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YAK 517.93+531.314

Anexkcanap Amurpuesuy bprono

CemeiicTBa MEPUOJNYECKUX PELIEHUN U MHBAPUAHTHBIX TOPOB CHCTEMBI [ aMUIIBTOHA.
[Ipenpunter UIIM nm. M. B. Kennbima, Mocksa, 2020.

BOn3u HemoABMKHOTO pelieHu s, BOJIM3H MEPUOANYECKOTO PEIIEHUS U BOINU3H
WHBAPUAHTHOTO TOPA aHAJTUTUIECKONW CUCTEMBI | aMUIIBTOHA pacCMaTPUBASTCS HOP-
manbHast popma pynkuuu ['amunsrona. OGBIMHO HOPMATU3YIOIIEe MPEoOpPa30BAHKE
PacXoaUTCs B TIOJTHOM OKPECTHOCTH KaXKJIOTO YKA3aHHOTO MCXOIHOTO 00BEKTa, HO
CYILIECTBYIOT CXOJSIIECs TPeoOpa3oBaHusl, KOTOpble HOPMAIHU3YIOT GyHKIHIO ['a-
MHJIBTOHA JIUIIb HAa HEKOTOPBIX MHOXKECTBAX, IPUMBIKAIOIINX K HCXOTHOMY OOBEKTY.
OTU MHOXXECTBA aHAIMTHYHBI, BKIIIOYAIOT BCe (POopMabHbIE ceMecTBa MepUorye-
CKHX PEIICHHM, a TPU HEKOTOPOM YCIIOBUHU Ha MaJjible 3HAMEHATEJIM OHU BKIIIOYAIOT
HEKOTOpbIe (popMaIbHBIE CEMEMCTBA MHBAPUAHTHBIX TOPOB C MOJOOHBIMU OazricaMu
yacToT. [ToaTomy B citydae oO1Iero moyio>keHus BellecTBeHHas cuctema ['amMuibsrona
C M CTETEHSIMHU CBOOOJIBI UMEET: a) OTHOIIApAMETPUUSCKHE CEMEICTBA ITepruoInye-
CKHX pelIeHu#, 0) oqHOnmapaMeTpUIECKIe CEMENCTBA N-MEPHBIX HEMPUBOAUMBIX
MHBapHaHTHBIX TOPOB ¥ B) (I + 1)-nmapamerpudeckue cemeiicTa k(< n)-MepHBIX
HENPUBOJAUMBIX WHBAPUAHTHBIX TOPOB C POBHO 2/ COOCTBEHHBIMH 3HAYECHUSIMU, UME-
IOLIMMH HYJIEBbIE BELIECTBEHHBIE YACTH, U BCE UX MHUMBIE YACTU COU3MEPUMEI C
4acTOTaMH.

Kntoueswie cnosa: cuctema 'aMuibToHa, CTallMOHAPHOE PEIICHUE, IEPUOIIYC-
CKO€ pelIeHNne, MHBAPUAHTHBIN TOP, HOpMalibHas (hopma.

Alexander Dmitrievich Bruno
Families of Periodic Solutions and Invariant Tori of Hamiltonian System.

Near a stationary solution, near a periodic solution and near an invariant torus
of an analytic Hamiltonian system we consider the normal form of its Hamiltonian
function. Usually, the normalizing transformation diverges in the whole neighborhood
of each mentioned initial object, but there exist convergent transformations, which
normalize the Hamilton function only in some sets adjoining the initial object. The sets
are analytic, include all formal families of periodic solutions and under a condition on
small divisors, they include some formal families of invariant tori with similar bases
of frequencies. So generically the real Hamiltonian system with n degrees of freedom
has: (a) one-parameter families of periodic solutions, (b) one-parameter families of
n-dimensional invariant irreducible tori and (c) (I + 1)-parameter families of k(< n)
dimensional irreducible invariant tori with exactly 2/ eigenvalues having zero real
parts, and for all of them imaginary parts are commensurable with frequencies.

Key words: Hamiltonian system, stationary solution, periodic solution, invariant
torus, normal form.
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1. Introduction

We consider the real analytic autonomous Hamiltonian system with a finite
number of degrees of freedom and without parameters near its stationary solution
(Section[2)), near its periodic solution (Section[3)) and near its invariant torus (Section H]).

Our aim is to study families of periodic solutions and families of invariant tori
adjoining the mentioned above initial objects.

