Keldysh Institute « Publication search

Keldysh Institute preprints « Preprint No. 30, 2019

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

Bobylev A.V., Jin-Cheng Jiang,
Potapenko |.F.

On the comparison of
Boltzmann and Landau
collision integrals

Recommended form of bibliographic references: Bobylev A.V., Jin-Cheng Jiang, Potapenko I.F.
On the comparison of Boltzmann and Landau collision integrals // Keldysh Institute Preprints. 2019.
No. 30. 14 p. doi:10.20948/prepr-2019-30-e

URL: http://library.keldysh.ru/preprint.asp?id=2019-30&Ilg=e



http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2019-30&lg=e
http://library.keldysh.ru/author_page.asp?aid=1141&lg=e
http://library.keldysh.ru/author_page.asp?aid=1161&lg=e
http://doi.org/10.20948/prepr-2019-30-e
http://library.keldysh.ru/preprint.asp?id=2019-30&lg=e

Opanena Jleuuna
NHCTUTYT IIPUKJIATHO MATEMATUKN
nvenu M.B. Keanbimia
Poccuiickoii akagemMmuun HayK

A.V. Bobylev, Jin-Cheng Jiang, I.F. Potapenko

On the comparison of Boltzmann
and Landau collision integrals

Mocksa
2019



A.B. Bobvines, 2Kun-Uene Ane, U.PD. Ilomanerxo
O cpaBHeHUH WHTErpaJioB CTOJIKHOBeHUii Bosbrivmana u Jlaunmgay

B pabore moJiyuena oleHKa pasHUIbl MEXKIY WHTerpajaMu CTOJKHOBeHut Bosbimana u Jlan-
Jay s gapa tuna geiabra-pyHkinnn. OueHka ClpaBejinBa sl KJjacca IVIQJIKUX U OBICTPO
CIAIAIONINX Ha OECKOHEYHOCTHU (DYHKIMI PACIpeeIeHrs. DTO JOKA3AHO JIJIsi ODIIEero Cirydast
MHOI'OKOMIIOHEHTHOH I'a30BOII CMECH. PeByﬂbTaTbI MOT'yT 6bITb HCIIOJIB30BAaHbI JIJIgd TeoOpeTuve-
CKUX 1 YHUCJICHHBIX 3a/a4, OTHOCAIIINXCA K He.HHHefIHOMy KNHETHUICCKOMY YPaBHCHUIO ﬂaHI[‘aY*
®okkepa—Iliranka.

Kaouesvle caoea: wHerpas cToJIKHOBeHUil BosibiiMana, KuneTndeckoe ypasHeHue Jlamaay,
SIJIPO THIIA, JIeJIbTa-(DyHKITII

A.V. Bobylev, Jin-Cheng Jiang, I.F. Potapenko

On the comparison of Boltzmann and Landau collision integrals

The estimate for the difference of the Landau collision integral and the Boltzmann collision
integral with delta-kernel is obtained. The estimate holds in a class of smooth and rapidly
decreasing at infinity distribution functions. It is proved in the general case of multicomponent
gas mixture. Results can be used for theoretical and numerical problems related to the nonlinear
Landau-Fokker—Planck kinetic equation.
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Pabora Beiosinena npu nojiepxkke Poccutickoro domjga dbyHmaMeHTATBHBIX UCCIEI0Ba-

uwmii, 'pant N 17-51-52007 MHT _a.

Contents
1 Introduction 3
2 Boltzmann equation and Landau approximation 4
3 General estimates 9
4 Delta-kernels 10

References 14



1 Introduction

The Landau kinetic equation for Coulomb forces was firstly published in 1936
as an asymptotic version of the Boltzmann equation for grazing collisions [1].
Then it was shown by Bogolyubov in 1946 that the Landau equation has a
universal nature [2]. It is not directly related to Coulomb forces and Boltzmann
equation. The Landau equation can be formally derived from dynamics (via
BBGKY-hierarchy) for any weakly interacting system under some assumptions
on smoothness of the potential (see e.g. [3] and references therein). Nevertheless
the plasma physics remains the main area of applications of the Landau (or,
equivalently, Fokker—Planck) equation [4].

