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Averaging of the neutron transport equation over energy by the Lebesgue
Moment Method

The method of Lebesgue moments for simulating the reversal of resonances,
resonance self-shielding, and block effect in the neutron spectra of heterogeneous ex-
tended objects, such as nuclear reactors, radiation shielding, and installations for
studying the properties of matter, is developed. The method uses a more accurate av-
eraging procedure over neutron energy than the group averaging. The main compo-
nents of the method are the refinement of the resonance structure of neutron cross
sections by dividing the energy scale into a series of sets called carriers of resonanc-
es, Lebesgue averaging of cross sections and neutron flux within carriers, and the ex-
pansion of the neutron flux in a series in basis functions that depend on the magnitude
of the neutron cross sections. The expansion coefficients (the so-called Lebesgue
moments) can be calculated by any available method for solving the neutron transport
equation (the Sn method, the spherical harmonics method, and the Monte Carlo
method).
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Introduction

The purpose of this paper is to describe the method of Lebesgue moments de-
signed for simulating neutron fields in nonuniform heterogeneous objects, including
such effects as resonance self-shielding of the neutron flux in the depth of zones con-
taining homogeneous material and the block-effect (reducing the resonance self-
shielding near the boundaries of zones containing different materials). The method
has three important components:

(1) refinement of the resonance structure of neutron cross sections by dividing
the energy scale 0 < E <o into resonance carriers that are analogs of groups that
may consist a series of short intervals (rather than of a single interval);

(2) Lebesgue averaging of the neutron transport equation with respect to energy
within the resonance carriers;

(3) expansion of the neutron flux in a series of basis functions that depend on the
value of the neutron cross section.

We show that the division of the neutron energies into resonance carriers makes it
possible to approximately separate the variables E and (r,t) on which the neutron

cross sections and the neutron flux depend. The Lebesgue averaging monotonizes the
cross sections and the flux by replacing the neutron energy by a new variable that is
the measure of Lebesgue sets. These sets are built within each resonance carrier. The
gain obtained due to joining energy points into one computation point is approxi-
mately equal to the number of resonances on the carrier. This gain can be as high as
two orders of magnitude. The expansion of the neutron flux in a series of basis func-
tions of the spectrum defines the optimal finite grid of points on the measure of the
Lebesgue sets; this grid describes the evolution of the neutron field in an object with
the minimal (in a certain sense) error. In addition, the expansion makes it possible to
approximately restore the neutron energy spectra lost as a result of the Lebesgue av-
eraging. The name the Lebesgue moments denotes the dependence of the basis func-
tions on the magnitude of the total cross section for the interaction of neutrons with
matter.

The procedure of the Lebesgue averaging (the second component above) has
discrete analogs—the exponential sum method for approximating the transmission
function [1], the method of subgroups [2]-[4], the probability table method [5], and
the multiband method [6], [7]. In distinction from these methods, the method pro-
posed in the current paper is based first on the procedure of dividing the energy scale
into resonance carriers and second on the transition from the Riemann integration to
the Lebesgue integration of functions [8]-[10]. The resulting averaged particle
transport equation depends on the continuous Lebesgue variable. Which is even more
Important is that this equation is «cross-cutting» for the object in which the neutron
cross sections have spatial discontinuities. This equation does not require setting ad-
ditional boundary conditions (in addition to conditions on the external boundaries)
that describe neutron transitions between subgroups of different materials on the ma-
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terial interfaces in order to maintain the continuity of the neutron flux through the
boundaries. The presence of such internal conditions significantly reduces the effi-
ciency of, e.g., the subgroup method. The Lebesgue averaging was described in the
previous author's papers [8]-[10] simultaneously for the transport of photons and
neutrons. In this paper, a version of the method that is adapted to the problems of
neutron transport and adjusted for the use in the method of moments is described. A
number of issues, e.g., the averaging of neutron differential cross sections, are con-
sidered in more detail. The effectiveness of the method in photon transfer problems is
confirmed by calculations (see [11], [12] and references therein). An outline of the
Lebesgue moment method for the photon and neutron transport can be found in [13].

In photon transfer problems, the discrete and semi-discrete analogs of the
Lebesgue averaging method are the exponential sum method [14]-[16], the k-
distribution method [17]-[19], and the correlated k-distribution method [20]-[24]. A
more complete bibliography can be found in [11]. Like the method of subgroups,
these methods require setting internal conditions on the interfaces of different materi-
als in the object. For photons, there are other methods of monotonizing the cross sec-
tions [25]-[28]. The transport equation in the case of a periodic dependence of cross
sections on the photon frequency was obtained in [25]. In [26] and independently in
[27], a change of variables relating one of the cosines of the flight direction with the
photon cross section was proposed. As a result, the coefficients of the averaged equa-
tion become monotonic functions of the new variable, and the dimension of the prob-
lem decreases by one. (Note that the replacement of Riemann integration by the
Lebesgue integration of functions does not change the problem dimension). Unfortu-
nately, this method is inapplicable in problems in which there is scattering of parti-
cles, and it has limitations related to the spatial symmetry of problems.

Basic equations. In this paper, we discuss how to solve the linear Boltzmann
equation for the neutron flux

10 0, 2 LS E Y [oE Q) =5 () + 6 (9) (1)
v ot or,
a° (@)= | dzg [Z3E r )V (E WS (E' > E,n,r ) o(E, @' r t) dE,
41 n 0

q* (@) = Z@xfpf(r,t) +q"(E, Qr,t).
T 7T

Here o¢(E,Q,r,t) is the neutron flux per unit volume-energy-angle at time t; Q
(|| =1) is the flight direction of particles, v is the velocity magnitude (speed);
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Zt(E,r,t) [1/cm] is the total macroscopic cross section for the interaction of a neu-

tron with energy E [eV]; and q°(¢) is the prompt neutron source or the rate of
prompt appearance of neutrons in the neutron beam ¢(E,€,r,t). The prompt neu-
trons are born in reactions s of the interaction of the primary neutron (E’,Q',r,t)

with the nuclides of matter, =°(E’,r,t) is the total macroscopic cross section for reac-

tions s resulting in the emergence of prompt neutrons; v*(E’,r,t) is the multiplicity
or total number of prompt neutrons at the output of reactions regardless of their ener-
gies and flight directions; W*(E' — E,n,r,t) [1/eV] is the indicatrix of reactions s
(normalized differential cross section), n=QQ" (-1<n<1) is the cosine the angle
between the flight directions of the prompt neutrons and the primary neutron; and
g% (¢) is the source of external neutrons including the independent (from ¢) neu-

tron source/sink q"(E,Q,r,t) and the source of delayed neutrons ZXTXTPT /47:.
Delayed neutrons are emitted by fission fragments (the so-called precursors of de-
layed neutrons), t is the index of the group of precursors, %" (E,r,t) [1/eV] is the

spectrum of delayed neutrons, and A" [1/s] is the constant of spontaneous decay of

the precursors of group z. The variations of precursor densities P*(r,t) [cm™] are
described by the system of transport equations

o 0 xloe T
{awia—ﬁm }P (r,t):idggv (E,r,0)=" (E,r,t) o(E, Q,r,t) dE, )

where v*(E,r,t) <1 is the multiplicity (number) of precursors in group t at the out-
put of fission reactions, and u [cm/s] is the velocity of the substance.

Limitations. Equations (1)—(2) are solved subject to the initial and boundary
conditions imposed on neutron beams that move from the outer boundary T" into the
depth of the object Qn <0:

[(p(E,Q,rF,t)—(pent(E,Q,rr,t)] = [ 6@ - Q)9E Q' r 1)de 3)
nQ<0 nQ'~0
where n is the external normal vector to the boundary, ¢®™ (E,Q,rp,t) is the flux of

external neutrons passing through the boundary from the outside, and
G(E, Q" — Q,r,t) is the cross section of the neutron reflection from the boundary.

