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Introduction 
Numerical modeling of wave propagation in rock with anisotropic properties is 

the challenging problem. One of main difficulties of the physical phenomena consists 

of necessity to resolve accurately much more complicated wave fronts picture 

comparing to the case of isotropic media.  

The original problem of the wave propagation is usually considered in 

unbounded media. However, numerical methods can only use bounded computational 

domains. Evidently, so-called “open boundaries” of computational domains must be 

genuine transparent for outgoing waves: otherwise, the spurious reflections strongly 

change the solution. That is why the generation of reliable low-reflecting boundary 

conditions on the open boundaries in anisotropic media is a crucial task for numerical 

modeling.  

A typical setup is shown in Figure 1. The original problem is formulated in the 

whole space or in some unbounded domain whereas we want to know the 

solution in a bounded domain Ω0 — observation domain or domain of interest. 

It is desirable to have the computational domain Ω as small as possible (of 

course, o  ). The original problem formulation may have some boundaries, 

internal or external, for which there are natural correct conditions based on properties 

of physical phenomena. In order to make the computational domain bounded we have 

to add some artificial boundary Γ which originally is free of boundary conditions — 

it belongs to interior of the problem formulation domain where only the governing 

equations should be satisfied. The open boundary here is the circle Γ, the 

computational domain Ω is the interior of Γ. 

 

 
Figure 1. A computational domain and open boundary Γ 
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We have to state at Γ the corresponding boundary conditions which at least 

provide correctness of the corresponding Initial-Boundary Value Problem (IBVP). 

Among all possible boundary conditions providing the uniqueness there exists a set 

of boundary conditions that give solutions which are more or less close to the 

solution of the original problem. But we want to construct the exact boundary 

conditions. The boundary conditions are said to be exact, if solutions of the problem 

computed in the restricted domain Ω with these conditions are identical to restrictions 

to Ω of the corresponding solutions of the original problem in the whole space with 

the same governing data (initial and/or boundary values). 

Applying to acoustic problems such coincidence of the solutions means that 

these boundary conditions permit outgoing waves, or disturbances, to leave Ω 

without any “reflection” from artificial boundary Γ. That is why we call such 

boundary condition operator a Transparent Boundary Conditions (TBC) operator. We 

can also call these conditions equivalent boundary conditions because satisfying TBC 

on   is equivalent to solving the problem in the whole space outside Ω. 

Evidently, generation of TBC is a separate task (even for a given geometry and 

media inside Γ) which is formulated by considering auxiliary external initial-

boundary-valued problems outside Γ.  

Let the medium outside Γ and in some vicinity of Γ inside it is a linear 

anisotropic elastic medium with constant coefficients. Let the right hand side of the 

governing equations is equal to zero outside Γ. And let disturbances outside Γ are 

absent at the initial time moment. Then we can compute the TBC on Γ. 

Remark. In the domain of interest the governing equations and geometry can be 

much more complex than outside it.  

It is known that the popular PML approach can fail in elastodynamics with 

anisotropy (though it is good enough for many isotropic cases). The PML method 

does not work here when both “outgoing” and “incoming” wave fronts present on the 

open border of the computational domain; such case is out of the framework of the 

base idea of the method, see de-tails in [1]-[2]. However, the original wave problem 

formulated on the unbounded domain is the well-posed one, i.e. there are no physical 

restrictions to have desired TBC. 

We have developed TBCs for such problems and numerical methods for their 

implementations and for calculation of coefficients of the TBC operator. The 

approach was announced in [3], some results of their application were given in [4]. 

Also in [4] was announced a detailed description of the correspondent numerical 

method to compute operators of the TBCs. Here we present the announced numerical 

method and some numerical tests that demonstrate the accuracy and stability of the 

problems with our TBCs. 
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§ 1. Governing equations  
The equations of motion in an elastic medium in Cartesian coordinates are 

 

 
2

2

i ij
i

j

u
h

t x



 

 
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(we use the Einstein notation for implicit sums over repeating indexes in a term). 

