a converge transformation, normalizing at the

set A1
Ĩ
, and the set is analytic. It contains all families of periodic solutions adjoining

the initial periodic solutionM. In it equations (3.11) take the form

∂h

∂vj
= 0 =

∂h

∂uj
, j ∈ Ĩ1.

This system defines a set of stationary points, and equation ϕ̇ =
∂h

∂s
= a give

dependence of t for them. The set A1
Ĩ
contains the set A1

0, where all uj = vj = 0,
j = 1, . . . ,n, i. e. it is not empty. Hence, each periodic solution of a Hamiltonian
system belongs to a family of periodic solutions (see [Bruno, 1994, Ch. II, § 2]).

3.5. Set B1. Let Γ = {γ1, . . . , γn} be a diagonal matrix. At the setA1 in coordinates

u,v, s we consider the square (2n+ 1)× (2n+ 1) matrix

B1 =


∂2h

∂v∂u
− iΓa

∂2h

∂v∂v

∂2h

∂v∂s
∂2h

∂s∂u

∂2h

∂s∂v

∂2h

∂s∂s

− ∂2h

∂u∂u
− ∂2h

∂v∂u
+ iΓa − ∂2h

∂u∂s

 ,
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where a is the same parameter as in equations (3.10).
The set B1 is such subset of the set A1 on which the matrix B1 is nilpotent, i. e.

B2n+1
1 = 0.

Theorem 3.4. Generically

B1 = A1
n

and ReB1 is a one-parameter (along a) family of invariant tori of dimension σ1n.

Theorem 3.5 ([Bruno, 1989, Part II, § 3]). Under Condition ω1 there exists such

analytic canonical transformation (3.2) that reduces the initial system to the normal

form at the set B1 and the set is analytic.

If no resonant relation p0 + 〈α,p〉 = 0 exists for numbers 1,α, where p0 ∈ Z,
p ∈ Zn, then generically the set ReB1 is a one-parameter family of irreducible

invariant tori of dimension n+ 1.

4. Neighborhood of an invariant torus

4.1. Local coordinates. Let a real analytic Hamiltonian system with k + n degrees

of freedom has a k-dimesional invariant torus T k. The torus is named regular, if in

some canonical analytical coordinates ξ, ψ, η, ρ (ψ,ρ ∈ Rk, ξ,η ∈ Rn):

1) the torus T k is defined by equations

ξ = η = 0, ρ = 0;

2) coordinates ψ are cyclic (angular) mod 2π and in the torus T k they satisfy to

the system of equations

ψ̇i = Ωi = const ∈ R, i = 1, . . . ,k;

3) in a neighborhood of the torus T k the system is Hamiltonian

ξ̇j =
∂γ

∂ηj
, η̇j = −

∂γ

∂ξj
, j = 1, . . . ,n

ψ̇i =
∂γ

∂ρi
, ρ̇i = −

∂γ

∂ψi
, i = 1, . . . ,k

with analytic Hamiltonian function γ(ξ,ψ,η,ρ) which is expanded into the

convergent Poisson series

γ =
∑

γp,l,q,mξ
pηqρm exp i 〈l,ψ〉 , (4.1)

where 0 6 p,q ∈ Zn, 0 6 m ∈ Zk, l ∈ Zk,
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4) The variational system is reducible, i. e. the square in ξ,η part γ2(ξ,ψ,η,ρ) of
the Hamiltonian γ for ρ = 0 does not depend on ψ:

γ2 =
1

2
〈ζ,Gζ〉 ,

where ζ = (ξ,η) andG is a constant symmetric 2n× 2nmatrix. Let λ1, . . . ,λ2n

be the eigenvalues of the matrix A = JG, where J =

(
0 En

−En 0

)
and En is

the identity n× n matrix. Applying the correct numbering one has

λj+n = −λj, j = 1, . . . ,n.

We denote λ = (λ1, . . . ,λn) and Ω = (Ω1, . . . ,Ωk).