Mathematical properties of this equation were studied by many authors (see
e.g. [5] for a review). It is remarkable that the existence of classical global solution
for the spatially homogeneous Cauchy problem for the Landau equation (in its
original version [1], [2]) remains to be an open problem.

There are also many publications on related numerical methods. For example,
we can mention some new Monte Carlo methods developed in last two decades
(see [3] and references therein). Roughly speaking, these methods are based on
the approximation of the Landau collision integral by the Boltzmann collision
integral with a special kind of kernels (sometimes called in mathematical works
"the scattering cross-section”). In particular, it concerns the so called delta-kernels
proposed in [7]. Similar approximation of the Landau equation can be used for its
rigorous mathematical study. This approach was briefly discussed in [§].

The present paper can be considered, to some extent, as a continuation of that
discussion. Our main aim is to prove some estimates for the order of approximation
of the classical Landau collision integral [1] by the Boltzmann collision integral
(including the case of delta-kernels). The consideration is done for an arbitrary
gas mixture of several components with distinct molecular masses. This is very
important for quasi-neutral plasma, where we always have at least two relevant
species (electrons and ions).

The main result of the paper is formulated in Proposition 3 at the end of
Section 4. It shows that the approximation has the order O(¢!'/?) for the classical
Landau integral. If we consider a more general collision integral with effective
collision frequency proportional to power 5/2 < v < 3 of inverse relative speed,
the approximation has the order O (¢?)), p = Min (1/2, 4/~ — 1), where ¢ is the
standard parameter of the delta-kernel.

We hope to extend this result to a wider class of distribution functions by
using ideas of the recent paper [9].
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2 Boltzmann equation and Landau

approximation

We consider an arbitrary spatially homogeneous mixture of rarefied gases. Let
{fi(v,t), i=1,...,n} be distribution functions of particles with masses {m;, i =
1,...,n}, respectively. The independent variables v.€ R3 and ¢ > 0 stand for
velocity and time, respectively. Spatial number densities {p;(¢),7 = 1,...,n} are
given by the integrals

v

pi(t) = /dvfi(v,t), i=1,...,n. (1)

R?)

Remark 1  We make a few comments concerning the notation in the main
part (Sections 2—4) of the paper. Three-dimensional vectors are denoted by bold
characters like v, whereas the same ordinary characters denote corresponding
absolute values like v = |v|. Upper and lower Latin indices are used for any
numeration of scalars and vectors like vi. We use lower Greek indices just for
Cartesian coordinates like v = {v,, a = 1,2,3} and assume the usual summation

rule over repeated Greek indices like v - W = v ,w,.

A system of Boltzmann kinetic equations for f;(v,t) reads

0fi - .
a]; = ZQU(fZ7f])’ 1 = 1,...,TL, (2)
j=1

where

u-w
Qii(fir ) = / dw dw g;; (Ua T> (V) (W) = fi(v) fi(w)],
R3xS2
1
u=—V—Ww, WESQ, V/:m (mzv—l—mjw+m]uw), (3)
W'—;(m‘v+m~w—m~uw)' i,j=1 n
—mz+m] 7 i 1 I 7]_ )ty .

Functions g;;(u, 1) are expressed by formulas

Gii(u, ) = gji(u, p) = woy(u, 1), u = |ul, i,j=1,...,n, (4)
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where o;;(u, ) is the differential cross-section (in the center of mass system of
colliding particles of sort ¢ and sort j) of scattering at the angle § = arccos(u),
ul < 1.