For that, we reduce the Hamiltonian system to its normal form. Using it, we
select such formal sets, for which there exist convergent normalizing transformations
and so the sets are analytic. They are the set A, if small divisors are absent, and the
set B3, if small divisors present and satisfy a condition. The set .4 contains all families
of periodic solutions.

It appeared that in general case a periodic solution lies at an one-parameter family
of periodic solutions with near periods and invariant irreducible torus of the maximal
possible dimension also lies at an one-parameter family of such tori with similar bases
of frequencies, but formal families of invariant tori of non-maximal dimension are
analytic, only if their eigenvalues satisfy an additional condition: all eigenvalues with
zero real part have imaginary parts commensurable with set of frequencies.

* Huygens in XVII century began to study periodic solutions.
* Kolmogorov [Kolmogorov, |1954]] began to study analytic invariant tori.
* His successors Arnold, Moser and others developed a theory named KAM.

Here another approach from the [Bruno, 1989, Part 1] is used. In the present
work there are three new methods:

« a division of a formal set .A* into components A%;
* an introduction of the reduced normal form, not depending on time;
« writing the sets .A¥ and B* for the reduced normal form.

2. A neighbourhood of a stationary solution

2.1. Normal form. Consider the Hamiltonian system

. Oy . oy .
5'2_7 Ny = —F%7+> ]:17"'7n (21)
oo T 0g
with n degrees of freedom in a neighborhood of the stationary point
52(51,,571):0, 77:<7717777n):0 (22)

If the Hamiltonian (&, n7) is analytic at this point, then it can be expanded in
the power series

YEm) = ek, (2.3)

where P = (pb s 7pn)> q-= (Q17 S 7qn) € Zn, P.q 2 Oa £p = 5{)1 552 e 7];“’ 'qu are
constant coefficients.
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Since point (2.2)) is stationary, expansion (2.3)) begins with quadratic terms.
These terms are associated with the linear part of system (2.1]). The eigenvalues of
the matrix of the linear system are organized in pairs

)\j—i—n:_)\j; ]Il,,ﬂ
Let A = (A1, ...,\,;). The canonical changes of coordinates

&m—xy (2.4)
preserve the Hamiltonian property of the system.

Theorem 2.1 ([Bruno, 1972, § 12]). There exists a canonical invertible formal trans-
formation (2.4) that reduces initial system (2.1)) to the normal form

_ 99 99

Cp = = — =1,... 2.5
':C] ayj 9 y] al_‘] ) j I 7n7 ( )
where the series
g(xy) = gpgx"y* (2.6)
contains only resonant terms with
(p—qA) =0 2.7)

Here (p,A) = p1 A1 + - -+ + pp A, is the scalar product.

For the real original system (2.1)), the coefficients gpq of the complex normal
form ([2.6) satisfy special real type relations, and under the standard canonical linear
change of coordinates (x,y) — (X,Y), system (2.5) takes the real form [Bruno, 1994,
Ch. I].

Let I = {i1,...,in} be aset of increasing natural indices i < n. Here 1 < m <
n. Consider the coordinate subspace

Ki={xy:z;=y;=0forallj & I}.

If I = {1,...,n}, then K7 is the space C*" with coordinates x,y, which we
denote as K,,.
Let us mention four numerical characteristics of a coordinate subspace K7:
1) Its half-dimension m; = m.
2) Its multiplicity of resonances s, as a number of linearly independent integer
relations > |, ; piA; = 0 with integer p;.
3) Its degree of irrationality o = my — ;.
4) Its subsets of eigenvalues A\ = {\;,i € I} and a = {o;,i € I}.
Below we will consider the case where all eigenvalues Ay, ... ,\, are pure
imaginary: \; = ia;, o; € R, and all \; # 0.
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2.2. Convergency of the normalizing transformation.
Condition w

Let wy, = min [(p,A)| over (p,A) # 0, [|p|| < 2%, p € Z", where ||p|| = > Ipj.
Then
= log ws,
ok

< 0.
k=1
It is very weak numerical restriction on the eigenvalues A. It satisfies for almost
all sets A. In particularly, it satisfies if all \; are pairwise commensurable, then the
multiplicity of resonances s, for the whole space K, is equal to n — 1. Condition w
is a restriction on ‘‘small divisors’’ arising in the normalizing transformation.

