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Approximating Landau-Lifshitz—Bloch Coefficients in Micromagnetic Si-
mulation

At this time, the Landau—Lifshitz—Bloch equation is the principal tool used to
describe the evolution of magnetization and to account for temperature fluctuations
when creating spintronics and magnetism-based microelectronics. These equation
coefficients depend on average magnetization at a given point in space, and are
calculated as the higher moments of a model distribution function.

For the coefficients to be computed, a transcendental equation must first be
solved to determine the parameters of the distribution function. In addition, a rather
crude approximation is used as a rule that does not account for the significant differ-
ences in the structure of the anisotropy field versus that of the other fields.

This paper presents an analytic approximation of the Landau—Lifshitz—Bloch
coefficients assuring an accuracy up to the third significant digit and helping increase
the adequacy of micromagnetic simulation and computation speed.
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Annpoxkcumanus ko3¢ puunentos ypasHenus Jlangay—JInpmmuna—baoxa
NPU MUKPOMATHUTHOM MOJEeJIMPOBAHUH

VYpaBuenue Jlanmay—JIndmmumna—biaoxa B HACTOSIIIIUNA MOMEHT SIBJIIETCSI OCHOB-
HBIM MHCTPYMEHTOM IS OITMCAHMS 3BOJIIOLIMM HAMAarHUYEHHOCTH C YUYETOM TEMIIEpa-
TYPHBIX (DIYKTyalluii IpHU CO3JJaHUU YCTPONCTB CIUHTPOHUKU U MAarHUTHON MUKPO-
aneKkTpoHuku. KoadpuimeHTsl ypaBHEHUS 3aBUCAT OT CPeAHENH HAMArHUYEHHOCTH
B JJAaHHOM TOYKE MPOCTPAHCTBA U BBIUYMCIIIIOTCS KAK CTAPIINE MOMEHTBI MOJAEIBHOU
byHKIMU pacnipeiesieHHus].

Brruucnenue ko3gGuineHToB TpedyeT NpeIBapuTEIbHO PEIICHUs TPAHCIICH-
JEHTHOTO YPaBHEHUS JUI ONpeiesIeHHs TapaMeTpoB (PyHKIMH pacpeaeIeHHsI, KpoMe
TOTO, KaK MPaBUJIO UCIOJIb3YETCA JOCTATOYHO rpy0asi anmnpoKCUMaliusi, He yYUThI-
BAIOIIAs CYLIECTBEHHOIO OTIMYHUS B CTPYKTYpPE IOJISI AaHU30TPOIIMU U OCTAJIbHBIX
TIOJIEN.

B nannoit paboTe npencTaBieHa aHaAIMTHYECKAs annpoKkcuManus kodhduuueH-
ToB ypaBHeHus Jlannay—JIuduuna—bnoxa, obecnednBaromniasi TOYHOCTb JI0 TPETHETO
3HaKa, NO3BOJIAIOIIAs IOBBICUTH aIEKBATHOCTh MUKPOMATHUTHOIO MOJIECIIMPOBAHUS U
YBEJIUYUTH TEMII BEIYMCIICHH.

KuroueBble caoBa: ypasHenue Jlannay—JIndgmmuna—bnoxa, MUKpoMaranutHoe
MOJICJIIMPOBAHUE

Research performed with partial support in the form of RFBR Grant 19-01-00602.
Translated by Michael Y. Tovbin



Table of Contents

I Introduction . . . . . . .. . . . . ... 3
2 Landau-Lifshitz—Bloch Equation . . . . .. ... ... ... ...... 4
3 Coefficients Associated with External and Linear Fields . . . . . . . .. 7
4  Coefficients Associated with Anisotropy . . . . . . ... ... ... .. 9
5 Conclusion . . . . . . . . e 14
References . . . . . . . . . . . 14

1. Introduction

Creating spintronics and microelectronic devices using magnetic effects requires
extensive numerical simulation [1-3]. At the same time, the best sufficiency versus
computational complexity is offered by the Landau—Lifshitz—Bloch Equation [4]
that describes the evolution of a continuous distribution of average magnetization in
space. Initially, the coefficients of this equation are written as some higher moments
of a model distribution function, and although they can be expressed in terms of
analytic functions, they are too ungainly in the general case. The situation is further
complicated by the fact that for these coefficients to be calculated based on an average
magnetization vector, a transcendental equation must first be solved every time.
Overall, the computational complexity of this approach for the purposes of numerical
simulation is unacceptably high; therefore, a fairly crude analytic approximation is
utilized to compute these coefficients, which has a detrimental effect on the sufficiency
of the outcome.