Here   is the density, iu are Cartesian components of displacements, ih  is an 

external force per unit volume, and the stress tensor ij  is related to the tensor of 

deformation 
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by Hooke’s law 

 

 ,ij ij kl
klc  . (1) 

 

Here ,ij klc  is the tensor of elastic coefficients (which is constant in case of 

homogenous media). 

Tensors  , c  and   are symmetric. In their indices, we replace pairs “11” by 

“1”, “22” by “2”, and “12” and “21” by “3” (with 3 12 21 12 212 2        ). 

Hooke’s law (1) then becomes 

 

  , 1,2,3 .n nm
mc n    (2) 

 

Due to symmetry, nm mnc c . For orthotropic media with principal axes coinciding 

with 1x  and 2x , we have 13 23 0c c  . 

In the 2D case in polar coordinates the equations of motion are 
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 (3) 

 

Here ru  and u  are the displacements expressed in local physical coordinates. The 

tensor of deformations in polar coordinates is  
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Hooke’s law is 
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 , ,ij ij kl
P klc   (5) 

 

where ,ij kl
Pc  are physical components of the elasticity tensor, which have the following 

relations with Cartesian components:  

 

 , , ,ij kl i j k l IJ KL
P I J K Lc b b b b c   

 

where  

 
cos sin

.
sin cos

i
jb

 

 

 
  
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 

 

 

Formula (5) becomes, after replacing in indices “rr ” by 1, “ ” by 2, and “r ” 

by 3 (with 3 2 2r r r r           ), 

 

  , 1,2,3 .n nm
P mc n    (6) 

 

Besides symmetry relation mn nm
P Pc c , we also have 11 22

P Pc c  and 13 23
P Pc c  for 

cylindrical anisotropy. 

After excluding components of the stress tensor   using (6) and (4) equations 

(3) in the absence of external forces read: 
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where ( , )r Tf u u , 

 

 

11 13 33 23

11 1 22 1 2

13 33 23 22
, ,

P P P P

P P P P

c c c c
A A r

c c c c
   

   
    
   
   

 

 

13 33 12

12 1 1

33 12 23

2
,

2

P P P

P P P

c c c
A r

c c c
  

 
 
 
 

 

 

13 33
11 23

1 1 1

12 23
13 23 33

,

2

P P
P P

P P
P P P

c c
c c

A r
c c

c c c

 


 

 

  
   

 
 

  
   

  

 



7 

 

23
33 22 33

2 1 2

23 22
33 22

,

P
P P P

P P
P P

c
c c c

A r
c c

c c

 


 

 

  
   

 
 

  
  

  

 

 

23 33
22 23

0 1 2

22 23
23 33

.

P P
P P

P P
P P

c c
c c

A r
c c

c c

 


 

 

  
   

 
 

  
   

  

 

 

Remark. Matrices in (7) do not depend on time, so components of velocities 

satisfy exactly the same equation. So we will consider components of velocities as 

unknown functions rather than components of displacements because it is more 

convenient for practical problems. 

 

§ 2. Generation of TBC  
Let us consider the homogeneous governing equations (7) outside   written 

formally in the operator form 0ttf Lf   (see Figure 2). Function f  can be 

represented on the circle r R  as Fourier series: 
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One can see that each m -th Forier harmonic contains four independent basis 

functions that correspond to four Fourier coefficients: ,
m
r cU , ,

m
r sU , ,

m
cU  and ,

m
sU . It is 

convenient to numerate the basis function as a single sequence: 

 ( ), 1,2,3,...m m   , so that ( , ) ( ) ( )m
m

m

f t c t   . 