4.2. Normal form.

Theorem 4.1. There exists a canonical invertible formal transformation of coordinates

ξ,ψ,η,ρ←→ x,ϕ,y,r (4.2)

in the form of Poisson series of type (4.1), which near a regular invariant torus T k

reduces the Hamiltonian (4.1) to its normal form

g =
n∑

j=1

λjxjyj +
k∑

i=1

Ωiri +
∑

gplqmx
pyqrm exp i 〈l,ϕ〉 (4.3)

where the third sum contains only resonant terms, for which

〈p− q,λ〉+ i 〈l,Ω〉 = 0. (4.4)

Its proof is similar to the proof of Theorem 3.1 in Ch. II of [Bruno, 1994]. Below

in this Section we will consider the case where all eigenvalues λ are pure imaginary:

λj = iαj, αj ∈ R, and all λj 6= 0. Let α = (α1, . . . ,αn).

Theorem 4.2. If equation 〈l,Ω〉 = 0 in l ∈ Zk has only zero solution l = 0, then there
exists a canonical transformation

xj = uj exp (−i 〈Aj,ϕ〉) , yj = vj exp i 〈Aj,ϕ〉 , j = 1, . . . ,n,

r∗ = s∗ −Bw∗, (4.5)
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where w = (u1v1, . . . ,unvn), B is a k × n matrix with rational elements, and matrix

A =

A1
...

An

 = B∗, which transforms the Hamiltonian normal form (4.3), (4.4) to the

autonomous series

h(u, v,s) = i

n∑
j=1

γjujvj +
k∑

i=1

Ωisi +
∑

hpqmu
pvqsm, (4.6)

which does not depend on angles ϕ and contains only resonant terms with

〈p− q,γ〉 = 0, (4.7)

where γ = (γ1, . . . ,γn).

Here asterisk ∗ means transposition.

Proof. In assumption of Theorem equation (4.4) takes the form

〈p− q,α〉+ 〈l,Ω〉 = 0. (4.8)

Let equation

〈p,α〉+ 〈l,Ω〉 = 0 (4.9)

have µ linearly independent integer solutions (p,l). Then integer solutions (p,l) of
equation (4.9) form a lattice in Rn+k and as a consequence of linear independence Ω
we have 0 6 µ 6 n. Let the set of vectors

(p1,l1), . . . ,(pµ,lµ) (4.10)

forms a basis of the lattice. Then the µ× n matrix C =

p1
...

pµ

 has such µ columns

that their determinant is different from zero. For simplicity of notations we assume

that they are columns with numbers 1, . . . ,µ. Now all vectors p = (p1, . . . ,pn) we
divide into two parts p′ = (p1, . . . ,pµ) and p

′′ = (pµ+1, . . . ,pn). Similarly we divide
the matrix C = (C ′,C ′′), where matrix C ′ has dimension µ× µ, and matrix C ′′ has
dimension µ× (n−µ). For vectors of the basis (4.10), from equation (4.9) we obtain

the system of equations

C ′α′∗ + C ′′α′′∗ + LΩ∗ = 0,

where L is a matrix with integral elements.
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Let us solve the last system for α′∗:

α′∗ = −C ′−1C ′′α′′∗ − C ′−1LΩ∗ def=−Dα′′∗ − ÃΩ∗, (4.11)

where matrices D = C ′−1C ′′ and Ã = C ′−1L have rational elements and dimensions

µ× (n−µ) and µ× k respectively. Here numbers α′′ andΩ are linearly independent

over integral numbers, i. e. the equation

〈p′′,α′′〉+ 〈l,Ω〉 = 0

in integer (p′′,l) has only zero solution p′′ = 0, l = 0. Let define the n× k matrix

A =

(
Ã
0

)
. (4.12)

Taking into account (4.11), now we consider integer solutions (p,q,l) to the equa-
tion (4.8)

〈(p− q)′,α′〉+ 〈(p− q)′′,α′′〉+ 〈l,Ω〉 =

=
〈
(p− q)′,−Dα′′∗ − ÃΩ∗

〉
+ 〈(p− q)′′,α′′〉+ 〈l,Ω〉 =

=
〈
(p− q)′,−ÃΩ∗

〉
− 〈l,Ω〉 − 〈(p− q)′, Dα′′∗〉+ 〈(p− q)′′,α′′〉 =

=
〈
l− Ã∗(p− q)′,Ω

〉
+ 〈(p− q)′′ −D(p− q)′,α′′∗〉 = 0.