Condition A

There exists such a power series a(x,y), that in the normal form (2.5])
dg g .
8_yj = \jz;a, 5_% = \Njyja, j=1,...n.

It is a very hard restriction on the right parts of the normal form (2.5]). It satisfies
very seldom.

Theorem 2.2 ([Bruno, 1971])). If eigenvalues X satisfy Condition w and the normal
form (2.5)) satisfies Condition A, then the normalizing transformation converges in a
neighborhood of the stationary point x =y = Q.

According to [Bruno, |1972, § 12] Condition A is equivalent to the condition
that the Hamiltonian g(x,y) of the normal form (2.5)) is a power series of one variable

n
)\jxjyj.
J=1

2.3. Set A. Suppose that the functions f;(X,y), ..., f-(X,y) are analytic and vanish
at the point x = y = 0. Then the system of equations

filxy)=0, j=1...r (2.8)

defines an analytic set N containing the pointx =y = 0. If f1, ..., f, are formal
power series, we say that (2.8)) defines a formal set N

Problem 2.1. Which invariant formal sets of the system (2.1]) are analytic?

The fact is that it is comparatively easy to calculate formal invariant sets using
the normal form (2.5)—(2.7). We need to select among them only those that are analytic
for the initial system (2. IJ).
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From the normal form (2.5)—(2.7)) we form the formal set

d 0 .
A= {x,y : % = \;jzja, 579 = \yja, j=1,... ,n} (2.9)
j j

where a is a free parameter. We can exclude it from the equations and obtain a
representation of the set .4 in the form (2.8§).

All solutions from the set Re A are conditionally-periodic (including periodic
and stationary solutions). In fact, the value of the parameter a is constant in each
solution and we have

T = x? expA\jat, y; = y? exp(—Ajat), j=1,...,n.

Definition 2.1. Let K; be a coordinate subspace in x,y. The component A; of the set
A in this subspace is defined by the system of equations
dg dg

— = \;z;a,

= \Nya, jJ€EI,
ayj ) )

0z;
and all z;,y; # 0 for 7 € I. In particularly, there is the component A,, for the whole
space K.

Theorem 2.3. Ifin the normal form Hamiltonian g(X,y) is analytic, then each
component Re Ay is a family of irreducible invariant tori of dimension o with fre-
quencies accy. Generically the family is either one-parametric (along a) or it is empty.
In degenerate cases it can have more than one parameter.

A torus of dimension 1 is a periodic solution.
A coordinate subspace K7 is called rational if the corresponding eigenvalues

A;j are pairwise commensurable. Let K be the union of all rational subspaces, and

A=ANK

Theorem 2.4 ([Bruno, 1989, Part I, § 3]). There exists an analytic canonical trans-
Jformation §,m — X,y which transforms initial system (2.1)) to normal form in the set
A and the set is analytic.

2.4. Set B. Let A = {\,...,\,} be adiagonal matrix. In the set A we consider the
2n X 2n matrix

0%g 0%g
— Aa
_ | 9yox oydy
B - 829 829 ’
— + Aa

 OxOx 0x0y



i

where a is the same parameter as in equations (2.9). We define the formal set B as
that subset of the set A in which the matrix B is nilpotent, that is,

B={xy: xyeA, B"=0}.
Theorem 2.5 ([Bruno, [1989, Part II]). Generically B = A,,.

Theorem 2.6 ([Bruno, 1989, Part II]). If eigenvalues X satisfies Condition w then
there exists an analytic canonical transformation £€,m — X,y which transforms initial
system (2.1)) to normal form in the set B and the set is analytic.

2.5. Example 2.1. Suppose that A\q, ..., )\, are linearly independent over integral
numbers, that is, the equation (p, A) = 0 has only the trivial solution p = 0 for the

integers p. Then in the normal form (2.5])-(2.7)),
g=f(p1,.-..pn), Wherep;=zy;, j=1,...,n

We therefore have
of of .
A:{x,y:x-—:kx-a, yi—— = \jy;a, jzl,...,n}.
Japj jLj Japj jYj