TBC operator is obtained after the following steps: 

Stage 1: Consider set of auxiliary external initial boundary-value problems 

(IBVPs)  outside the circle S  with the boundary   (set wrt “m ”):  
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 (8) 
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where ( )t  is the Dirac delta function; 0{ ( )}m
m  

  is the basis on   consisting of set 

sinuses and cosines {sin ,cos }m m  , i.e. ( , ) ( ) ( )m
m

m

f t c t   .  

Let ( , , )mf r t  be the solution of the m -th problem (8). 

 
Figure 2. Outline of the auxiliary external problems  

 

Stage 2: Make the Laplace transform and pass to set of elliptic BVPs  

(parameterized by s  ):  

 

 

2 2ˆ ˆ 0 in /

ˆ ( )

ˆ 0 at infinity

m

s f Lf S

f

f

 


  








 (9) 

 

Stage 3: Solve (numerically) the problems and evaluate ˆ ( , )mf r
r





 on  . Thus, 

we obtain the Dirichlet-to-Neumann maps 

 

 ˆ( ) ( )[ ] ( , ),m m ms f r r R
r

     

 
  
 

. 

 

Stage 4: Form matrix of the Poincare-Steklov operator by taking arbitrary data 

on   

S 
Γ 

2 /S  

maxR  
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 ˆ ˆ ( ) ( )( , , )
m

m
m

c sf r s  

  

 

 and writing out the representation of its normal derivative on   

 

 
ˆ ( , , ) ˆ ˆ( ) ( )[ ] ( ) ( ) ( )
m

m m n
m m n

m m n

f r s c s s c s P s
r


   




 


   ,  

 

where ( )m
nP s  are the Fourier coefficients of ( )m  . 

Thus, we obtain the Poincare-Steklov operator in space of Fourier coefficients: 

 

 
ˆ ( ) ˆ ˆ( ) ( )mn

n m
n

c s
P s c s

r





  

 

or, in matrix form:  

 
(̂ ) ˆ ˆ( ) ( )
s

s s
r






c
P c  

 

with  0 1ˆ ˆ ˆ, , ...
T

c cc . (Here we use symbolic notation for the Fourier coefficients of 

the normal derivative of (̂ , )u s  : 

 

 
ˆ ( )

(̂ , ) ( )nn

n

c s
u s
r r

  
 


 

 . 

 

Stage 5: Make inverse Laplace transform for the Poincare-Steklov operator. 

This procedure is made numerically. First, we represent matrix ˆ( )sP  by sum of three 

matrices in order to separate asymptotic at :s   

 

 1 0 1 0
ˆ ˆ ˆ( ) ( ); , are , ( ) (1).s s s consts s o   P P P K P P K  (10) 

 

Then we calculate rational approximations to each entry in  ˆ( )sK  such that all 

poles have negative real parts, i.e. 

 

 
1

ˆˆ ( ) ( ) , Re( ) 0.
m
n mL

m m mn l
n n n lm

l n l

K s K s
s


 



   


  

 

As it is known the rational representation admits analytical inversion of 
ˆ ( )m
nK s . 
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Thus, the approximate analytical inverse Laplace transform of  
(̂ ) ˆ ˆ( ) ( )
s

s s
r






c
P c  

has the form: 

 1 0

( ) ( )
( ) ( ) ( )

t t
t t t

r t

 
   

 

c c
P P c K c  

 

with the explicit kernels ( )m
nK t : 

 
1

( ) exp( ), Re( ) 0
m
nL

m m m m
n n l n l n l

l

K t t   


   . 

 

Stage 6: Formulate TBC operator in physical space. We introduce Q , the 

operator of Fourier decomposition for  

 ( , ) ( ) ( )m
m

m

f t c t    

i.e. 

  : ( , ) ( ) .mf t c t Q  

 

Finally we obtain the following relationship between functions and derivatives 

on  :  

  1 0 ( ) 0
f f- - -f t f
t r

 
    

 

1 1 1Q PQ Q PQ Q K Q  (11) 

 

This equation is our desired TBC. 

 

Let us mention some numerical aspects. 