As α′′ and Ω are linearly independent over integral numbers, then the last equality

gives equations

l =Ã∗ (p− q)′ , (4.13)

(p− q)′′ =D∗ (p− q)′ .

Now let us compute dependence from ϕ for a resonant monomial after substitu-

tion (4.5)

xpyq exp i 〈l,ϕ〉 = upvq exp i (〈q− p, Aϕ∗〉+ 〈l,ϕ〉) ,
where matrix A was defined in (4.12). So here dependence of ϕ is〈

(q− p)′,Ãϕ∗
〉
+ 〈l,ϕ〉 =

〈
Ã∗(q− p)′ + l,ϕ

〉
= 〈0,ϕ〉 = 0

according to (4.13).

Other statements of Theorem are easily verified. Proof is finished.
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Remark 4.1. In system

u̇j =
∂h

∂vj
, v̇j = −

∂h

∂uj
, j = 1, . . . ,n, (4.14)

ϕ̇i =
∂h

∂si
, ṡi = −

∂h

∂ϕi
, i = 1, . . . ,k,

corresponding to the reduced normal form of Hamiltonian (4.6), all coordinates s are

parameters. For the stationary points (u0,v0,s0) of the subsystem (4.14), which satisfy

the ‘‘algebraic’’ system of equations

∂h

∂vj
=

∂h

∂uj
= 0, j = 1, . . . ,n,

equations

ϕ̇i =
∂h

∂si

∣∣∣∣
u0,v0,s0

, i = 1, . . . ,k,

define frequencies on the corresponding invariant tori.

Remark 4.2. If frequencies Ω1, . . . ,Ωk are linearly independent over integral numbers,

i. e. equation 〈l,Ω〉 = 0 in l ∈ Zk has only zero solution l = 0, then the initial torus
T k is irreducible.

4.3. Convergency of the normalizing transformation.

Condition ωk

Let ωm = min |〈p,α〉+ 〈l,Ω〉| = 0 for 〈p,α〉+ 〈l,Ω〉 6= 0, ||p||+ ||l|| < 2m, p ∈ Zn,

l ∈ Zk. Then

−
∞∑

m=1

logωm

2m
< 0.

Condition Ak

There exists such a Poisson series a(x,ϕ,y,r) that in the normal form (4.3)

∂g

∂yj
= iαjxja,

∂g

∂xj
= iαjyja, j = 1, . . . ,n,

∂g

∂ϕi
= 0,

∂g

∂ri
= Ωia, i = 1, . . . ,k.

(4.15)

It equivalents to the condition that Hamiltonian g is a power series of one variable

n∑
j=1

λjxjyj +
k∑

i=1

Ωiri.
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Theorem 4.3. The normalizing transformation (4.2) converges in a neighborhood

of our invariant torus T k if numbers α and Ω satisfy Condition ωk and the normal

form (4.3), (4.4) satisfies Condition Ak.

4.4. SetAk. Let now a is an arbitrary parameter. Then the system of equations (4.15)

defines the formal setAk. For the reduced normal form (4.6), (4.7) the setAk is defined

by the system of equations

∂h

∂vj
= iγjuja,

∂h

∂uj
= iγjvja, j = 1, . . . ,n,

∂h

∂si
= Ωia, i = 1, . . . ,k.