We consider the set A in the cartesian coordinates p = (py, .. ., pn). In the gen-
eral case, each coordinate subspace (with respect to p ) contains one onedimensional
(with respect to p ) component of the set .4 that does not lie in a smaller coordinate
subspace. Consequently, the set A consists of 2" — 1 such components; for eachd < n
there are exactly n!/[d!(n — d)!] of these components situated in d-dimensional (with
respect to p) coordinate subspaces. In particular, there is one component,

of |
L=2p: L =Xa, j=1,...,
A {” 8p; % ”}

situated outside the coordinate subspaces. 5% = 0 in this component.
In fact,

= (50 pla )+ (0 v) (5 =5) (b o)

where the blocks are the following n x n matrices:

_Jof of B )
R—{ap177apn}7 U_{x]_;;xn}g V_{y177yn}



these are diagonal, and

2
5= ( Of ) |
9p;0pk
In the set A we have

2=(ov) (5 5) (02

that is, B2 = 0. In the general case, the matrix B is not nilpotent in coordinate
subspaces, since there for some derivatives 0f/0p; # \ja. Thus, B = A,
Moreover, the n components

/ . - . . . .
A ={p: pi=0, i#j, 1<i<n}, j=1,...,n,

are coordinate axes with respect to p and exhaust all rational subspaces; taken to-
gether, they make up the set A. According to Theorem [2.4] the initial system (2.1)
has n analytic one-parameter families A; of periodic solutions (these are Lyapunov
[Lyapunov, 1892] families).

If the eigenvalues A satisfy Condition w, then by Theorems the compo-
nent A, = B is also an analytic set.

Let

1
f=g=<p,>\>+§<p,Tp*>+--- (2.10)

where T is a symmetric matrix. In the general case, det 7' # 0 and the system of
equations in (2.9) has a one-dimensional solution

p'=T"'X(a—1)+o(a—1), (2.11)

where * means transposition.
If the initial system is real, the coordinates x ;, y; are connected by the reality
relation z7; = —iy;. Consequently, — arg z; = argy; — /2, that is, arg (z;y,) = ®/2.
Thus, purely imaginary p; with Imp; > 0,7 = 1,...,n correspond to real
values of the initial coordinates. Each set A} has a real part,

Re A = {p; : Rep; =0, Imp; >0}

which is a real one-parameter family of periodic solutions. For the real Hamilto-
nian the matrix 7 is also real. If the vector 7! Im A* has coordinates of
different signs, then according to (2.11]), the set 3 has only a trivial real part, Re B = 0.

If all the coordinates of T~ 'a* are of the same sign, the real set Re B3 is a one-
parameter family of n-dimensional irreducible invariant tori with frequency basis
ai1a, . ..,a,a. Asa — 1 the tori of this family tend towards the fixed point x =y = 0.
For a detailed analysis of various situations see in [Bruno, |1989, Part I, § 3].
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3. A neighborhood of a periodic solution

3.1. Local coordinates. Letareal Hamiltonian system with n+1 degrees of freedom
have a real 2w -periodic solution M and the Hamiltonian function is analytic in some
neighborhood of it.

According to [Bruno, |1994, Ch. II, Sect. 2.1] near the solution M we can intro-
duce such real local canonical coordinates € = (&1,...,5,), Y andn = (01, ..., 1) , Ps
that the solution M is given by equations

5277:07 p:()v ¢:¢O+t

and the Hamiltonian has the form

7= E'qul(lb)fpnqpl =pt-, (3.1)

where integers p,q > 0, integer [ > 0, real analytic functions 7pq; (1) have in ¢ the
period 27 and they are expanded in the Fourier series.
Then the Hamiltonian system is

I N T T
J 877]’ 77] 8577 ). 310y
.0 . 0
¢: fy; = - i

9o = "5y

3.2. Normal form. For p = 0 and ¢y = t quadratic in £, part v, of the Hamilto-
nian (3.1)) defines 2m-periodic linear in £,m system

: Oy . 02
Ei=—, nj=—m, j=1,...n. (3.2)
J an J 8@
Let 11, ... ,v9, be eigenvalues of its monodromy matrix, 1. €. matrix of substitu-

tion of fundamental matrix of solutions to the system (3.2 in the period 2. Let all
\vj| = 1and v; # —1. We put

1 11 :
aj = 2—mlnuj, a; €R, a; € 55 ) J= 1,....2n.
Using correct numeration one obtains
Qjpp = —0y, J=1,...n.

Let denote @ = (aq, . . . ,arp).