 

Stages 1–6: we take discrete basis on the uniform azimuth grid  

 

 
2

, 1,...,k k k N
N 




   , (12) 

for the radial and azimuth components: 

 

 
1
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M MN N
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 

   ,  
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where MN  is the highest Fourier harmonics treated by approximate TBCs, and write 

the transformation in the matrix form 

 

 

,0

,0

1..
,

,

1..
,

,
1...

( )

( )

M

co
r
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r k k N
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f
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f




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
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
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







   
  
   

   
       
    
     
     
  
  
    

1Q
. (13) 

Here the left vector is column of two sets with N  values; the right vector is column 

of MN  quadruples except for the top pair ( 0)m  .  

 

Stage 2 [Laplace image]: we take a finite interval max[0, ]S  and choose set of 

knots max{ } [0, ]js S  which are representative enough to use discrete counterparts 

ˆ ( )m
n jK s  of  kernels for the rational approximation (Stage 5).  Currently 1{ }Jj js   are 

nodes of the Chebyshev’s grid 

 

   max 1 cos ( 0.5)/ , 1,...,
2j

S
s j J j J    .  

 

The magnitude of maxS  depends on the number of harmonics m  like 

max ( )S O m . 

 

Stages 3-4 [Poincare-Steklov operator]: For each given js  we discretise 

problem (9). Thus we have J  elliptic problems. Each problem is solved on the set of 

finer and finer grids unless the so-called mesh convergence to a given residual   

achieves. These grids with doubled number of nodes permit to use the Richardson 

extrapolation increasing essentially the accuracy of our solution.  

The radius maxR  of the outer boundary is unknown in advance. Therefore we 

make also calculations with greater and greater value of maxR  unless the difference 

between solutions becomes less than  . 

Further details of the algorithm see below. 
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Stage 5 [inverse Laplace transform]. After running the previous stages we have 

set of matrices ˆ( )jsP  depending of js . For each entry ˆ ( )m
n jP s we make asymptotic 

decomposition 

 1, 0,
ˆ ( ) (1), asm m m
n n nP s P s P o s       

 

Estimation of constants 1, 0,,m m
n nP P  is made by analyzing the rational 

approximation  

 ˆ( ) ( )m m
n j n jR s P s   

 

on the interval max[0, ]S  with help of the Chebyshev-Padé algorithm.  

Afterwards, we form the matrix 1 0
ˆ ˆ( ) : ( )j j js s s  K P P P  and find 

(numerically) the rational approximations of entries  ˆ ( )m
n jK s  on the set 1{ }Jj js   by an 

optimization algorithm minimizing the residual 

 

 

2

,
1 { }

ˆ( ) min , Re( ) 0
l l

L
l

j l
l j l sj

K s
s  


 



   


 ;  

 

here the indices ( mn ) at terms , , ,K L    are omitted for clarity.  

As a result, we obtain the rational functions 
ˆ ( )m
nK s  satisfying inequality 

 

 
ˆˆ| ( ) ( ) |m m

n j n j RK s K s     

 

on the interval max[0, ]S . These functions are explicitly inverted from the 

Laplace space: 

 

 
1

ˆ ( ) ( ) exp( ), Re( ) 0
m
nL

m m m m m
n n n l n l n l

l

K s K t t   


     

 

Thus for each entry ˆ ( )m
n jP s  we find set of approximating parameters 

 

  1, 0,
1

, , , ,
m
nLm m m m m

n n n n l n l
l

P P L  


  

 

Further details of the algorithm see below. 
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Stage 6 [approximate TBC]: We introduce a parameter 
HM MN N , the 

number of harmonics treated by the non-convolution terms of TBC, and 

construct matrices 1 0,e eP P  of a lager dimension: 
H HM MN N  instead of 

M MN N 1. This is made by extrapolating the entries along the diagonals of the 

matrixes, see Figure 3, to obtain a band matrix. The extrapolation uses a linear 

low with respect to the index k  of a matrix diagonal ( , )i k j k   where ,i j  are 

fixed. It is possible because of correspondent linear asymptotics observed in 

1 0,P P . Figure 4 illustrates this behavior on the example of several entries of 

the matrix 0P . Note that for isotropic case this linear low can be derived 

analytically.  