In particular, the primary disadvantage of the conventional approximation of the
Landau—-Lifshitz—Bloch coefficients is the uniform treatment of the external field, the
exchange field, the dipolar coupling field, and the anisotropy field [5,6]. The anisotropy
field, however, unlike the other fields, is dependent on the higher moments of the
model distribution function which results in totally different effective dependencies
on average magnetization.

This paper builds an approximation for the Laundau—Lifshitz—Bloch coefficients
in the form of analytic functions of the average magnetization component vector. The
resulting approximation assures an accuracy to the third significant digit and may be
used for fast micromagnetic computations for a broad spectrum of tasks [7].
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2. Landau-Lifshitz—Bloch Equation

A magnetic substance is best modeled using a system of Landau—Lifshitz
equations describing the evolution of N magnetic moments m;(?),
|m;(t)| = 1 located at the nodes of a crystalline lattice with coordinates r;:

dclz? = —y[m; x B — ay[m; x [m; x HT)] 4 2/anTE(m;, ), (1)

H;:ff _ —VmiW _ H?XCh + H?nis + H;ﬁp + Hext;
1
wexeh = -3 > Jij(mi-my),  HPM =) Jmg;
] J

ppanis _ _KZ (nK ) mi)27 H?nis = 2KZHK(IIK . mi)S

o )T — o2

dip 3(mj rw)rw m;7;;

H" = F ,
’

Fij =1, — Iy
ij

J
Wext - § :mz . Hext;
{

where v stands for the gyromagnetic ratio; o is the attenuation parameter; H is the
effective magnetic field; W stands for the total energy of the system; 1" represents
the system temperature in terms of energy units; £(m, ¢) represents a random source
that maintains the magnitude of the magnetic moment and assures unit dispersion
in all directions [8]; Vm; is the V operator for magnetic moment m;; W and
Heh represent the exchange interaction energy and field; J; ; 1s the exchange integral
(normally, non-zero only for the nearest neighbors); W2"s and H*" are the anisotropy
energy and field; K is the anisotropy parameter; ny represents the anisotropy axis
direction, |nx| = 1; HYP is the dipolar coupling (magnetostatic) interaction field [9];
et is uniform external field interaction energy. Both here and below, we will be
using a dimensionless system of units.

The starting point for deriving the Landau—Lifshitz—Bloch equation is the
Fokker—Planck equation [ 10] which describes the evolution of a distribution function
f(m,r, ) that is continuous in configuration space r and describes the distribution

of magnetic moments m, |m| = 1 by direction which can be obtained using the
Bogolyubov hierarchy in a mean-field approximation [&, | 1]:
a]0(1117 r7 t)

— V. [m x H f = yaV, [m x [m x (HT — TVo)f]], (2)
Heff — Hexch + Hdip + QKIIK (nK . m) + Hext’
Heh = ] [Q2Ar <II1> + eqny <m> } ,

ot

where a represents the distance between atoms in a crystalline lattice; A, (m) is the
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Laplace operator for space with respect to average magnetization (m) (by components
of (m)); ¢ is the Garanin factor to account for mean-field fluctuations [12] (for a
body-centered crystalline lattice e ~ 0.795); n; 1s the number of an atom’s nearest
neighbors; V, is the spherical magnetization gradient:

Vo = Vi — ——5—L.
m

Taking advantage of Gauss’ Law, multiplying both sides of (2) by m and
integrating over a sphere, we obtain

— %% = (m) x (H™ + H™" + H") + 2K (m x ng (m - ng)) +

+ o <II1 Qm — f> (Hext +Hexch +Hdip) +
+ 20K (m x [m x ng| (m-ng)) + 27 (m), (3)

where 7 is the unit matrix (angle brackets represent averaging)

(A) = /Af(m,r,t) dm,

sph

fs oh ...dm represents integration over a unit sphere.