—10 -

Theorem 3.1 ([Bruno, 1994, Ch. II]; [Bruno, 2020]). There exists a complex formal
invertible 2Tt-periodic in ¢ and ¢ canonical transformation of coordinates in the form
of Poisson series

£0.m,p < X,0,y,T, (3.3)

which reduces the Hamiltonian y into normal form
n
gXpyr) =T+ i+ GpamXyir'e™?, (3.4)
j=1

where x,y € C", 0 < p,q € Z", | > 0 and m are integer, all terms of the second sum
are resonant, i. e.
(p—q,&) +m=0. (3.5)

Theorem 3.2. There exists a canonical transformation
Lj = Uj eXP(—lﬁgSO)a Yj = vy exp(lﬁjap), j - 17 LD

n
r=s—i E Bju;v;
i=1

with rational [3;, which reduces the normal form of the Hamiltonian (3.4)), (3.5) to an
autonomous power series

(3.6)

h(wyv,s) = s+ iz Viuv; + Z hpquPvis', (3.7)
j=1

where in the first sum all nonzero v; are irrational numbers and in the second sum
0<pqeZ’0<!eZ hyg = const € C and present only resonant terms with

<p - q37> = 07

where v = (Y1, -+ Yn)-

Similar theorem is in [Bruno, [2020]]. Theorem [3.2]is a particular case of Theo-
rem (4.2 that will be given in Section [4] with the proof.
Variable s now is a formal integral of the following system

_8h . oh
Toy YT ouy
._8h
%0—£~

(3.9)
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If the initial Hamiltonian ~ is real for real coordinates &,1),1,p, then in The-
orem variables x,y are complex but variables v, p and ¢, r are real. Here ac-
cording to [Bruno, |1994, Chs. 1, II] variables x,y are connected with real variables
X=(Xy,...,X,),Y=(Yq,...,Y,) by the linear standard transformation

1 1

z; = —=(iX; = Yj), Yi =75

VT (iX;+Y), j=1,...n

3.3. Convergency of the normalizing transformation.
Condition w!

Let wy = min [pg + (p,ax)| over [py + (p,ev)| # 0, [po| + [l < 2%, py € Z, p € Z".

Then
. log wy,
N Z ok
k=1
Condition A'
There exists such a Poisson series a(x,p,y,r) that in the normal form (3.4
dg i dg i 1
— =laria, — =liaya,j=1,...,n
dg 0 dg '
i s — = Q.
Oy or

According to [Bruno, 1972, § 11] it equivalents to the condition that Hamiltonian
g is a power series of one variable r + izg‘:l T Y-

Theorem 3.3 ([Bruno, 1972], § 11). The normalizing transformation (3.3) converges
in a neighborhood of our periodic solution if numbers o satisfy Condition w' and the

normal form (3.4), (3.3)) satisfies Condition A,

3.4. Set Al. Letnow a is an arbitrary parameter. Then the system of equations (3.10)
defines the set A'. For the reduced normal form (3.7)), (3.8)), (3.9), the set A" is defined
by the system

oh . oh |
a—wzlwujﬁa a—uj:rijja, j=1,...,n, (3.11)
o
ds

Subsystem of equations (3.11]) defines the set of all periodic solutions of the
subsystem (3.8]). Equation (3.9) ¢ = 0h/0Js gives dependence of ¢ from ¢ for each
of these solutions.
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To each set of increasing indices [ = {i1,...,im}, 1 <i1, 0 < n, 1 <m < n,
there correspond the coordinate subspaces

K ={xy,np:z;j=y;=0foralj¢gI},
Ly={uv,s,p:uj=v;=0forallj &I}.

Now the coordinate 7 or s corresponds to the frequency 1, so each subspace K7
and L} corresponds to the set of frequencies {1, ,...,a; }, {1, %5+, %, }. As
in Section |2 we define for it multiplicity of resonances s} and degree of irrationality
or=m+1— ;.

As in the transformation all 3; are rational numbers, then these numbers
coinside for K} and L}.

As before, in subspaces K} and L} we define components A} of the set A,
as parts of intersection of set A with the subspace, excluding points lying at the
smaller coordinate subspaces K and L}, correspondingly. Sets A} in K} and in L}
are the same and connected by the transformation (3.6). If I = {1,...,n}, then K}
and L} are the whole space C*"*1), which we denote ! = L. For components A}
Theorem [2.3| about families of invariant tori is true.