 

 
Figure 3. Band 

H HM MN N matrices 1 0,e eP P  after diagonal extrapolation  

of original M MN N matrixes 1 0,P P  

 

The reason of introducing 
HM MN N  is motivated by wish of a more accurate 

treatment of higher harmonics (underline that our TBC operator treats all harmonics 

with numbers larger than 
HM

N  by just uniform Dirichlet condition). 

 

                                           
1 This is dimension in terms of blocks: actually each entry of the matrices is a 

4x4 block; so the exact dimension of the matrices is (4 2) (4 2)M MN N  
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Figure 4. Typical behavior of entries of the matrix 0P  depending on k  

 

We generate additional matrices ,
H HM M
-1Q Q  similarly to ,M M

-1Q Q  (13). Using 

a) these matrices of the discrete Fourier transform for vector-functions  ,rf v v  

on the grid (12), b) extrapolated band matrices 1 0,e eP P , and c) matrix kernels ( )tK , 

we write out our approximate TBC: 

 

  1 0 ( ) 0
H H H H

e e
M M M M M M

f f- - -f t f
t n

 
    

 

1 1 1Q PQ Q PQ Q K Q . (14) 

 

§ 3.  Solution of elliptic problems obtained  

after Laplace transform  

In order to approximate differential operators 
2

2
,

 

 

 
 on a uniform periodical 

grid we use the pseudo-spectral approximation.  

Let introduce the grid in the azimuth direction 

 2
, 1,..., ,k k k N

N 




  

 

 

where N  is even. then for functions given in these nodes the following matrices of 

numerical differentiation are applied: 
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  
  (1)

,

1
cot / ,

2

i j

i jD i j N i j



  

 

 

for the first derivative, and  

 
 

  

1
(2)
, 2

2
(2)
,

1 1
, ,

2 sin /

2

12

i j

i j

i i

D i j
i j N

N
D







 


 



 

 

 

for the second one. It is simply established (from the definition of the matrices, in 

fact) that the first-order differentiation is exact for the set of conventional Fourier 

basis functions 

 
   

/2 2 /2 1

1 0sin , cosN N

m mm m  
 

 

 

 

i.e. for 2 ( /2 2 /2)N N N       functions. That is why we need two extra grid 

points to handle correctly discrete periodic functions given by the finite Fourier series 

 1

1 0

( ) sin( ) cos( )
M MN N

si co
k m k m k

m m

f f m f m  


 

  
 

 

i.e. 2 2MN N   .  

An exponential grid is used in the radial direction, shifted for half spacing from 

the boundaries: 

 

 
0.5

max (1 0.5 ) 0.5
( ) , 1/ , 0,...,

ih h

i r rh h

e e
r R R R h N i N

e e

 

   


    


 (15) 

 

Here maxR  is the outer boundary of the computational domain of the auxiliary 

problem shown in Figure 2.  

The magnitude of maxR  depends strongly on js  if we put homogeneous Dirichlet 

conditions at maxR  while approximating condition at infinity in (9). Approximately 

max (1/ )jR R O s  . 
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Three-point central finite differences in radial direction are used to approximate 

governing equations on the grid (15), the parametric differentiation is made wrt 

ih   mapping max[ /2, 1 /2] [ , ]h h R R .  

The correspondent system of linear equations is then solved by the “matrix 

progonka” method in radial direction. Evidently, the matrices in   direction are 

dense because of the pseudo-spectral differentiation. Therefore, the computational 

costs of this direct method are estimated by the value 3( )rO N N . Although the latter 

is big enough, the advantage is that “matrix progonka” solves simultaneously 

4 2MN   BVPs; each of these BVPs corresponds to a single discrete basis function 

( )m   in (13). Besides, the solution of the discrete equations is obtained with the 

machine accuracy.  