Suppose that the distribution functions are three times continuously differentiable
and rapidly decreasing with all their derivatives at infinity. Following the original
idea of Landau and carrying out the Taylor expansion of the integrands in (3)
(with respect to v/ — v and w' — w), we obtain a sum of two terms

Qii(fi, ) = QE)(,}%, fi) + Qi (fi, 1), (5)
which can be described in the following way.
The first term corresponds to the Landau collisional integral (for arbitrary

9ij(u, ) in (3)):

my; 0 W

Qmi 8_%

QW (i f5) =

where the summation over repeated Greek indices o, 5 = 1,2, 3 is assumed,

m;my;

u=v-—-w, m;= Top(u) = u2(5a5 — Uy Ug,

)
mi+mj

! 7)
u=lul o) =2r [dugum(1 - p).

-1
Our goal is to estimate the difference
Aij(fis f) = QUfi J1) = QU (fi. 7) (8)

in the notation of Eqs. (3), (6),(7). We can consider the case i = 1, j = 2 without
any loss of generality. Then we can fix a kernel g.(u, 1) = g12(u, 1), assuming that
Aqs(f1, fo) = 0 for ¢ — 0, and present Q12(f1, fo) in the form

0 (k-u+k?/2) y

Qi2(f1, f2) = Q:(f, f) = /dwdk

R3 xRR3 (9)



where

m m
F(u,U) =fi(v)fo(w) = f1 <U + —11> Ja (U — —u) :
mo mo (10)
M1V + MoW mims
U = , m=——
mi + mo mi + mo

and where d(x), z € R, is the Dirac’s delta-function.
This transformation from (3) to (9)—(10) is very convenient for the comparison
of the Landau and Boltzmann integrals [10]. It is based on the identity

/dk(5 <k°u+%2> (k) :u/dww(uw—u), (11)

R3 S2

where (k) is an arbitrary continuous function.
We consider the difference F(u + k) — F(u) in the integral (9), omitting
irrelevant argument U. It is, by the integration by parts easy to verify that

F(u+k) — F(u) = [(k (%) +% (k %)2

Substituting this formula into (9), we obtain

Q-(f. f) = /dek5 (k~u+%2) he(u, k) x

R3 xR3

X Kk ai + L ki a;uj) F(u,U) + R(u, U)] o (13)

1 k2
h&‘(uak) = 596 (U, 1 - 2_U2> )

where the explicit dependence on U is now indicated. We can compute two




integrals on k

T(u) = /dké(k-u+k2/2) b, k)
R3
]ij(u):/dkd(k-u+k2/2) ho(u,k) kik;, 4,5 =1,2,3.

RB

Using the standard methods, we get

Li(u) = =g (u; €) ui,

1
Lij(u) = g (u;€) (P35 — wiuy) + 59(2)(% &) (Buiu; — u*dy;);
1
B (uze) =2 | dpg-(u;p) (1 — p)*, k>0
9" (we) =2m [ dpge(u;p) (1 —p)", k=0.

“1
The equality (13) can be rewritten as

Q-(f,f) = % /dw g (u;¢) {_2@% %ﬁ*

(15)

0?F(u,U
+ (w6 — uiuy) ﬁ] + Ay (vye) + Ag(vse),
iU

where

1 0?F(u, U
Aq(v;e) = Z/dw g(z)(u; £) (3uiuj B U2(5ij) W
® (16)
Ag(vie) = /dwdk § (k-u+k*/2) he(u k) R(u,U)

R3

in the notation of (10). Here the derivatives on u under the integral sign are
computed for constant U, therefore

0 1 0 1 0

= = - = . 17

ou <m1 ov.  my 8W> (17)
For comparison of the first term in the right-hand side of (15) with the Landau
integral (6) it is convenient to rewrite (6) as



1 1 0 0
Q1) = QU ) = 5 [ 2Py() 5P, D),
R3
Pj(u) = g (u; ) [u?dy) — upuy)
where notations (10) are used. Then the difference of integrals (3) and (6) reads
(i=1j=2