Let ' is a set of all indices j with rational a; or zero ;. Define .A} =A'N L}l.
Similarly to Theorem there exists a converge transformation, normalizing at the
set A}, and the set is analytic. It contains all families of periodic solutions adjoining
the initial periodic solution M. In it equations take the form

oh oh ~
— =0=—, jel.
8?)3‘ 8uj J
: : : . Oh .
This system defines a set of stationary points, and equation ¢ = 95 — @ give

dependence of ¢ for them. The set A} contains the set A}, where all u; = v; = 0,
j=1,...,n,1. e. it is not empty. Hence, each periodic solution of a Hamiltonian
system belongs to a family of periodic solutions (see [Bruno, 1994, Ch. 11, § 2]).

3.5. Set BY. LetT' = {v1,...,7,} be adiagonal matrix. At the set A’ in coordinates
u,v, s we consider the square (2n + 1) x (2n + 1) matrix

Fh 0*h 0*h
ovou ovov ovos
B, — 0°h 0%h 0°h
dsOu Os0v 0s0s |
0%h 0%h . 02h
= +1l'a —

~ Oudu ovou ouds
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where a is the same parameter as in equations (3.10)).

The set B! is such subset of the set A' on which the matrix B; is nilpotent, i. .
Byt = 0.

Theorem 3.4. Generically
Bl — Al

and Re B! is a one-parameter (along a) family of invariant tori of dimension o

Theorem 3.5 ([Bruno, 1989, Part II, § 3]). Under Condition w' there exists such
analytic canonical transformation (3.2)) that reduces the initial system to the normal
form at the set B and the set is analytic.

If no resonant relation py + (ca,p) = 0 exists for numbers 1,c, where py € Z,
p € Z", then generically the set Re B! is a one-parameter family of irreducible
invariant tori of dimension n + 1.

4. Neighborhood of an invariant torus

4.1. Local coordinates. Let a real analytic Hamiltonian system with k + n degrees
of freedom has a k-dimesional invariant torus 7*. The torus is named regular, if in
some canonical analytical coordinates &, 1, 7, p (10, p € R”, €. € R"):

1) the torus 7" is defined by equations

§=n=0, p=0;

2) coordinates 1 are cyclic (angular) mod 27 and in the torus 7 they satisfy to
the system of equations

Vv, =, =conste R, 1=1,....k;

3) in a neighborhood of the torus 7 the system is Hamiltonian

o SR i A T
J 677]’ 77] agja VAR
. Oy oy .
T — 3 T — T A :17"'7k
v dp; P I '

with analytic Hamiltonian function ~(&,%,m,p) which is expanded into the
convergent Poisson series

Y= Tpram€®nip™ expi (L) | (4.1)

where 0 < p,q € Z",0 < m € ZF 1 € ZF,
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4) The variational system is reducible, i. e. the square in &,m part v, (€,1,1n,p) of
the Hamiltonian v for p = 0 does not depend on ):

1
Y2 = 5 <C7GC> 3
where ¢ = (£,m) and G is a constant symmetric 2n x 2n matrix. Let Ay, ... A9,
be the eigenvalues of the matrix A = JG, where J = <_OE %‘) and F,, 1s

the identity n X n matrix. Applying the correct numbering one has
)\j—i—n: —)\j, ]: 1,...,71.

We denote A = (\q,...,\,) and 2 = (24,....,).

4.2. Normal form.

Theorem 4.1. There exists a canonical invertible formal transformation of coordinates

Y., ps—xpyr (4.2)

in the form of Poisson series of type (&.1)), which near a regular invariant torus T*
reduces the Hamiltonian (4.1)) to its normal form

n k
g= Z ATy + Z Qiry + Z IpigmXPyIr™ expi(l,p) (4.3)
i=1

j=1
where the third sum contains only resonant terms, for which
p—q,A) +1(L,2) =0. (4.4)

Its proof is similar to the proof of Theorem 3.1 in Ch. II of [Bruno, |1994]. Below
in this Section we will consider the case where all eigenvalues A are pure imaginary:
)‘j = iozj, Qj € R, and all >\j 7& 0. Letax = (Oél, e ,Ozn).