 

After solution of these 4 2MN   BVPs we have 4 2MN   discrete functions 

ˆ ( , ) onmf r
r







 in grid points (12). Decomposing them into Fourier components 

by the operator MQ , see (13), we obtain the discrete matrix ˆ ( )m
n jP s , 

, 1,...,4 2Mn m N  . 

Numerical inverse Laplace transform requires high accurate estimation of  
ˆ ( )m
n jP s . That is why we use Richardson extrapolation to increase and control the 

accuracy. The process is as follows. Fix desired accuracy  .  

a) Fix parameter N  (evidently,  4 2MN N   ).  

b) Fix initial guess of   and initial guess of maxjw R R   in (15). 

c) Consider maxR  successively for , 2 , 4 , ...j j jw w w  ; 

d) Consider 16, 32, 64, ...rN   for given maxR ,  calculate 

correspondent ˆ ( )m
n jP s and make Richardson extrapolation until 

the difference Nr  between two successive extrapolations 

decreases. Return to level c) and continue until difference w  

between best Richardson extrapolations for neighbor maxR  

decreases. Break if w   . 

Here indents mark nested loops. Evidently, the above process provides the so-called 

internal mesh convergence (control of Nr ), as well as convergence with respect to 

maxR  (control of w ). 

Remark 1. The value of   is also varied on the level d) if required. 

 

Remark 2. Values of Nr  and w  are estimated by C-norm over all entries of 

ˆ ( )m
n jP s . 
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Remark 3. Richardson extrapolation is made under assumption that discrete 

solution has 2( )O h accuracy:  

 

 

p,0 p

order+1 order+1
p,order p,order-1 p-1,order-1

for p=1:pmax

f =solution

for order=1:p

f =(2 f -f )/(2 -1)

end

end

  

  

Here psolution  is ˆ ( )m
n jP s calculated on the grid with 116 *2prN

 ; p,orderf  is 

Richardson extrapolant; pmax  is the maximal number of grid refinement. 

 

Remark4. Inclusion of the level a) into the internal mesh convergence control by 

successive increasing N  is also possible. 

 

§ 4. Approximation of the DtN  Matrix  

Algorithm briefly described in the previous section allows to compute DtN  

matrix ˆmnP  for any s . In this section we consider each element of the DtN  matrix as 

a function  f s  in the dual Laplace space, it is necessary to come back to the 

physical space, i.e. to calculate its inverse Laplace transform  g t  in time domain. 

Generally, it is not possible to get exact  g t . Moreover, we only know approximate 

values of  f s  in several points on the real axis. Our approach consists of 

approximation of  f s  by a sum of functions that have exact inverse Laplace 

transform. 

Because of the second order of the governing equations the functions in the 

DtN  matrix have linear asymptotic,  
1 0f s p s p   as s  . 

A reasonable choice of approximating the decaying remainder after subtraction 

of the linear part is rational functions:  

 

    
1 0

1

Re
L

f s f s p s p
s





   


 .  

 

The corresponding time-domain kernel is 
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   1 0
1

Re e '( ) ( )
L

tg t p t p t  


   . 

 

We call the coefficients    the poles of the approximations, and 

coefficients    the weights of those poles. 

Due to physical considerations, the exponentials in  g t  must be decaying, i.e. 

Re 0  . We may assume that Im 0   (because we can replace  ,   with 

their conjugates and  ĝ t  will not change). From the numerical point of view, it is 

desirable that the decay and the oscillations of the exponentials are not too fast, i.e. 

minRe r   and maxIm i  . Generally, the poles of the approximation must meet 

the following requirements: 

 

 min Re 0r   , max0 Im i   .  

 

Note that determination of the unknown coefficients 1p  and 0p  is also made by 

using rational functions approximation technique. 