A(v) = Q:(f1, f) = QU (f1, f2) = Ar(vie) + As(vie), (18)

where A; o(v;¢) are given in (16).
In order to be more precise we choose a class of function for which

L) < Ae P 5=0,1,2,3; veR? (19)

)

where f1(32) (v) denote all partial derivatives of order s with respect to v of functions

f(v) = fl(oz) (v), and A and f are some positive constants. We note that a
consistency (with the BBGKY hierarchy) result for the Landau equation is proved
in [3] for a similar class of functions. Then the result of our consideration can be
formulated in the following way:

Proposition 1 We assume that

(a)  the kernel g1a(u, p) = ge(u, p) in (3) satisfies the conditions

c1 + cou?”

)

ge(u, 1) > 0, /d,ugg(u,,u)(l —p) <

with some k > 2 and absolute constants c;2 > 0;

(b)  the functions fi12(v) in (3) satisfies conditions (19).

Then the identity (18), where Q.= Q1o and QW = Q(f%, holds for all
v e R
The formal derivation of (19) is already done above. It remains to check the

convergence of integrals. This will be done in the course of getting estimates in
Section 3.

Remark 2 Of course, the identity (18) is valid in a wider class of functions,
i.e. inequalities (19) are not necessary conditions for the validity of (18). However,
the class of functions, satisfying (19) is very convenient for applications and

estimates.



3 General estimates

[t is easy to check that, under assumptions (19) we obtain
FO(,U)| < Ceftmtimt g 103 (21)

where F®)(u, U) denotes all partial derivatives of F'(u, U) with respect to u of
order s. That is why

|1A(v;e)| < C /dw g (u; ) u? = Almvitmau?) (22)
R3
In the notation of Eqgs. (14). Here and below the notation C' is used for any

constant factor.
Then we consider the term Ay from (16), where (see (12))

F(Hk)F<u>:[(k.a%)+;(k.gu)2

B(u) :% /1 do(1 - 0)* <%>3 F(u+k0) =

F(u) + R(u),

Hence,

Ck? / m 2 m 2
|R(u,U)| < — / dlexpq —0 |my | v+ —k@) +my | W — —kﬁ) :
2 my mo
0

for F'(u) = F(u, U) in the notation of (10). Therefore we obtain from (16)

C 2 2
Aa(vie)l < 5 / dw e T (u),

R?)
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where

Je(u) =

1
do /dk5 (k- u+k*/2) he(u, k) k* exp[—2mpB(k - ud + £k*6°/2)] =

0 R3

1

= /dk6(k-u+k2/2) he(u, k) k3/d0 exp[2mBk*0(1 —0)/2] <

R3 0
2u
2m 4 9
< — [ drh(u,r) r" exp(2mpr=/8).
u
0

After substitution of h.(u,r) from (13) this inequality takes the form

1
Js(u) < 25/27T /dugg(u,u)u362m5“2(1_“)/4 (1 . N)B/Q-
-1
Therefore we obtain

1
Ba(v.2) < C faw [ dglap (1=«
RS —1 (23)
2
X exp [—Qmﬁ(UQ +w?) + Qmﬁuz(l — 1)

Hence,the following statement is proved.

Proposition 2 If f12(Vv) satisfy conditions (19), then estimates (22),(23) are
valid for the error terms Aj9(v;e) from (18).

4 Delta-kernels

We consider below a specific class of kernels g(u; ) in the Boltzmann collision
integrals (3), (9). These kernels are very convenient for approximate solution of
the classical Landau equation [1] by both numerical [6] and analytical [8] methods.
They have the following form

1
gs(u7 /L) - %5[1 - = 25@7(10],

5)
¢, (u) =Min(u7,e77), 0<e<<1, 5 <7 < 3.
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Note that the value v = 3 corresponds to classical Landau equation [1], other
values are included just for generality.
Substituting g.(u, 1) into (14), we obtain

1

o) =2n [ dug(uw (1 ) =B W), k20 (29
~1

Note that ¢(®(u;e) = e~ = const., i.e. the corresponding collision frequency is
constant, like for Maxwell molecules. This is why we chose the function ®.(u)
instead of u™” in (24).