Summation of cross sections. The macroscopic cross section of a reaction or
group of reactions x will be denoted by the uppercase letter £*, the microscopic cross
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section per one nuclide with the atomic number A will be denoted by the lowercase
letter o', [cmz], and N,(r,t) [cm‘3] Is the nuclide density. The total cross section

>!(E,r,t) and the cross sections for the yield of reaction products are given by sums
SYE, rt) =2 (E,r,t) + =°(E,r,t), (4)

SO(E,rt) =) NA(Rt)oR(E) =D ZY(E,r,t) =D Na(r,t) o) (E),
A y y,A

' > = 1 X B 1 y B
{VS(E’r’t)}XZ (E’r’t)_le{vx(E,r,t)} z (E’r’t)_gNA(r’t){v’;(E)}GA(E) _

_ 1 Zf 3 1 Zn,mxn_ N ¢ 1 ; c 3 1 o -
_{Vf} +mZ::1{m} —ZA: A(r,1) V() o )+rnZ::1{m}gA (E) |,

VIERDE (E,r ) =Y NA(L)VA(E) oA (E),

where =° and oY are the cross sections of the neutron capture reactions leading to
the death of the neutron due to a,B,y-decay of the compound nucleus; =° and o', are

the cross sections of the reactions resulting in the emergence of prompt neutrons; >f

and o, are the cross sections of the nuclear fission reactions; =" =3¢ 15" and

crklxn :G‘Z' +oiA” (m=1) are the cross sections of the elastic (el) and inelastic (in)

n,mxn n,mxn

scattering; X and o, (m=2,3) are the cross sections of the neutron multi-
plication reactions; v*(E,r,t) and v}, (E) are the multiplicities of prompt neutrons at

the output of the reactions x=s, f,mxn,...; v*(E,r,t) and v (E) are the multiplici-

ties of precursors of delayed neutrons in the group 7 at the output of the fission reac-
tions x = f . The differential cross sections are summed similarly:

Vv (E', r, )2 (E', r,t)W3(E' > E,n,1,t) = (5)

= > VY(E r ) (E ) WX(E' > En,rt) =D NA(rt)VAGA(E)WA(E' > En) =...,
X X, A
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VIE LY (E R (E,rt) =Y NAL ) VA(E) ok (E) X 4(E).
A

Here W*(E' — E,n,1,t), WA(E' = E,n) (n=QQ') are the indicatrices of the reac-

tion group x and " (E,r,t), xa(E) are the spectra of delayed neutrons. All indicatri-
ces and spectra are normalized to unity

0 1 00 1
[dE [WX(E'—> E,n,r,t)dn = [ dE [ WA(E' > E,m)dn =1, (6)
0 -1 0 -1

fxT(E,r,t)dE =jx1\(E)dE =1,

Nuclide densities. If we want to consider the variations of the nuclide densities
N A (r,t) in space and time, then Egs. (1)—(3) are complemented with the coupled sys-

tem of nuclear reaction equations

{% + Ui 8% +hp+ RA(”)} Na(r,t) = ;B:[‘t:ZB—)AKZB—)A + Sé—m(r,t)] Ng(r.t), (7)

Aa=D AasB, Ra(rt)=> Ra,g(rt),
z,B z,B

RE_,a(rt )1
{ B>l )}_J'dgj{ ) (E)}XGZB_)A(E)(P(E,Qar:t)dE'

Sealr)) 4z 0 lVBoa

Here A§_, A is the spontaneous decay constant of nuclide B with the emergence of
nuclide A in the reaction z, c§_, o(E) is the cross section of the corresponding in-

duced reaction, £ ., and vg_, o(E) are the multiplicities of nuclides A at the output
of the reactions, and u is the velocity of the substance.
The dependence of the cross sections o, (E), x=t,s, f,mxn,el,... on the en-

ergy includes a lot of resonances that arise when the neutron energy coincides with
the difference in the energies of the quantum states of the compound nucleus. In the
vicinity of the resonances, the cross sections sharply increase in magnitude, some-
times by several orders of magnitude. For heavy nuclei, the region of resonances ex-

tends from energies of ~0.5eV to energies of ~1KeV =10%eV; and for light and
medium nuclei, it extends to ~1MeV =10%V . The number of resonances of each nu-
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cleus is typically large, and the resonances are narrow. In heavy nuclei, the widths of
narrow resonances are of the order ~1eV, and in medium and light nuclei, they are

~1KeV . For medium nuclei, in addition to the narrow resonances, medium reso-
nances with widths of ~10+100 KeV and giant resonances with widths up to 1MeV

are sometimes observed. With increasing energy, the distance between the resonances
decreases and becomes comparable with their width near the upper boundary of the
region. This is called the unresolved resonance region. Fig. 1 shows the difference in
the position of the resonance region for some nuclei.

The measurement of resonance parameters is the subject of many studies. The
results are evaluated (e.g., see [29]-[31]) and published in nuclear data libraries [32].
The most complete libraries are ENDF (Evaluated Nuclear Data Files) [33],
ROSFOND (Russian Library of Estimated Neutron Data Files) [34], JEF (Joined Eu-
ropean Files) [35], and JENDL (Japanese Evaluated Nuclear Data Library) [36]. A
description of the data, formulas, and computer codes performing the reconstruction
of cross section can be found in the descriptions of libraries and in [31], [37]-[39].

The representation (formulas) of cross sections in terms of experimentally
measured resonance parameters is given by the theory of nuclear reactions at low en-

ergies E < mc?. This theory is thoroughly expounded in textbooks and monographs.
To represent the cross sections, the Breit-Wigner, Rich—Moore, and Adler—Adler

formulas are used. The total cross section oY, the cross section of elastic scattering

cs‘,i', and the cross section of inelastic reactions o (x=t,el) in the single-level
Breit—-Wigner approximation are as follows:

t ;
oa(B)| _ JoP(E) 252 o 0, (E)cos 24, +x, (E)sin 2¢, .
{GX(E)} { 0 }+4n Zr:LZJ:nU gl { 6, (E) F;(/Fr’ cetel [ (8)

oA(E)=cW(E)~ Y. oA(E),  oP(E)=4rnk®Y nygysin’e,

x=el 1,J

er(E) _ ]/TC 1ﬂr er(E) _ 1 _ el X
{xr<E>}‘[E—Er12+r${E—Er}’ I{xr(E)}dE_{O}’ fe=lrs 2 0r

Here r is the resonance index; the quantum numbers | and J are the angular mo-
mentum of the incident neutron and the total spin of the compound nucleus, respec-

tively; oP(E) is the cross section of potential scattering; 6,(E) and x, (E) are the
symmetric and antisymmetric resonance profiles; th/\/ﬁ (n=mA/[A+]]) is
the de Broglie wavelength; nj; (E) is the probability of realization of the collision
channel (I,J); and g,; is the spin statistical weight. The phase shift ¢, (E) and the
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resonance half-widths I", (E), F?' (E), and T"}(E) depend on the neutron energy E,

the collision channel, and the parameters of the nucleus. When approaching the reso-
nance energy E = E,, the symmetric resonance profile ©,(E) changes faster than

other functions.

10% —
BLi

100k =

102

100
108

100

108

100
104

100

Total cross section (b)

14’

100
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b —h
(@]
A~ O

241Am

100 I IIlIIIII I IIIII|T| I IIIIl|T| I IIIII|T| 1 IIIIIIII I IlIllllI I lIIIIIII I IIIIIIII I IIlIIIII
10 197 1w 1 10¢ W W WwE 1W* 107
Neutron energy (eV)
Fig. 1. The total cross sections of the interaction of the neutron with the nucleus (in

barn = 107*cm?) for certain elements. The figure is borrowed from [29].
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Dependence of differential cross sections on their arguments. The cross sec-
tion analysis and the verification of experimental data are carried out using the ex-
pansion of the reaction indicatrices in a Fourier series in Legendre polynomials
P,(n) (n=0,1...), which are orthogonal on the interval —-1<n <1, where n=QQ' is

the reaction angle cosine

X i N 2n+l X ' '

WA(E — E,ﬂ) = Z I:)n (n)WA,n(E - E)’ T]:QQ | (9)
n=0
1 o

Win(E'>E)= [RMWA(E >Emdn,  [wi,(E'—>E)E =38y,
-1 0

3112 -1 r 2
PO(T]) :1’ Pl(n) :n7 PZ(n) = 2 RN I Pn(T])Pm(T])dT] :m6mns

-1

and w), , are the expansion coefficients.

The indicatrix of fission reactions of nuclides of thorium, uranium and transura-
nium elements WI\(E' — E,n) (x=f) weakly depends on n and the energy of the
primary neutron E’, and it strongly depends on the energy of prompt neutrons E.
The zero-order expansion coefficient WZ\,O(E' — E) is called the spectrum of fission

neutrons. The neutrons are born with energies 0.5<E <10MeV, which are much

higher than the resonance region. The average energy of 235U fission neutrons is
E ~2MeV. All the spectra are normalized to unity:

N (r,t) f(Er)Wf (E'—)E) . |
- AZNGA/lr,t)G{kOE') | gwof (E'—> E)dE =1.

W, (E'—E,r,t)=

The elastic neutron scattering indicatrix vv,i'(E’—> E,n) (x=el) is a function
with bounded support. It strongly depends on on the energy difference E'—E . The
dependence on n=Q€Q' is significant only for scattering by light nuclei. An approx-
imate formula can be obtained from the laws of energy and momentum conservation
under the assumption of scattering isotropy in the system of the center of mass of the
neutron and nucleus (see, [40, p. 280]). If we change to the observer's coordinate sys-
tem, a strong relation arises between the neutron energy loss and the scattering angle

T](ZI in the observer's system expressed by the - function:
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w (E' > E,m) » GS‘L”,D S(n-n2), E't 10Ty, (10)
A

1x>0 4A A+1[ET? A-1[ET?
o(x)=1" , -7 dEe = =) 2T =
¥ { } e MEE [E} 2 [E}

P el
W€ 5B~ 2o EjoE-EranE),  AE)=aE
O

Here A, (E’) is the width of the indicatrix support (deceleration step).