To obtain the closed form of the resulting equation (compute the relationship
between the higher moments of the distribution function based on (m)), the form
of the distribution function must be specified which is analogous to introducing an
equation of state when deriving fluid dynamics equations from the Bolzmann equation.
The following is a good approximation

™

ep(r,t)-m 0 47T
f(m,r t) = 7 Z = /ep'mdm: 27r/ep°°s sinfdf = —shp, (4)
sph 0 b
(m) ! /m PMdm =n,L(p) L(p) = cth ! n, =P
- € = pP), p) = 2 =
zJ g p Toop
sp

where p is a vector that serves as a parameter in model distribution function p || (m),
L is the Langevin function. Multiple comparisons against the results of ‘‘atom—
to—atom’’ direct numerical simulations [ 13, 14] demonstrate that the error of this
approximation of a one-particle distribution function at the current parameter values
1s on the order of the second significant digit, which is a fairly satisfactory result.
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Customarily, following a number of manipulations and additional assumptions,
the Landau—Lifshitz—Bloch equation is written as follows [4, 5]:

i@ét m) _ [(m) y HLLB] +04H((m> CH'B) . (m) —
. [ (m) x [ (m) x HLLBH, (5)
_ 2aT B a[l — T/3TC], mpu 1T <T,,
| = 3T AL = { ), opu T > T,

H"'® =H" + 2Kng (ng - (m) ) + H™ + Ja?A, (m) +

(o
E(l )2 q) (m), opu T <T,
(m)”

_|_
1 3
I 1 - T>T07
\ X( +5T T (m), mpu

where T is the Curie temperature; (m),, = (m),, (1) is the equilibrium magnetization;
x = x(T") stands for longitudinal susceptibility

‘= L - dL <€anj<m>eq> =1 <€anj<m>eq> |

T —ecgnyJ L/ dp T T

Here and elsewhere below, we use the notation

The Landau—Lifshitz—Bloch equation as shown in (5) does not have serious
computational advantages with respect to the original form (3), because it requires
that the vector p((m)) = L~'(| (m) |) (m) /| (m) | be computed at every point based
on a solution of a transcendental equation. At the same time, (5) makes the transition
as follows

(m > ng(m-ng)) ~ [ (m) xng]((m) - ng),
(m < [m o mge] (mm)) ~ | (m) < [(m) < m] | ((m) - me),

which might result in an incorrect relationship between the anisotropy field and the
other fields and impact the sufficiency of the numerical simulation results.

Tensor <m ®om—1 > included in (3) depends only on average magnetization

(m) whereas higher moments <m X N (m - nK)> and <m X [m X nK} (m - nK)>
depend on the average magnitude of magnetization (m) and the relative orientation
of magnetization and anisotropy axis direction nx. Thus, computations require that
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an analytic approximation of these quantities be constructed based on (m) with
the accuracy of the approximation possibly being limited because a random source
in a special form is added to the Landau—Lifshitz—Bloch equation to account for
temperature fluctuations.

It should be noted that the original Fokker—Planck equation (2) obtained through
a mean-field approximation has a marked disadvantage: the mean-field approximation
cannot easily be applied to ferromagnets because it does not account for correlations
between the nearest neighbors. At the same time, strong exchange interactions in
magnets are of a local nature and result in there being strong correlations between
the nearest neighbors even in the paramagnetic phase [ |, | 5]. Therefore, the mean-
field approximation produces an incorrect critical temperature 7. (which can be
compensated for by factor ¢4 [12]), exchange energy, and relaxation times with the
difference in the relaxation times for some conditions possibly as much as an order of
magnitude. Discussing and accounting for these effects is outside the scope of this
paper, in which we will focus on constructing an approximation for the coefficients of
the original Landau—Lifshitz—Bloch equation in (3).

3. Coefficients Associated with External and Linear Fields

For the purposes of this paper, linear fields will be defined as H*" and HYP
and will be linearly dependent on average magnetization. (m).