Our goal in this section is to evaluate the difference (18) for delta-kernels (24).
The estimates are based on Proposition 2. First we use (22),(25) and obtain

Ai(vie| < Cee ™YL (v), L(v)= /du w? O (u) = 4 [I7 + I7],
R3

where

g2 5
7= | du®> = —1_5h2 55/
1 / uu 27 _ 55 ’ Y /
el/y

Hence, we get the following estimate:

Ai(v;0)] < €5z le P,y 2f5, (26)

where C' is an absolute constant. Then we substitute (25) into (23) and obtain
[As(v;e)| < CVee P L),

L(v) = /duugCI)g/Q(u) exp|—B1(v — u)* + ef1u’®(u) /2],
R3

where 81 = 2mf. Note that the function
w®(u) = v*Min(u7,e71), v >5/2,
has its maximal value at u = /7. Hence,

L(v) < 4w ™= [I5 + I7),
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where

51/7
1 1
<_ _+ 5 _ L _6/7-3/2
15 372 / duu 66 ,
0

I = /duu‘r’_SW?e—ﬁl(”_“)Q,

51/7
since (v —u)? > (Jv] — |[u])®. If 5/2 < v < 3, then we obtain the following
inequality:

81(v32)] + |Aa(vi2)| < C [0 4 VEb(0)| exp(Biine®),  (27)

where

P(v) = /du W2 gl g — Min(my,2m), 5/2 <y <3, (28)
0

m = my o is given in (10).
Finally we note that the integral QW (fy, f2) in (18) with delta-kernel (24) is
slightly different from usual Landau integral

Qo) = [ dus= Qi) o i) ).

R3 (29)

Qgﬂ) =u " (u25a5 — uqug); «,f=1,2,3,
in the notation of (17). The difference is caused by formula
gV (use) = 20 (u) = 2Min(u~7,1/¢),

since

Qr(f1, f2) — QW (f1, fo) = Ag(v;e) =

~ [ (u—vi) [_u O 228y — waus)—2—| () o).
£ “Oug of T Telo OunOug

u<el/v
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We use assumption (19) and obtain
el/v
|1Ap(v;e)| < / du®(u™) — e H)e Pt < 0yttt (30)
0

Obviously the general inequality reads

|Qc(f1, f2) — Quf1, f2)| < |Ao(vie)| + [Ar(v;e)| + [Ax(vse)],  (31)

where the Boltzmann collision term Q.(f1, f2) is taken with delta-kernel (24),
whereas the Landau integral Qr(f1, f2) is given in (29). Collecting the estimates
(27), (30) we conclude that the following statement is proved.

Proposition 3 Let the functions fi12(v) satisfy conditions (19), where my 2

are corresponding molecular masses. Then the difference (31) between the Landau

integral

m? 0

my Jv,
R3

><(1 0 10 )ﬁ(v)fg(w), 5/2 <7 <3,

my Ovg My Owg

Qr(fi, f2) =

dwful (Juf605 — tatis)

and the Boltzmann integral Q- (f1, fo) with delta-kernel (24) satisfies the following
estimate for 5/2 <y <3

Q=F1, ) = Qulfi, ) < C 77+ VEW(0)] exp(—Amye?),

2 0.9}
\ = Min <1’ &) . U) = /duu5_37/26_6(”_“)2, v >0,
mi + mg

where the constant factor C' depends only on parameters vy, B, my 2.

Proposition 8 can be considered as the main result of the paper. Note that
the integral ¥ (v) can be easily estimated as

V(v) < O (1 n \@\5—1’”/2) it < 10/3,
when C7 depends only on v and S.
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