Dependence of cross sections on coordinates. The microscopic cross sections
oa(E) (x=t,s,c, f,mxn,el,...) depend on the coordinates (r,t) through the tem-
perature of the substance T (r,t). This dependence is not indicated in the list of argu-
ments. The thermal motion of atoms and molecules broadens narrow resonances. Ac-
cordingly, in formulas (8) (and in similar formulas), the resonance profiles 6, (E) and
v, (E) are convolved with the rapidly decreasing Gaussian distribution. If the tem-
perature does not exceed 10eV, then distortions affect the cores of narrow resonanc-

es within the Doppler width leaving the wings unchanged. The temperature depend-
ence is weak "almost everywhere",

Unlike the microscopic cross sections, the macroscopic cross sections >*(E,r,t)
(x=t,s,c, f,mxn,el,...) can strongly depend on the coordinates (r,t). An object in
which the neutrons move usually consists of spatial zones filled with materials with
different nuclide composition. The nuclide densities N, (r,t) can experience a dis-
continuity on the zone interfaces; e.g., they can vanish. Furthermore, the densities of
nuclides can vary in space and time within the same material. For example, in the fuel
elements of a nuclear reactor, a non-uniform burn-up of 235U occurs due to the self-
shielding effect.

Inversion of resonances. Consider a heterogeneous object. Let the neutron flux
o(E,Q,r,t) on the interfaces between the zones change relatively slowly with E. In
the depth of the zone filled with a homogeneous material, the solution to Eqg. (1) as-
ymptotically tends to the stationary point of the equation, i.e. to the regime in which
the balance between the rate of departure and the rate of arrival of neutrons into the
beam is maintained:

O(E, 2,1,t) = 9o (E,1,1) =q(pp) /=" (E,1,1) ~ F(E)/='(E, 1, 1). (11)

The neutron arrival rate q(¢p) varies with E relatively slowly compared with
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the function of large and sharp variation '(E). Therefore, in the depth of the zone,
the neutron flux ¢(E,€,r,t) is rugged by deep dips in the form of «inverted reso-
nances» in the vicinity of the resonance energies E =~ E,. These dips decrease the

rates of reactions | =*(E)¢(E)dE , including fission reactions. This effect is called the

resonance self-shielding of the neutron field. A similar effect—«resonance damping»
of the flux—is observed when the radiation of a boundary source propagates into the
depth of the object.

The specific dependence of the fission indicatrix and elastic scattering indicatrix
(10) on the energy of prompt neutrons E allows one to estimate the E- dependence of
the functional q(¢y) ~ F(E) on E (see [40, p. 286]). In the first approximation («nar-

row» resonances, the Wigner approximation), the synthetic spectrum F(E) is a cer-
tain crosslinking of the fission neutron spectrum, the Fermi spectrum ~1/E, and the
spectrum of the neutron thermalization region. In problems of radiation shielding and
neutron diagnostics, if the object does not contain fissile materials, then the fission
neutron spectrum is replaced by the spectrum of the boundary source ¢®™. Wide res-
onances with a width exceeding the width of the scattering indicatrix support (see
(10)) can introduce small-scale disturbances into the synthetic spectrum F(E). These
disturbances can be found analytically or numerically. In the data processing system
NJOY [37], [38], the calculation is performed by the Flux calculator.

The asymptotic spectrum ¢, is used to prepare the group constants [7], [37]-

[41] by Bondarenko's method [42]. These constants are used in calculations of neu-
tron transport in the multigroup approximation [43]-[46].

1. Separation of variables and resonance carriers

Outside the resonance region, where the neutron cross sections are slowly vary-
ing functions of energy, we will use group averaging of cross sections and the mul-
tigroup approximation of neutron transport. In the region of resonances, we will per-
form more accurate averaging. Let us reduce the dimension of the problem by com-
bining the nuclides into several components.

The component C is the set of nuclides the densities of which vary similarly to
each other within the object:

NA(r,t)

Ne (r.p) - comst: Ne(rt)= Y ONa(rt),  reVv(), 0<t<T. (12)

AcC

Here N¢ is the component density, V(t) is the object volume, and 0<t<T s the
time interval characteristic of the problem. If the nuclide densities satisfy conditions
(12) in certain zones of the object and in other zones the densities are close to zero,
then the nuclides make up a component. The nuclides that are not involved in nuclear
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transformations can be combined into components. These are light nuclides of neu-
tron moderators and nuclides of structural materials (concrete, steel, ...). The fission
fragments and transuranic nuclides that occur in chains of nuclear reactions in similar
proportions from the zero or small initial density are also combined into components.
The main fissile nuclides 233U, 235U, 238U, 239Pu, and 232Th are considered to be
separate components if they cannot be assigned to one of groups (12). In terms of
components, the neutron cross sections have form (4), (5) with the replacement of the
nuclide index A by the index of the component C and the replacement of the micro-
scopic cross sections

{ 1, vé(E’) }Gé(E,):ZNA(r,t){ 1, vﬁ(Ef) }GQ(E'),(B)

W (E' = E,m) v (E') ace Ne (1) |wX (E' = E,n) Vi (E)
Ve (E)WVE(E)ol(B)= 3 Nal) e byt (B)ol ().
acc Ne(r,t)

The total macroscopic cross section x =t can be written as the sums
SYE,rt) =3k (E,r,t) + ME(E, 1, t) = N (1) ok (E) + ME(E, T 1), (14)

ME(Ert)= > S5(E,rt)= > NA(rt)ox(E), C=C,Cy,..
D=C AzC

where ZtC(E,r,t) IS the macroscopic cross section of the component C and
M}:(E, r,t) is the cross section of the component dilution.

Resonance carriers. Proposition 1. The region of neutron resonances can be
partitioned into a number of sets o, ={E, <E< El,p=12..,P} 1<g<gg

called the carriers of resonances. A carrier generally consists of several intervals. The
relative width of the resonance carrier does not exceed a given number K :

2[E5 - E{1/[ES +Er 1<K, 1<g<gg. (15)

(If condition (15) is not satisfied, then the carrier can always be partitioned into more
compact carriers.) Within the carrier, the total macroscopic cross section allows an
approximate separation of the variables E and (r,t) that is valid at all points of the

object:
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SHE ) =a,y(rt)sy (E) +by(E,r,t), Eecowy, reV(t),0<t<T, (16)

where ay,b,,sy >0 are nonnegative functions and by (E, r,t) is a bounded function
of small variation in neutron energy E

j [bg (E.r,t) - by (r, )P dE < | ag (r,1)5, +b (r,t)]2 j dE, (17)

0, ()

g g9

by (r,t) = jbg(E,r,t)dE/j dE, S, = jsg(E)dE/j dE .

(O] (O] (O] (O]

g g 9 g

If the function by (E,r,t) :Bg (r,t) is independent of energy, then the variables are

exactly separated on the resonance carrier.
The existence of partitions satisfying properties (16) and (17) follows from (14)
and the presence of resonances. The resonance carrier oy (C) of the component C

includes the intervals of energy AE that are close to the strong resonances of C and
do not include the resonances of other components. Then o4 (C) contains the reso-

nances of the component C and the background cross section (wings of the reso-
nances) of all other components. Formula (16) coincides with (14) for a; = N¢(r,t),
sy =0c (E), and by = Mg (E,r,t), where by has small variations on w, (C) at any
point of the object (r,t) regardless of whether the material contains the component
C (N (r,t) = 0) or does not contain it (N¢ (r,t) =0).

Remark. In the theory of photon transfer, the assumption that the variables E
and (r,t) are separable in the entire spectrum of the particle energies

ZH(E,r,t) ~ay(r.t)s, (E) (0<E <o) is called the Milne-Eddington model.

Mean cross sections. In what follows, the term mean cross sections denotes the
total macroscopic cross section x =t averaged over the volume of the object and the

time interval, unless otherwise specified. The mean total cross section S'(E) [1/cm]

IS the sum of the mean total cross sections of the components StC(E). The means de-
pend only on the neutron energy E:

.
st(E):<zt>=1 dt K(r,t) ='(E,r,t)dr =Y S¢ (E), (18)
TOV(t)V-L) ¢
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T

—1} K(r,t) No(rob(E)dr, —[-dt [ K@rpydr=1.
ToVOy ToVO,g

K (r,t) is the weight function that selects cross sections in regions of the object if this
IS required by specific properties of the problem. In the nonspecific case, K(r,t) =1.