A common tool of the rational approximation is the Chebyshev-Padé algorithm. 

It can produce approximations of very high accuracy. However, it has significant 

drawback: the linear system arising in this algorithm is extremely ill-conditioned. 

Unfortunately, this is a fundamental issue caused by the unboundness of the inverse 

Laplace transformation in the considered class of functions. The consequence of the 

latter is the fact that even small perturbations of the functions being approximated can 

lead to the appearance of poles with Re 0  . Sometimes such poles may be 

avoided by changing the value of L , but it cannot be guaranteed.  

The coefficients 1p , 0p  are determined before looking for the poles as we shall 

show further. 

 

Algorithm Overview 

The main part of the approximation algorithm is as follows: 

1) Change of variables (“inversion”) from s  to   which translated the ray 

 0,  in s  to line segment  0,1  in  . This change of variable is 

characterized by parameter a  (the center of inversion). 

2) Calculate  f   in Chebyshev’s nodes on  0,1 . 

3) Calculate Chebyshev’s coefficients of f . 

4) Estimate linear asymptotic 1 0p p  . 

5) Extract linear asymptotic from    
1 1 0f f p p     . 

6) Apply Chebyshev-Padé algorithm: 

 

    
 

 
1 1

P
f f

Q


 


  . 
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7) Do a partial fraction expansion: 

 

  
,

1
1 ,

Re .
L

f 






 




  

 

8) Return to variable s : 

 

  
1 0

1

Re .
L

f s p s p
s





  


  

 

9) If there are poles with minRe r   

  a) correct 0p  , i.e. for each such pole set 

 

 0 0: Re .p p



   

 

  b) go to step 5 (unless the number of iterations is exceeded). 

10) If there are poles outside of the desired box, reject them. 

11) Do a least-squares fit for weights  . 

12) Fit random poles: 

  a) Select a new pole in the desired box for  . 

  b) Do a least-squares fit for weights  . 

  c) If the residual has decreased by a factor of at least 0,9 , add this  

   new pole to the old ones. 

  d) Go to step a. 

 

Inversion 

The formula for inversion is 

 

 
1

, .
a

s a
s a







 


 

 

Rational approximation in   and s  

 

    
,

1 0
1 1 ,

Re , Re
L L

f s p s p f
s








   

   
 

   

 

are related by 
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, , ,

02
1, , ,

1
, , Re .

La
a p  

  

  
 

  


      

 

Ratios of polynomials in   and s  

 

  
 

 
 

 

 
,

P s
f s f

Q s







 


 

 

are related by 

 

        

deg deg

0 0

, .k kN k N k
k k

k k

P s a s a Q s a s a
 

 

 

        

 

 Calculation of Chebyshev’s Nodes and Coefficients 

Calculation of Chebyshev’s Nodes and Coefficients consists of the following 

steps. 

1. Fix a natural number N , usually 8N L , where L  is the desired number 

of poles.  

2. Chebyshev’s nodes in   are 

 

 
1
21

1 cos , 0, , .
2 1n

n
n N

N
 

 
   

 
 

 

3. Calculate corresponding values of s , the set ns . 

4. Calculate  n nf f s , 0, ,n N . 

5. Calculate 1N   Chebyshev’s coefficients of f : 

 

 
 1

,0 2

0

1
cos

1 1

N
nC

n n
j

j n
f f

N N






 


 
 .  

 

This is a linear operation, which means it may be interpreted as multiplication of 

vector  0, , Nf f  by a matrix with appropriate entries. 

 

Estimation of Linear Asymptotic with respect to s  

For given K  and K  calculation of the linear part of ( )f s  consists of the 

following steps. 

First, we apply Chebyshev-Padé algorithm and obtain  
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 

 

 
, deg , deg .