Theorem 4.2. If equation (1,Q) = 0 in1 € Z* has only zero solution 1 = 0, then there
exists a canonical transformation

zj =ujexp (—i(Aj,9)), yj =viexpi{A;p), J=1,....n,

4.5
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where w = (uqvy, ... uyvy), B is a k X n matrix with rational elements, and matrix
Ay

A= | : | = B* which transforms the Hamiltonian normal form (4.3)), (4.4) to the
A,

autonomous series
n k
h(u,v,s) = iz Yiuv; + Z Qis; + Z hpqmuPvis™, (4.6)
j=1 i=1

which does not depend on angles ¢ and contains only resonant terms with

where v = (Y1, .- . ,Vn)-
Here asterisk * means transposition.

Proof. In assumption of Theorem equation (4.4)) takes the form
(P —q,) +(1,€2) = 0. (4.8)

Let equation
(p,a) + (1,€2) =0 (4.9)

have p linearly independent integer solutions (p,l). Then integer solutions (p,l) of
equation (#.9) form a lattice in R"** and as a consequence of linear independence €2
we have 0 < p < n. Let the set of vectors

(P1:h)s - (Ppsly) (4.10)

P1
forms a basis of the lattice. Then the X n matrix C' = | : | has such p columns
Pu
that their determinant is different from zero. For simplicity of notations we assume
that they are columns with numbers 1, ... u. Now all vectors p = (py,...,p,) We
divide into two parts p’ = (p1,...,p,) and p” = (pu+1, - - . ,pn). Similarly we divide
the matrix C' = (C’,C"”), where matrix C’ has dimension p x i, and matrix C” has
dimension p x (n — ). For vectors of the basis (4.10)), from equation we obtain
the system of equations

o + C"a + L = 0,

where L is a matrix with integral elements.
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Let us solve the last system for o'*:
o — O 10" — O LO déf_Da//* . AQ*, 4.11)

where matrices D = C’~1C"” and A = C'~' L have rational elements and dimensions
px (n— p) and p x k respectively. Here numbers o« and €2 are linearly independent
over integral numbers, 1. e. the equation

(p".a") +(1,Q2) =0

in integer (p”,1) has only zero solution p” = 0,1 = 0. Let define the n x k matrix

A
A= (0>. (4.12)

Taking into account (4.11]), now we consider integer solutions (p,q,l) to the equa-

tion
((p—q),&)+((p—q).a") +(1Q) =
= ((p—q).— Da" = AQ") + ((p—q)"./) + (L) =
= ((p— @), —A2") — (19) — (P — @), D) + ((p — @)"") =
= (1- A'(p-a/,2) +{(p—a)" ~ D(p — q) ") = 0.

As o' and Q are linearly independent over integral numbers, then the last equality
gives equations

1=A"(p—q), (4.13)
(p—q)"=D*(p—q)".

Now let us compute dependence from ¢ for a resonant monomial after substitu-

tion (4.5)
xPylexpi(Lp) = uPviexpi((q — p, Ap") + (Ly)),
where matrix A was defined in (4.12)). So here dependence of ¢ is

<(q - p)’,fltp*> + (L) = <f1*(q —p) + l,<p> = (0,) =0

according to (4.13)).
Other statements of Theorem are easily verified. Proof is finished. [
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Remark 4.1. In system

Oh Oh
P = — ot — 1 4.14
u] a/Uj’ Uj 87,[/]7 .] ) 7n7 ( )
Oh Oh
.i:_a .i:_ ’ :17"7k7
14 &si ° 8@02 !

corresponding to the reduced normal form of Hamiltonian (4.6)), all coordinates s are
parameters. For the stationary points (u”,v’ s%) of the subsystem (&.14)), which satisfy
the “‘algebraic’’ system of equations

oh  Oh
My, =1, m,
8Uj 8uj J "
equations
oh
;= , 1=1,.. 7k7
v dsi 0 v0 0

define frequencies on the corresponding invariant tori.

Remark 4.2. If frequencies (4, . .. {2, are linearly independent over integral numbers,
i. . equation (1,2) = 0 in 1 € ZF has only zero solution 1 = 0, then the initial torus
T* is irreducible.