The algorithm of partitioning the resonance region into resonance carriers uses
the mean cross sections (18).
(A) The interval of energies AE is included in the resonance carrier oy (C) that

accumulates the resonances of the component C if the mean macroscopic cross sec-
tion of this component on this interval is greater than the macroscopic cross section

of any other resonance component: StC(E) > S}D(E) , D=C (see Fig. 2).

(B) If the mean macroscopic cross section of a resonance-free component (e.g.,
neutron moderator) dominates on the interval AE, then this interval is included in the
nearest carrier. The low density components may remain without carriers of their res-
onances.

(C) If a resonance carrier contains wide resonances with the width exceeding the
width of the scattering indicatrix A(E") (see (10)), then it is divided into two carriers:

the carrier of the left resonance wings consisting of the intervals on which the cross
section S'(E) grows and the carrier of the right resonance wings consisting of the in-

tervals on which this cross section decreases. This makes it possible to take into ac-
count the asymmetry of the the spectrum of moderating neutrons arising in the wings
of wide resonances.

Example. If an object consists of zones filled with a resonance-free moderator
component and a resonance component that has narrow resonances, then, according
to the algorithm, the resonance region will be partitioned into ordinary groups
wg ={Ey4 <E <Eg}. The number of groups gg=1 depends on the choice of the

number K in (15). If an object consists of zones filled with moderator and resonant

components C and D, then the resonance region is partitioned into the resonance
carriers of the components C and D (Fig. 2). The total number of carriers gg does

not exceed 21 .
Proposition 2. On the resonance carrier, the local macroscopic cross section of

any group of reactions x at point (r,t) is related to the mean total cross section S'(E)
by a dependence that is close to the linear dependence

SY(E,rt)=A{(r,t)S"(E)+By(E,rt), Eecoy, reV(), 0<t<T, (19)

where Bé‘(E,r,t) is a function of small variation in the argument E at any point of

the object. If the function Aé‘(r,t) IS zero in certain zones of the object, then the mac-
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roscopic cross section is determined only by the function Bg’]‘ :
To prove this proposition in the case x =t, we average (16) over the object, ex-
press sy (E) in terms of St(E), and substitute it into (16). This gives (19) with the

coefficients Ay (r,t)=a,(r,t)/(a;) and By (E,r,t)=hy(E,r,t)— A (r,t)by). The
Breit-Wigner formulas (8) imply that the microscopic cross section of the reaction
group x and the total microscopic cross section are related by a dependence that is

close to the linear dependence o’s(E) =d}c'(E)+eX. Here dX ~T*/T" and e are

slowly varying functions of the neutron energy compared with cstA(E). Therefore,
(19) can be extended to any group of reactions x. Below, the superscript t for the

mean total macroscopic cross section will be sometimes omitted: S(E) = S'(E).

Proposition 3. All materials and geometric zones of the object are involved in
the formation of the neutron field. The neutron flux at any point (r,t) of the object

can be represented by the function

O(E, Q1 t)=F(E)| Zy(S(E).Qr ) +&4(E,2r1)|, Eeco (20)

g ]

where ¢4 (E) and F(E) are functions of small variation in E, F(E) is the the repre-
sentative synthetic spectrum of the problem (see (11)), and Z, >0 is a complicated
function depending on the neutron energy through the mean (over the object) cross
section S(E).

We restrict ourselves to considering the stationary problem without reflection of
particles from external boundaries. In the more general case, the proof is similar. Let

us write the solution to the transport equation (1) along the characteristic of the
transport operator within the zone of the object containing a homogeneous material:

I I I
(p(E,|)=jq((p)exp[—jzt(E,|”)d|’1d|'+<p(E,|in)exp ~[UENI |~ )
l; I’ I

in in

<) 1—exp —l SYE, I’ | [+ o(E, L Yexp —I SYE, NI |,
=(E.N) ..I rj

n n

Here | and |, are the characteristic coordinates of the observation point r and the
entry point of the characteristic into the zone r,, =r—Qfl —1I;,] and o(E,l;;) is the
neutron flux on the boundary of the zone. The approximate estimate of the neutron
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flux is valid because the cross section ='(E,l) varies continuously within each zone.

Formula (21) gives the rate at which the solution reaches the asymptotics of the sta-
tionary regime (11), which settles deep inside the zone of infinite length. The rate de-

pends on the cross section ='(E,|) at different neutron energies. Let us substitute the

expression of the cross section on the resonance carrier in form (19) into (21). If the
neutron flux on the boundary of the zone ¢(E,l;,) can be represented in form (20),

then (21) can also be reduced to (20). Let us move along the characteristic from the
entry point into the object while this condition holds true. By sequentially calculating
the functions o(E,l;,) at the points of intersection of the interfaces between the

zones, we can always reduce solution (21) to form (20).

2. Lebesgue averaging

This section describes the averaging of resonance cross sections and the neutron
flux over a system of Lebesgue sets. The sets are constructed independently within
each resonance carrier. The reader is not required to know measure theory and the
Lebesgue integral. We will use only the construction of the integral that is suitable for
averaging resonance cross sections. All functions under consideration are assumed to
be bounded, Riemann and Lebesgue integrable, and both integrals are equal.

<1 O)gs

=

0g(C) o, (D) wg(C) o, (D) T Ek_(S)T E;(S)T T
o(S(m))
Fig. 2. Partitioning the spectrum  Fig. 3. A fragment of the resonance carrier
into the resonance carriers g consists of two intervals. For the
of the components C and D. given level S(m), the Lebesgue set

®(S(m)) consists of four intervals.

System of embedded sets. We construct within the carrier g a system of sets
(see Fig. 3) by including in the set w(g,S) the energies E at which the mean cross

section (averaged over the object) does not exceed the S, S(E) <S. This set consists
of the set of intervals E, (S)<E < E/ (S), k =1,2,... The left and right boundaries of
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the intervals E; (S) are the points with the same mean cross section S =S(Eg) or

the boundaries of resonance carriers. As the level S increases, the left boundaries can
only move to the left and the right boundaries can move only to the right. Therefore,
we have the embedding of sets ®(Spq) = w(S) S ®(Sy), Spq =S <Sy, where Sy

is the level at which the set is empty o(Syy) =< and S is the level at which the set
corresponds with the resonance carrier o .
Define the measure m(S) ([eV]) of the set w(g,S) using the integral

©)= | F(ENE ZEEJ(S)F(EME NG (22)
m(S) = = ,

o(9,S) K E (S) 809 <$< Sg’
M(Spq) =0, my =m(Sy) = j F(E)dE,

g

where F(E) is the dimensionless weighting spectrum that is proportional, e.g., to the

Wigner synthetic spectrum (see (11). If the weighting spectrum is difficult to deter-
mine, then set F =1. The spectrum can be adjusted when typical problems are
solved. The measure varies from zero to the integral of the weighting spectrum over
the resonance carrier. If F =1, then the measure equals the sum of lengths of the in-
tervals on which S(E) <S.

Remark. The Lebesgue averaging can be performed using the reference func-
tions S(E,r,t) and F(E,r,t) that depend on the energy of particles and on the coor-
dinates [8]-[11]. In the neutron transport problems, it suffices to consider the case
S=S(E), F=F(E).

Since the measure is a nondecreasing function of level S, then there exists a
nondecreasing inverse function specifying the dependence of the level on the measure
S=8(m) (Spg <S(m)<3Sy). We parameterize the system of sets w(g,S) in terms

of their measure m making the change of variables by means of the inverse function
®(g,S(M)) =w(g,m). If m=0, then the Lebesgue set is empty—w(0)=J. If
m=my, then the set o(my) densely fills the resonance carrier oy. A part of the
boundary points of the set E; (S(m))=Eg (m) (k=12,...) are the points with the
same mean cross section S(Ef)=S(m). At these points, JOE; /amzo and
8Ek‘/am£0. The remaining points are the boundaries of the resonance carrier. At

them, we have 6E /om=0.

By differentiating (22) with respect to the measure m under the condition that it
Is an independent variable, we obtain an identity expressing the relationship between
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the derivatives of the direct and inverse functions

E, (M)

5_”‘:_2 [ FE)E-= Z[F(Ek)aEk} =1, (23)
om  om“ £ (m) _
s _
where [F(Ek)aEk} 8E" F(Ek)aEk 88E" >0, aaEk <0.
_ m m

The summation is over the boundary points Eki with the same mean cross section
S(Ef) =S(m). The boundaries of the resonance carrier are not included in the sum
because OE; /am =0 at them. All terms in the sum are nonnegative.