As a starting point, let us consider the higher moments of function f((m)). These
can be obtained by computing the relevant integrals in spherical coordinates

(i) =1-22 o)=L = )

p (m)—0 2

<mﬁp> = [1 + ]%] (m) — %, <mﬁp> R g (m) mpn (m) <1, (m3,)=0,

with <mﬁp3> representing the components of the higher moments parallel to vector p,

and <m2’3> components normal to vector
J_p p p‘
Given that n,, is the principal axis of symmetric tensor (m ® m), the components
of tensor <m ©om-—1 > can be expressed as
Snpmpj - 52’]* _(Sij + TpiTlpj 2

)= = o) =00 B i -5, =S,

where ¢;; is the Kronecker delta.
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Fig. 1. Form of functions <mﬁp3> ( (m) ) and their approximation errors
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Fig. 2. Evolution of component (m.) for original ‘‘atom-to-atom’’ simulation
(LL) of Landau—Lifshitz—Bloch equation with constructed approximation of tensor

<m om—1 > (LLBI) and conventional approximation (LLB2)

The relations <mﬁ

;?3> ({m)) can be approximated on the interval (m) € [0, 0.98]

with an absolute error not exceeding 1072 (Fig. 1) as

1
<m3p> ~ 0.6026 - (m) [1 + 0.00669 - ch (5.288 (m) )} .

A

The constructed approximation of tensor <m ®@m — [ > turns out to be much

more compact than the conventional one in (5) and fully matches the original equation
in (3). Let us compare the results obtained through the constructed approximation
with those of the conventional approximation as well as those of the ‘‘atom-to-
atom’’ direct simulation of a magnet with a body-centered crystalline lattice given
an initial magnetization (m), = ({m),,0,0), an external field H*' = (0,0,0.1)
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Fig. 3. Spherical grid constructed by recursively dividing a pentakis dodecahedron:
no division (a), single division (b), double division (c)

for temperatures 7' = J u 1" = 1.5J. If exchange integral J = 1, then Curie
temperature 7, = 2.12.J, the dipolar coupling and anisotropy are null, and we will
assume magnetization spatial distribution to be uniform. Figure 2 shows that for

A

these conditions, the constructed approximation of tensor <m @m — [ > turns out

to be much closer to the original ‘‘atom-to-atom’’ simulation than the conventional
approximation. |

4. Coefficients Associated with Anisotropy

When computing the anisotropy term, the integration over a sphere was performed
using a grid constructed by recursively dividing a pentakis dodecahedron (Fig. 3) and
implemented with the aiwlib [16] library. Unlike conventional spherical coordinates,
this grid is isotropic, made up of almost regular spherical triangles, and instead
of having two strong singularities at the poles, it has twelve weak singularities
corresponding to the centers of the faces of the original pentakis dodecahedron. In
addition, at a specified resolution (cell size), this grid required half (and when using
a dual hexagonal grid, a quarter of) the nodes of a conventional uniform spherical
coordinate grid.

Let us introduce parameter 5 = n, - ng = (m) - ng/ (m). For reasons of
symmetry, it follows that

(mxng(m-ng)) || [(mxng] — (mXxng(m-ng))=[m)xng|P(p,[),

and based on a review of the results of numerical integration for different (m), 3,
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an approximation can be constructed with an absolute error smaller than 2 - 1073
(Fig. 4, 5):

(m < mge(m - mge) ) & (0.59256-+0.21515+(m)*+0.2008- (m)* ) ( (m) mc) [ (m)xm].

It is easy to see that conventional approximation
(m x ng(m-ng)) ~ [(m) x g ((m) - nK)}

differs in coefficient (0.59256 +0.21515 - (m)2 +0.2008 - (m)" ) , which could result
in an error of up to 40% at small (m).

From the approximation standpoint, the term (m x |m X ng|(m - ng)) is the
most troublesome. For symmetry considerations

(] () ) = am) 0 () -+ ) ¢ [ ) ¢ ]| (o)),

and based on a review of the results of numerical integration for different (m), nx
(Fig. 6, 7), an approximation can be constructed with an absolute error that is 2 - 1073:

<m|3p> » 3382 1

<m>< [man] (m-nK)>% (m) (m) 2

_|_

()
)

It is obvious from Figure 8 that the difference between the conventional approximation
and the one constructed in this paper could be as high as 50%.

+[<m>>< [(m}an]} B.
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5. Conclusion

The approximations constructed for the Landau—Lifshitz—Bloch coefficients
are implemented in the llbe C++ header file and the aiwlib [ 6] library containing
functions to compute coefficients using single-precision floating-point arithmetic. This
turns out to be sufficient given the temperature fluctuations and the limited precision
of the constructed approximation to the third significant digit.

As compared to the conventional solution, the constructed approximations
account for the structural differences between the external and the linear fields and the
anisotropy field, which could be especially important when simulating the switching
of magnetoresistive memory cells.
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