4.3. Convergency of the normalizing transformation.
Condition "

Let w,, = min [(p,a) + (1,2)| = 0 for (p,ax) + (1,2) £ 0, ||p|| + |]1]| < 2™, p € Z",

1 € Z*. Then
— log wy,
— 0
> om
m=1
Condition A”
There exists such a Poisson series a(x,¢,y,r) that in the normal form (4.3])
@—ia‘xa @—io« a, 1 =1 n
ay]— Al R 8ﬂf]_ ]yjyj_ R RS
(4.15)
g dg .
:O, —:QZ'CL, Z:L...,k.
dp; or;

It equivalents to the condition that Hamiltonian g is a power series of one variable

n k
Z )\jxjyj + Z erz
j=1 1=1
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Theorem 4.3. The normalizing transformation (4.2) converges in a neighborhood
of our invariant torus T" if numbers o and S satisfy Condition w* and the normal

form (&.3)), @.4) satisfies Condition A"

4.4. Set A*. Letnow a is an arbitrary parameter. Then the system of equations (4.13)
defines the formal set A*. For the reduced normal form (4.6)), (4.7) the set A¥ is defined
by the system of equations

oh i oh i 1
— =iyua, —— =ivv;a =1,....n
8’Uj ,‘YJ et auj fyj 7% j ) s Uy
o (4.16)
a. QZ ) = 17 7k
95, a, 1
To each set of increasing indices [ = {i1,...,,im}, 1 <i1,0m < n, 1 <m < n,

there correspond the coordinate subspaces

= {xyrep:z;=y;=0forallj ¢ I},
={uyvs,p:u;=v;=0forallj &I}

If I = {1,...n}, then KF = Lk = C2nth &' 1k
Now coordinates r,¢,s correspond to frequencies €2. So the coordinate subspaces
K% and L¥ correspond to the set of frequencies {2,c;,, . ..,c; }and {27, ... ,%. }.
For each K% and L¥ we denote m; = m and :
1) half-dimension m’}’ =k +myp;
2) multiplicity of resonances s as the number of linearly independent integer

relations
ijozj + (1,©2) = 0 and Zpﬂ] (1,K2) =0
JEI jel

with integer p; and 1 € ZF;
3) degree of irrationality of = k + mb — »F;
4) subset of frequencies €2,a; and €2,7;.
Numbers m¥, 5% % coincide for K¥ and L%, because in transformation all
elements of matrices A and B are rational numbers.
As before in subspaces K¥ and L} we define components A¥ of the set A" as
parts of intersections of the set .A* with the subspaces excluding points belonging to
smaller subspaces K% and L%. Sets A¥ in K¥ and in L¥ are the same and connected

by transformation (4.3)). So, there is component A*.

Theorem 4.4. If the normalized Hamiltonian (4.3)), (4.4) is analytic, then each com-
ponent Re A¥ is a family of irreducible invariant tori of dimension o with frequencies
Qa, v;a. In the generic case these families have % parameters.
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4.5. Set B*. LetI’ = {v},...,7,} be a diagonal matrix. In the set A* in coordinates
u,v.s we consider the (2n + k) x (2n + k) matrix

0%h Ta 0%h 0%h
ovou Oovov ovos
B, — 0%h 0%h 0%h
osdu 0soOv 0s0s ’
B 9%h B 0%h Cila - 0%h
Judu oudv ouds

where a is the same parameter as in equations (4.16)). The set B* is such subset of the
set A*, where the matrix Bj, is nilpotent, i. e. B,f"*k =0.

Theorem 4.5. Under Condition w* there exists such analytic canonical transforma-
tion (@.2), which reduces the initial Hamiltonian to the normal form in the set B* and
that set is analytic.

Theorem 4.6. Generically B¥ = A”.

Hence, the set Re B* consists of tori of dimension £, if all 7y, are zero, i.e. all o
are linear combinations of frequencies €2 with rational coefficients. It means that all
«; are commensurable with frequencies. Such set Re B* forms a family with & + 1
parameters.

5. Remarks

Neighborhood of the n-dimensional invariant torus in system with n degrees of
freedom was studied in [Bruno, 1994, Ch. II, § 3]. There was shown that such irre-
ducible torus lies at one-parameter family of irreducible invariant tori of dimension n.

If the variational system near a stationary point or near an invariant torus 7 * or
near a periodic solution has eigenvalues A; with Re \; # 0, then all told above relates
to their central manifolds and all Theorems are true. So, generically in real analytic
Hamiltonian system with n degrees of freedom and without parameters:

(a) periodic solutions form one-parameter families,

(b) n-dimensional regular tori 7" form one-parameter families,

(c) k-dimensional irreducible regular tori 7* with k& < n form (I + 1)-parameter
families, if exactly 2/ their eigenvalues have zero real parts, and imaginary parts of
all of them are commensurable with frequencies.
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