Lebesgue neutron flux. Let T, (m,,r,t) [cm “sec™'] be the cumulative dis-
tribution of neutrons on the system of embedded sets built inside the carrier g:

E; (m)
Ty (M Q1) = j o(E,,rt)dE=)" j o(E,Q,r,t)dE . (24)
o(g,m) K E(m)

If m=0, then the distribution is zero; if m=m,, then it equals the integral of the
neutron flux @(E) over the resonance carrier g. We will call the distribution density

aT E, (M)
wg(m,ﬂ,r,t)za— Z j o(E, Q,r,t)dE = Z[@(Ek)aEk} = (25
m kEk(m) -
_ | 9(E) aEk (P(Ek ) [F o Yk } o(Ex)
;{F(Ek) m} F(EJ; %m | <F(E%)%

the Lebesgue neutron flux 4 (m,,r,t) [eV~'cm~?s™]. The last equality is obtained
taking into account identity (23). It is clear that the Lebesgue flux v, (m,€2,r,t) is
the ratio of the neutron flux ¢(E,Q,r,t) to the weighting spectrum F(E) averaged
over the set of boundary points of the Lebesgue set Eki = E[f(m) (k=1,2,..) at which

the mean macroscopic cross section takes the same value S(Eg)=S(m). This
definition is correct because all the terms in the sum are nonnegative. The depend-
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ence of the Lebesgue flux v, (m) on the measure m corresponds to the dependence

of the neutron flux @(E) on the energy E. The summation over the points E; (m)

with the weight |0E; /8m| does not reduce the number of independent arguments of

functions.
Example. Let the Lebesgue flux be independent of m:

maT m
Ty (M Q,r,t) = j—gdm = I\pg(m,ﬂ,r,t)dm =y, (@ r,t)-m.
0 om 0

Assuming m=my, we find that vy (€,r,t) =T, (mg,ﬂ,r,t)/mg , 1.e., the Lebesgue
flux equals the ratio of the integral of the neutron flux on the resonance carrier o to

the corresponding integral of the weighting spectrum.

Evaluation of integrals. An important useful property of the Lebesgue integral
Is the ability to efficiently evaluate integrals of nonmonotone resonance functions of
many variables

(mert)= [ Y(Er)oe(E Qrt)dE, O<m<m
w(g,m)

N (26)

where Y (E,r,t) = X(S(E),r,t) is a given complicated function depending on the en-
ergy E through a relatively «good» function X(S) and a strongly nonmonotone
function S(E); and ¢ is the neutron flux. For m=mg, the integration is carried out

over the resonance carrier g. The numerical evaluation of integrals (26) according to
the Riemann scheme at points in space ExQxrxt requires a large amount of com-
putations on a fine nonuniform grid. The accuracy of the computations depends on
the art of grid selection. On the other hand, if we construct a system of Lebesgue sets
on the basis of the function S(E), then the integrals can be represented in the form

| = 6&} dm= (27

om |

o —3

a m
a_m{ j Y(E)(p(E)dE]dm = £Z{X (S(Ey)) o(Ey)

»(g,m) k

+

:J‘X(S(m))Z{(p(Ek)aa%} dm= I X(S(m),r,t)yy(m, ,rt)dm.
0 k - 0

The function X(S(Eg)) is taken out of the sum because it takes the same value
X(S(m)) at the points El:—”. The level S(m) is a nondecreasing function of m inde-
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pendently of how many resonances S(E) has on the carrier wy. The functions
X(S(m)) and y,(m) have good monotonicity properties with respect to the argu-

ment m. Therefore, the integrals may be evaluated on a coarse grid at a low computa-
tional cost.
The gain from the transition to Lebesgue distributions is achieved by combining

points with the same macroscopic cross section S(E;)=S(m) into one computation

point and due to momotonization of sections. The gain magnitude is approximately
equal to the number nonmonotonicities (resonances) on the carrier. The functions
X(S) and S(E) must be known in advance. The relationship between the evaluation

of integrals (26) of nonmonotone functions according to Lebesgue and Riemann is
similar to the relationship between positional and nonpositional number systems—
eggs may be counted one-by-one or by dozens.

Let us calculate the departure rate of neutrons from beams whose energy lies
within the set E € o(g,m) c oy, and the emergence rates of prompt neutrons, fis-

sion fragments (see (2)), and nuclides (see (7)) in reactions x:

IS(m,Q,r,t)

1 }
- J xZX(E,r,)o(E,Qrt)dE, O0<m<m,.
Jg(m,ﬂ,r,t) m(g,m){vx(E r,t)

Let us write the integrals of interest as the Lebesgue integrals (27)

9 :Ti[ J { ! }XZX(E,r,t)(p(E,Q,r,t)dE]dm= (28)
0

oM o v*(E,r,t)

1 = ¢ O 1 E, + )
{VX}Z F 8m:| dm~IWg(m)Z|:{ (Ek) X (Ek)F(Ek) _dm~

m 1
~ Hvx(m, r,t)}xzé (m,r,t)yg(m, Q,r,t)dm.

Here the ratios o(Eif)/F(E) at the boundary points E; are replaced by the average
(cp(Eki)/F(Ef)):wg(m) calculated at the same points. The functions Zg (m,r,t)

and v*(m,r,t) are called the Lebesgue cross section and the Lebesgue multiplicity of
the reactions of group x, respectively:
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{1, vg(m,r,t)}ng(m,r,t):aim [ {1, vX(E,r,t)}XZX(E,r,t)F(E)dE: (29)

o(m)

:Z[{l, V(B ) x (Ek,rt)F(Ek)aEk}
k -

The Lebesgue cross section is the average cross section calculated on the set of
boundary points Ef, S(Ef) = S(m) with the weight F(EZ) x|oEL /om|.
In distinction from (27), equality (28) is approximate. Let us calculate the error

A(M,Q,r,t) = rféi(m,ﬂ,r,t)dm, (30)

3(m .r.t) - Z{[E (EQ) - =} (m )]L((Ek))—wg( >} (Ek)aﬂ -

:ZHBS(EK,r,t)—Bé(m,r,t)][ (E.Qrt)—¢ (mQrt)}F(Ek)aEk}

k

BX(m,r,t) BY(E,) k| o [BIENY
= F(E)—%| =— F(E)dE .
{sg(m,ﬂ,r,t)} ;HSQ(EK)} (Ec) om ] Gmm(-.‘m){sg(E,Q,r,t)} (E)

Here we used representations of the cross section (19) and neutron flux (20) on the
resonance carrier g in the form of separated variables. The terms Ag(r,t)S(Ef) and

Zg(S(Eki),Q,r,t) are not included in the sum because they take equal values
X(r,t)S(m) and Z,(S(m),,r,t) at the summation points E;". The error depends
g k

only on the functions of small variation By (Ej’) and & (E;) . The quantities B;(m)
and g4(m) are the mean values of the functions calculated over the summation

points.
For the error & to be small, it is sufficient that at least one of the following ine-
qualities holds:
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{D(m,B)}:Z [B} (E,) - B} ()T S _[Eperop o
Dm.e) ]| | eq (Bx) —eg (M) C vimery)

{zg(m,r,t) }{ AX(r,H)S(m) + B (m,r,t) }

vo(mart)| |Zy(SM),2rt)+e,mrt)|

Here D(m, B) and D(m,e) are the variances of the distributions B} (Ej), &4 (Ej’) on

the set of boundary points Eki, k=12,... Since BS(E) and ¢4 (E) are functions of

small variation (this is a consequence of the separation of variables on the resonance
carrier), both inequalities in (31) are simultaneously satisfied. The error in the calcu-
lation of rates (28) is negligibly small.