(4.16)

To each set of increasing indices I = {i1, . . . ,,im}, 1 6 i1, im 6 n, 1 6 m 6 n,
there correspond the coordinate subspaces

Kk
I = {x,y,r,ϕ : xj = yj = 0 for all j 6∈ I},
Lk
I = {u,v,s,ϕ : uj = vj = 0 for all j 6∈ I}.

If I = {1, . . . ,n}, then Kk
I = Lk

I = C2(n+k) def= Lk
n.

Now coordinates r,ϕ,s correspond to frequenciesΩ. So the coordinate subspaces
Kk

I and L
k
I correspond to the set of frequencies {Ω,αi1, . . . ,αim} and {Ω,γi1, . . . ,γim}.

For each Kk
I and L

k
I we denotemI = m and :

1) half-dimensionmk
I = k +mI ;

2) multiplicity of resonances κk
I as the number of linearly independent integer

relations ∑
j∈I

pjαj + 〈l,Ω〉 = 0 and
∑
j∈I

pjγj + 〈l,Ω〉 = 0

with integer pj and l ∈ Zk;

3) degree of irrationality σkI = k +mk
I − κk

I ;

4) subset of frequencies Ω,αI and Ω,γI .

Numbersmk
I ,κk

I ,σ
k
I coincide for K

k
I and L

k
I , because in transformation (4.5) all

elements of matrices A and B are rational numbers.

As before in subspaces Kk
I and L

k
I we define components Ak

I of the set Ak as

parts of intersections of the set Ak with the subspaces excluding points belonging to

smaller subspaces Kk
J and L

k
J . Sets Ak

I inK
k
I and in L

k
I are the same and connected

by transformation (4.5). So, there is component Ak
n.

Theorem 4.4. If the normalized Hamiltonian (4.3), (4.4) is analytic, then each com-

ponent ReAk
I is a family of irreducible invariant tori of dimension σ

k
I with frequencies

Ωa, γIa. In the generic case these families have κk
I parameters.
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4.5. Set Bk. Let Γ = {γ1, . . . ,γn} be a diagonal matrix. In the set Ak in coordinates

u,v,s we consider the (2n+ k)× (2n+ k) matrix

Bk =


∂2h

∂v∂u
− iΓa

∂2h

∂v∂v

∂2h

∂v∂s
∂2h

∂s∂u

∂2h

∂s∂v

∂2h

∂s∂s

− ∂2h

∂u∂u
− ∂2h

∂u∂v
+ iΓa − ∂2h

∂u∂s

 ,

where a is the same parameter as in equations (4.16). The set Bk is such subset of the

set Ak, where the matrix Bk is nilpotent, i. e. B
2n+k
k = 0.

Theorem 4.5. Under Condition ωk there exists such analytic canonical transforma-

tion (4.2), which reduces the initial Hamiltonian to the normal form in the set Bk and

that set is analytic.

Theorem 4.6. Generically Bk = Ak
n.

Hence, the set ReBk consists of tori of dimension k, if all γj are zero, i.e. all αj

are linear combinations of frequencies Ω with rational coefficients. It means that all

αj are commensurable with frequencies. Such set ReBk forms a family with k + 1
parameters.

5. Remarks

Neighborhood of the n-dimensional invariant torus in system with n degrees of
freedom was studied in [Bruno, 1994, Ch. II, § 3]. There was shown that such irre-

ducible torus lies at one-parameter family of irreducible invariant tori of dimension n.
If the variational system near a stationary point or near an invariant torus T k or

near a periodic solution has eigenvalues λj with Reλj 6= 0, then all told above relates
to their central manifolds and all Theorems are true. So, generically in real analytic

Hamiltonian system with n degrees of freedom and without parameters:

(a) periodic solutions form one-parameter families,

(b) n-dimensional regular tori T n form one-parameter families,

(c) k-dimensional irreducible regular tori T k with k < n form (l+1)-parameter
families, if exactly 2l their eigenvalues have zero real parts, and imaginary parts of
all of them are commensurable with frequencies.
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