Moreover, the error 8(m,€2,r,t) vanishes if the sums over k consist of only one

term. This happens in the corridors of monotonicity Sy < SY(E) < Sgizrs =12, If
we will decrease the width of the resonance carriers (the number K, in (15)), then

the mean cross section S'(E) will at some point become a monotone function on the
entire resonance carrier, the corridors will merge into a single corridor, and the error

A(m, ,r,t) will vanish on the entire resonance carrier.
The arrival rates of prompt neutrons Qg (m,€,r,t) and qg(y) :8Q§(m)/8m
into the set E € (g, m) and the unit interval of the measure m are calculated in ac-

cordance with the general rule of averaging over the initial states of transitions and
summing over final states. First, we perform the Lebesgue summation over the points
of the resonance carrier E" € w(h,m’) < @y, from which the primary neutrons depart;

m' (0<m’'<m,) is the measure of sets embedded into it. The dependence of the
quantities on (r,t) is temporarily omitted:

Qme)= [ dE YWXE)WX(E' - E,n)o(E,Q)E' = (32)

o(g,m) 4n TCO

do’ OE},
j dEj > ij{z (EL)VY(EL)WX (Ep — E,m) o(Ep, Q' - } dm’ ~
o(gm) 4n ST h 0 k m ]

[ ] deIEh(m)va)wh (' —> E, ) (m, ) dm' = qumdm
o(g,m) 4n h o

Q
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zﬁ(m')vﬁ(m')vth(m'—>E,n):i, [ =X EW EW (E —EnF(E)E".
m
o(h,m)

In the second stage, we perform the summation over the boundary points of the set
E € (g, m) into which the prompt neutrons arrive:

i =" [ dE[SES [ SxmvEmWEm - E,myy (', @) dm' = (33)

amco(g,m) ar T h 0

dQ’

' my
j dz?t > j Zh (M, 1, v (M, FOWLE o (M — m,n, 1Dy, (', Q' r, t)dm'.
47 h o

The indicatrix of reactions WhX_>g (m"— m,n,r,t) is determined by the formula
Zh (M, r ) vin (', r )W (M = mym,rt) = (34)

o2
omom’

j dE j SX(E',r,t) vV (E', r, ) WX (E' = E,n,1,t)F(E)dE’.
o(gm)  ohm)

It describes the transition of neutrons up and down the spectrum variable m within
the resonance carrier h=g and the transition of neutrons between different carriers

h = g; the indicatrix satisfies the normalization relation (cf. (6))

Mg

1
Z '[ dm'[WhX_,g (m"— m,n,r,t)dn=1, n=QQ'. (35)
g 0 -1

The error in calculating the arrival rates of neutrons (33) is the sum of negligibly
small errors in calculating the departure rates of neutrons (28).
The transport equation for the Lebesgue neutron flux v, (m,€2,r,t) is derived

by the direct integration of Eq. (1) over the system of embedded sets E € w(g,m).

The integration gives the equation for the cumulative distribution (24). Taking the de-
rivative with respect to the measure m, we obtain the desired equation
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10 0
£ T 5 (M) |y (M Qo0 = 63 (v) + 05 (). (36)
Vg ot ' or

The Lebesgue cross sections ZX and the neutron arrival rate qg (y) are given by

g 1
formulas (29), (33), (34), and qext (v), and vy are given by the formulas

ext Xg( a ) TpT i_i F E)
(y) = z . ATPT(r,t) +qg (M, Q,r,t), P ] dE, (37
Lg(M,r,1) 0 v*(E,1,t) T
r = I r dE, > I g (M,r,t)dm=1.
qg (m,Q,l',t) om w(g,m) q (E,Q,l‘,t) g 0

The precursor densities P*(r,t) satisfy the transport equations

Pw i+7ﬁ}P(rt) jdgzj vi(mr, )] (mr,t)y,(mert)dm. (38)
ot 0 41 g0

The boundary conditions are derived from conditions (3) by the similar summation

[\yg(mﬂrr) "’em(m’g’rf)]nmo: [ Gy@ - myy(mer)de. (39)
nQ'>0

The reaction equations (7) are averaged using (28) and (29).

We discuss the averaged equations (36)-(39) later together with the equations of
the Lebesgue moment method.

Summation of Lebesgue cross sections. The Lebesgue macroscopic cross sec-
tions of reactions are the sums of the Lebesgue microscopic cross sections with the
weight of component (nuclide) densities similar to sums (4), (5)

y !
{ 1 vi (m',r,t) }ng(m',r,t) _ (40)

vi (', r,t)Why_>g (m — m,n,r,t)

1, ven(m)

Ve h(MIWE g (M —m,m)

], et
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%g (M1, ) v (m, r,t)Zé (m,r,t)=> N¢(r.t) %C.,g (M Ve (M) oé,g (m).
C

The cross sections in (40) are calculated by averaging the neutron cross sections (8),
(13) over the Lebesgue sets w(g,m)

{1, Vé,g(m)}xcé,g(m)zaim | {1, vé(E)}xcé(E)F(E)dEz (41)
w(g,m)

. . o5 |
= ;[{1 Ve (Ek)} Xog (Ek)F(Ek)ﬁ—n:l ,

Wé,h—)g (m"—m,n) Vé,h (m’) CT)C(:,h (m") =

Y.
~ omem’

[ dE [ WE(E'>EmVE(E)SE(E)F(E)IE,
o(g,m) w(h,m")

o

am f xc (E)ve (E)oc (E)F(E)dE.

o(g,m)

1&g (MVE g (M)SE 4 (M) =

Recall that the sets w(g,m) are constructed on the basis of the mean cross section

SY(E) (18) calculated for a certain class of applied problems.

Analytical formulas. Let us discuss the storage of the Lebesgue microscopic
cross sections (41). The cross sections depend on the spectrum variable (g,m), and

they relatively weakly depend on the temperature of the substance T (r,t). Therefore,

they can be stored in the files of the cross section library in the form of analytical
formulas as in the method of storing the initial neutron cross sections.

Due to the partition of the energy scale into resonance carriers described in Sec-
tion 1, each carrier contains the resonances of a certain component C and the back-
ground cross section of the other components. Therefore, the Lebesgue cross sections
of the other components D = C can be expanded on the carrier oy (C) into rapidly

converging Fourier series in trigonometric or power polynomials of the variable m.
Only the first few expansion coefficients need to be stored. These coefficients may
slightly depend on the temperature.

Now we derive analytical formulas for the Lebesgue cross sections of the com-
ponent C on the carrier of its own resonances gy (C). Assume that within the reso-

nance carrier and its vicinity, the resonances are equally spaced at distance d from
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each other and have the same strength and half-widths ", T*. In the theory of photon
transfer, the model of identical resonances is known as the Elsasser approximation
[49]

E, =By +A+rd, e=[E-E4; —A]/d Yq =T/d.

Here E, is the position of the resonance with the index r, E is the center of the car-
rier, A is the shift, d is the period, e is the dimensionless energy, and v, is the di-
mensionless half-width of the resonance in the vicinity of the carrier o .

Let us perform the summation over the resonances in the neutron cross sections
(8) using the formulas (e.g., see [48, p. 652])

i i v—g_L i 1 ~ 1 B sinh27ryg
T 2 21 i I

e—r+iy, e-r—iyy | cosh2my, —cos2me’

F=—c0

1 < 1 1 1 sin 2me
R P 2w vy iy, | cosh2 2me’
T [e— r] "‘Vg T e-r+lyy €-r—lyq cosh zmyy —COSzme

Thus, within the resonance carrier E € o, , we have

g 1

t 04 (E E
{GC(E)}—{GS}+ng{pg g (E)+0gxg( )}’ G(e:I(E)ZGE:(E)_ZGé(E)’

ot (E) 0 Ué 04(E), x=tel xzel

04 (E) _ 1 y sinh2my, EEde 04 (E") dE':{l}
%1g(E)| cosh2myg —cos2me | sin2re | d % |xg(E) o)’

el

ng{l, ué, Py qg}:4n2122nug”%x{l, FX/F, cos2¢y, sin2¢|}.
1,d

Here Hy is the resonance strength per unit energy interval, 64(E) and x4 (E) are
the symmetric and antisymmetric resonance profiles determined on the cross section
period, py and qg are the phase shift coefficients, and ug Is the partial coefficient of
the reaction x. The other quantities were described in the comments to (8). On the pe-
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riod d, the equation GtC(E) =o has two roots E; and E,. The measure p of the set
w(g,u)z{E:cstC(E) <o} is p=d-[E, —F]. Put u/d ~m/mg. In this model, we
can derive for the Lebesgue sections the analytical formulas

oc,g(M) z{cg}mg X{pgeg(m)mgxg(m)}’ o<mem,, @2)

oe.g (M) 0 gy (m), x=t,el

sinh 27y dq cOs(ntm/mg )

[1+ pylsinh2ny,

eg (m) = Lg (M)~ -

cosh 2my +cos(mm/my)’

The same formulas are obtained if the resonance carrier contains only the left or
only the right wings of the resonances (intervals of growth or decrease of the cross

section ctC(E)). Formulas (42) can be extended to the general case of arbitrary reso-

nances if the parameters csg(m), Py (M), g (M), and ug(m) are considered as func-
tions of the variable m, and the parameters y,(m,T) and hy (m,T) as functions of m

and temperature. The cross sections of a nuclide A that appear in the component C
can also be represented by formulas (42). Note that these formulas are valid in the en-
tire resonance region, including the region of unresolved resonances.

To store the indicatrices Wé,h_>g (m"— m,m) and the multiplicities of reaction

products vé'h(m’), a tabulated data representation can be used.

3. The Lebesgue moment method

The numerical solution to Eq. (36) is sought on a finite grid in the new spectrum
variable (g,m;), 1=0,..,Ng, 1<g<qgg. Let us raise the question of selecting the
optimal grid m, with a fixed total number of nodes Ng that would describe the evo-
lution of the neutron field in the object with minimal (in a certain sense) error. The
grid optimization problem and the problem of the neutron flux reconstruction in the
E-space after finding the Lebesgue neutron flux is solved using the Lebesgue moment
method.

Expansion of the neutron flux. We will seek the solution to the transport equa-
tion (36) on sets o(g,m) c gy, 1<g<gg as a sum of the main function vy, and

the small correction &,

Yq (M, Q,r,t) =y, (M Q,r,1) +eyy (M, Q1 1), (43)
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Yng (M, Q,r,t) = ZP h(5(m) P (@t

n=0 n

t),

1 1
Y (@) = [ pER ©)vg(MQr)dE, [ pE)R(E)R(E)dE=d7 8y
-1

-1

=S, L -S(m)L,
9 4@ Y99 _2e (m)Ly OSmSmg,

Sm = “Sogly _ g =Sal " Sog SS(m)SSg,_lga(m)Sll (@4

The main function is a segment of the expansion of the Lebesgue neutron flux
Wy (m) in a series in a system of orthogonal polynomials F,(€) (n=0,1,...,) on the

interval —1<&(m) <1, Ng is the expansion order, p(&) is the weight function of the
polynomial system, and d,, are the normalization factors of the polynomials. The ex-
pansion coefficients ‘Pg‘) (Q,r,t) will be called Lebesgue moments. The argument of

the polynomials &(m)=¢&(S(m)) is a complicated function that monotonically in-
creases in the argument S =S(m), does not decrease in m, and takes the values
£(0)=-1 and &(my)=1 on the interval endpoints. In the original E-space, the ex-

pansion (43) corresponds to the following expansion of the neutron flux within the
resonance carrier:

P (é(E))

I’]

o(E,Q,r,t) = F(E) Z P (Q,r,1) + ey (E, Q1 1), (45)

~Spql o SE)L

=S, L,
9 4o 99 _2 Eecog,

e_SOQ Ly _ e_Sg Ly G <9g<G,.

e

&(E)=&(S(E)) =

This can be easily verified by substituting (45) into (25).
If we substitute (44) into (43) and collect similar terms, then the main part of the
flux yyg (or @ng) can be written as a linear combination of the exponential func-

tions exp(-nS(u)Ly), 0<n<Ng, u=E,m. The factor n in the exponent specifies

the partial rate of neutron departure from the beam associated with this exponential
function, S(u) (u=E,m) is the mean cross section (18), and L =L is the dimen-

sional parameter adjusted for each specific problem (class of problems), which has
the order of the object size. Grouping the exponential functions into polynomials is a
way of orthogonalizing the basis functions. The inclusion of a new exponential func-
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tion in the basis is equivalent to adding one more higher order harmonic to yy,. The

choice of exponential functions as basis functions is motivated by the form of the so-
lution to the particle transport equation (21), which is the sum of exponential func-
tions.

Another set of basis functions that is suitable for describing the effects of inver-
sion of resonances in neutron spectra is the system of rational functions

]/[1+ S(u)Lg]”, n=0,1,2,..., u=E,m. To use this system, it is sufficient to carry

out a rational approximation of the exponential function
exp(=S(u)Ly) z]/[1+ S(u)Ly]. Then the argument of the polynomials in expansions

(43), (45) is replaced by the function

Sg _S(u) 1+SOg Lg _1SE,>(U)31,

, (46)
Sg —Sog 1+S(U)Ly u=E,m.

gu) =¢&(S(u))=1-2

Probably, there are other convenient systems of basis functions for describing the in-
version of resonances. The name Lebesgue moments reflects the dependence of the
basis functions of expansions (43), (44) and (43), (46) on the magnitude of the cross
section for the interaction of neutrons with matter.

Assume that the principal part of expansions (43), (45) converges to the neutron
flux at the point (€2,r,t) on the resonance carriers E € wg as Ng increases and the

carrier width K, decreases (see (15)), e.g. in the norm Ly: [leng(u)|l,— O,
u=E,mewy. The convergence rate depends on the fortunate choice of the basis

functions (44), (46) for describing the resonance inversion, on the choice of the scal-
ing parameter L, in these functions, and on the problem to be solved—material and

geometry of the object.

Then, the small error made in deriving the transport equation (36) for the Lebes-
gue neutron flux rapidly tends to zero. Indeed, the main expansion function g (E)
depends on energy E only through the mean macroscopic cross section S(E) . There-
fore, the variance D(m,eyg) in the second inequality in (31) tends to zero. This ac-

celerates the ultimate convergence of equations (36) and (1) in the norm L, due to

the simultaneous fulfillment of inequalities (31). The convergence rate is much high-
er than the convergence rate of the equation of the multigroup approximation to (1).
Reconstruction of the neutron spectrum. If the Lebesgue moments

‘{Jg‘) (Q,r,t) (0<n<Ng, 1<g<gg) are known, then the neutron flux in the object
in the approximation &y ~ 0 is restored using formulas (43), (45) in both (g, m)-

space and E-space (if required).
Evaluation of integrals. The Lebesgue moments give additional Lebesgue cross
sections that simplify the calculations of the neutron field functionals, such as the
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neutron flux on the resonance carrier g, the neutron departure rates from the carrier,

the arrival rates of prompt neutrons, precursors (see (2)), and nuclides (see (7)) in the
reactions of group x

b ] 1 IX ) ) X
{(pg(ﬂrt) g(ﬂrt)}_ J.{ 1,  ZX(E,r,1) }xq)(E,Q,r,t)dEz (47)
Jé(ﬂ,r,t) v¥(E,r,t)*(E,r,t)

Oy

M (1, =X(m,rt) Ng £ [1, =XM(rt)
~ g xypg (M r,t)dm=> -2 | « ¢ (Q,rt).
XX Ng 2 x(n) s x(n) Y
0 | vgZgq(m,r,t) n—0 dy | vg "z (r,t)

Here Fé”) = Fg(”) (Ly) is the weight of the nth order Lebesgue moment on the carrier.

The nth order macroscopic cross section 23(”)(r,t) and the multiplicity vg(”) (r,t) in
reactions x are given by

I x
Vi (r, ) =5 (r 1) o v¥(E,r,t)2*(E,r,1)

9

M 1,  Zy(mr,t)
= [ Ru@Em)xq ) dm.

0 Vg (m,r,t)Zg (m,r,1)
The weight of the zero-order moment is equal to the integral of the weighting spec-
trum Fg(o) = Fy. The macroscopic cross section of order n=0 corresponds to the
macroscopic cross section of the multigroup approximation.

The differential arrival rates of prompt neutrons Qy (m,€,r,t) and g4 (v) (32)

into the set E € w(g,m) and into the unit interval of the variable m are

m
Qé(m,ﬂ,r,t)zjqﬁ,g (y)dm, 0<m<mg, (49)
0
X dey’ N I:h(n) x(n) x(n) x(n) (n) '
qNg (W): j 27_[ sz—zzh (r,t)Vh (r!t)Wh_)g (m!n’rlt)\Ph (Q ,l',t),
At h n=0 Yn
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vi® ()W) (o, ) X (r ) R = (50)

_0

P [ dEJPREENZXE. OV (E r,OW*(E > Enr)F(E)dE,

m(gvm) O)h

Mg

1
Zjdmjwhxﬁg(m,n,r,t)dnzl, (n=0).
g 0 -1

Here thg‘g)] (m,m,r,t) (n=Q€Q") is the nth order Lebesgue moment of the indicatrix

of reactions x (not to be confused with the angular moments of the indicatrix, see (9)).

The moments of cross sections (48), (50) are calculated from the Lebesgue mi-
croscopic cross sections of the components by formulas (40), (41).

Calculation of the Lebesgue moments. The distribution moments can be calcu-
lated following their formal definition (43) using non-optimized quadrature formulas,
such as the rectangle, trapezoid, etc. rules. In addition to the primitive method, two
direct methods can be used for the calculation of moments. The first method is to
write a system of equations for the moments and solve it. The second method uses
optimized quadrature formulas such as Gaussian formulas. The solution to the parti-
cle transport equation is sought on a finite grid consisting of N+1 nodes of the quad-
rature formula. This grid is optimal in the sense that it provides the ability to accu-
rately calculate M (M < N) power moments if the distribution is continuous in the
given variable and M is the quality parameter of the formula. In the case M =N,
both methods are equivalent and the grid consisting if N+1 nodes is a necessary but
not sufficient condition for the exact calculation of the moments of particle distribu-
tion in the object. To calculate the Lebesgue moments, we will further follow a ver-
sion of quadrature formulas.

Remark. In the theory of particle transport, direct methods of calculation of the
angular moments of distributions over the flight directions of particles are known as
the method of spherical harmonics and as the Vick—Chandrasekhar method of dis-
crete ordinates, and also the optimized Carlson's Sn-method (in multidimensional
problems).

The Gauss—Christoffel quadrature formula is the formula for the approximate
evaluation of integrals [47]

1
[ p®)de. (51)

-1

A

1 N
[p@Y@©de~ >N Y(E),
-1 i=0

N
0

Here Y (&) is an integrable function from a certain class of functions, p(§) is a given
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weight function that emphasizes the features of the behavior of functions of this class
on parts of the interval -1<g<1, & and A; are the nodes and weights of the

formula, and Y (&;) are the values of the integrand at the nodes. The nodes and
weights are chosen so that the approximate equality (51) becomes exact if Y (€) is an
arbitrary polynomial of degree not higher than 2N +1. The weights &; (i=0,1,...,N)
are the roots of the equation Py (&;) =0, where By, belongs to the system of or-
thogonal polynomials on the interval —1<& <1 with the weight p(&) (see (43)). The
weights ; called the Christoffel coefficients are calculated by

1 _ayPy(Ei) APy (&) _ im

2 2 ' i:O,l,...,N,
A ayady ds no dn

where ay is the leading coefficient of the polynomial Py .
Consider expansion (43). The Lebesgue flux wy(m) and its principal part

Wyg (M) have identical moments ¥{V, 0<n<N. Since Y (&)= P, (&)yy, (M) for

0<n<N is a polynomial of degree not higher than 2N, its substitution into (51)
gives an exact formula for the calculation of moments

1 N
v (@rt) = [ p@) P (E)wg(ME), 21, dE= Y24 Py (&) wg (M, Qrt). (52)
-1 i=0

To use (52), the solution y, (m;, €2,r,t) to the neutron transport equation (36) is
sought on the optimal grid m; =m(&;) (i=0,1...,N) or on a grid in which the opti-
mal grid is embedded, or on a close grid that admits high-order interpolation. The
neutron arrival rate qa (w) can be calculated by formula (49) (instead of (33)).

To find the nodes m; of the optimal grid, we invert (44) and (46):

2 IS the basis of

Si(m)L, =In
i(Mj)Lyg - gi]e—S()gl-g L+ ii]e_Sng exponential functions,

(53)

[1+&1Sg +[1-&1Soq +2S0gSqLy is the basis of

S;(m) =
() 2+[1-&1SyLy +[1+&]SpqL,  rational functions.

Example. Suppose that the Chebyshev polynomials that are orthogonal on the in-
terval —1< & <1 with the weight p(&) =[L—£2]Y? are used to orthogonalize the ba-
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sis functions of the neutron spectrum (44), (46) in expansion (43):

P, (£) = cos(n arccos&) j P (&) P (F’)dgzdﬁ 8o, 02 =g[1+8n0].

Ji-g?

Then, the nodes, the values of polynomials, and the weights in the quadratic formula
(51) are

&izcosn[2i+l], P (&) = S7rn[2i+1] oo T

COS——, i =—, 0<i,n<N.
2[N +1] 2[N +1] N +1

The formula for calculating the Lebesgue moments (52) takes the form

v (@rt) = i‘; n2?|[\|2| +}] v (M, r,t).

Equations (53) for finding the optimal grid nodes m, are

- | - [ basis of exponential
S; (m;)L =—In[e Sogly g2 LA +1] | sl COSZM] D

4[N +1] 4[N +1] )" functions,

prl2+] o o w2i+]]

S So S, L _ _
S (m;) i 4N +1] o 4[N +1] 7209050 pasis of rational
i(m;) = : : | _
1+ S, Ly sin? rl2i+1] Syl COS® n[2i+1] © functions.
4[N +1] 4[N +1]

These equations are solved for m; (i=0,1,...,N ) at the stage of data preparation

for the transport calculation together with the preparation of the Lebesgue macro-
scopic sections. The macroscopic cross sections can be calculated directly from the
nuclear data library files or from the files of the Lebesgue cross section library.

Discussion

The equations of the multigroup approximation in the resonance region have on-
ly a qualitative correspondence to the original neutron transport equations (1)—(3), (7)
. Indeed, consider the «exact» group constants averaged with the neutron flux weight
using the Riemann scheme. The exact group constants depend on the direction of the
neutron flight €. Their variations with respect to € can be as high as tens or even
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hundreds of percent, especially in the vicinity of material interfaces, where the neu-
tron flux (21) varies strongly in both arguments E, Q (e.g., see [50]). The group
constants of the multigroup approximation are independent of Q (see [37], [38],
[41]). This is because the true neutron flux is replaced by the approximate isotropic
weighting spectrum due to averaging.

The equations of the Lebesgue averaging method and the Lebesgue moment
method approximate the original neutron transport equations to high accuracy. The
Lebesgue neutron cross sections lose little information about the neutron cross sec-
tions and have accuracy comparable to the accuracy of data in nuclear data libraries.
Like the original neutron cross sections, they are independent of the direction of the
neutron flight Q.

The averaged equations (36)—(39), (49), and (52) describe such effects in neu-
tron spectra as interference of potential and resonance scattering, increase of the fis-

sion neutron multiplicity v' (E) in the core of resonances, the inversion of narrow

and wide resonances, the block-effect (decrease in the resonance self-shielding of the
neutron field near the interfaces of different materials), and the spatial heterogeneity
of fuel burn-up and nuclide formation in nuclear reactors. The ability to approximate-
ly reconstruct the neutron spectra makes the Lebesgue method a good tool for the
numerical support of research in the field of neutron diagnostics of objects.

The cross sections of equations and the neutron flux are highly monotone in the
spectrum variable (g,m). The equations have a structure similar to the structure of

the original equations in the E-space. Therefore, they can be solved numerically on a
coarse grid using the known methods for calculating the spatial-angular distribution
of neutrons, direct methods for solving the transport equation (Sn-method, method of
characteristics), the method of spherical harmonics, and the Monte Carlo method.

The zero-order moment method is a multigroup approximation in which groups
are resonance carriers. This ensures a smooth transition from the moment method
N >0 to the multigroup approximation when passing through the boundary of the
resonance region into the region of slow cross section variation.

The transitions of neutron down and up in the measure m within the resonance
carrier (h=g) and transitions down and up in the carrier index (h = g) require itera-

tions. These iterations are similar to the iterations that are performed in the thermali-
zation region of neutrons when the multigroup approximation is used. In the Lebes-
gue moment method, these iterations are reduced to calculating the Lebesgue mo-
ments.

The implementation of the proposed method requires writing a computer code
for preparing the Lebesgue neutron cross sections. The cross sections are calculated
by averaging the microscopic cross sections using a slightly more complicated algo-
rithm than the group averaging algorithm.

The effect of resonance inversion is inherent not only in neutron spectra but also
in wide spectral distributions of photons, including the intrinsic thermal radiation
photons emitted by an inhomogeneously heated gas or plasma. The radiation spec-
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trum in the line cores is formed by local heat sources, and in the line wings it is
formed by the hottest sources of the object due to the strong dependence of the inten-

sity of the sources on temperature ~T*. Even small temperature variations, for ex-
ample by a factor of three, result in strong inversion of the lines.

At the time of writing, the effectiveness of the Lebesgue moment method in a
numerical simulation of neutron transport problems has not yet been tested. The re-
sults of test computations on the benchmark problems of thermal radiation transfer in
a hot gas can be found in [13].

The solution of test problems, including those for heterogeneous objects consist-
ing of different materials, showed the following. In the case of grouping the basis
functions in the Chebyshev polynomials, expansion (43) rapidly converges to the ex-
act solution; it is sufficient to use the terms of order N =4-+6. In the case of group-
ing in the Legendre polynomials, this expansion converges somewhat slower—with
N =6+8. To analyze the convergence rate, we analyzed, in addition to the error, the
distribution of “energy” over the expansion harmonics

1 1 N
[ w5 (mE),@,rnde~ [ yig(mE) Q,rde= Zdiz[wg,” (Q,r ).
-1 -1 n=0 Yn

A good property of the method is that the convergence rate weakly depends on
changes of the scale parameter of the basis functions L (the characteristic size of the

object) in a wide range. This parameter was decreased and increased relative to an
optimal value by a factor of up to ten. The error and «energy» of the expansion tail
began to grow only when approaching the boundaries of this range.

Assume that, in order to separate the resonance structure of neutron cross sec-
tions, it is sufficient to divide the resonance region into 30+ 200 resonance carriers,
depending on the type of the problem and the accuracy requirements. The use of 4-6
Lebesgue moments in each carrier gives 100-1000 grid points of the spectrum
(g,m). As a result of solving the averaged transport equations, the accuracy of the

description of the neutron spectrum can be comparable with the accuracy of the de-
tailed Monte Carlo calculations and the accuracy of nuclear data.
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