P
f P K K Q K

Q





    

 

 

Then coefficients of linear parts of ( )f s   

 

 0
1 0 0 1, ,
r

p p r r
a

    

 

where 

 
 

 

 

 
0 1

0
0

, .
P P

r r
Q Q




 

 





 

   
 

 

 

But the best choice of K  is not known a priori. Algorithm for adjusting K  is 

the following. 

1. Set 
min1, 1 0Kp   , 

min0, 1 0Kp   . 

2. Repeat for K  from minK  to maxK : 

a. Find 1,Kp , 0,Kp  by the main algorithm. 

b. Calculate    
2 2

1, 1 1, 0, 1 0,K K K K Kp p p p      . 

3. Choose *K  where K  is minimal. 

4. Set *1 1,K
p p , *0 0,K

p p . 

 

Partial Fraction Expansion 

To represent a ratio of polynomials      /f s P s Q s  as a sum of rational 

functions, we do the following: 

1. Find roots   of  Q s . 

2. Discard all roots with Im 0  . 

3. For each pole   set 

 
 

 

P
c
Q








 

where 1c   if Im 0   and 2c   otherwise. This is true since 

     ,
s

s f s


 


        
1Q s s Q s  ,    1Q Q   . 

 

Linear Fitting of  , p  

It is easily seen that  ˆ ; , ,f s p   is linear function of  , p . Therefore, the 

problem 
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      
2

2 1
2

,

ˆ ˆ ˆ, , ; , , min
p

r p f f p


         

 

for a fixed ̂  is a linear least squares problem. Unfortunately, it leads to an ill-

conditioned system of linear equations. To overcome this, we apply regularization 

and solve the following problem: 

 

      
2 2 21 1

2 2
,

ˆ ˆ ˆ ˆ; , , min
p

f f p p p


              

 

where ̂ , ̂ , and p̂  are the values obtained using the optimization described in 

previous section. 0   is a regularization parameter that should be smaller than the 

desired level of accuracy. 

The described technique reduces rapidly the residual 2r  by several orders of 

magnitude sometimes. 

Again, there is an option of fitting only   with fixed ˆp p . 

 

§ 5. Time-domain solver in the annulus  
We describe here setup and several discretization aspects of the test problems 

used for verifying our TBC. 

Governing equations are implemented in the polar system of coordinates. In 

order to avoid issues with discretization and calculations at the origin we consider the 

task in an annulus. The setup is as shown in Figure 5, where 

 

 radius 0R  corresponds to the internal boundary where we prescribe 

Dirichlet boundary conditions to initiate elastic waves (initial data of 

solution in the annulus are zero);  

   with radius R  is the external boundary where we put our 

transparent boundary conditions.   

 

The verification of TBC is made by comparing solution of this problem with the 

solution of a second problem having a much bigger external radius extR  (extended 

domain), so the reflections from this boundary achieve   after a definite (long) time 

of simulation.  

We use the polar spatial grid 

 0
0 , , 0,1,...,i r r R

R

R R
r R ih h i N

N
    
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 2
, , 0,1,,..., 1j jh h j N

N  




    

 

 

and the temporal grid 

 
, 0,1,...kt k k 

 

 

 
Figure 5. Setup of the test problem in the annulus 

 

Equation (7) is approximated by the usual explicit second-order central-

difference scheme with unknown functions defined in the nodes ( , , )k
i jt r  . Below we 

describe implementation of the TBC operator in frames of explicit difference 

schemes integrating the elastodynamics equations. 

Ideology of explicit scheme yields the following approach of incorporation of 

the TBC operator into the algorithm: having the solution at the time levels 
2 1..., , ,k k kt t t 

, we firstly update the solution in the internal points by using the 

difference scheme; then we update the solution at the boundary   using the TBC 

operator. 

Let us consider this second step. Operator of TBC reads 

 

  1 0 ( ) 0M M M M M M

f f- - -f t f
t n

 
    

 

1 1 1Q PQ Q PQ Q K Q  (16) 

Γ 

 (TBC)R  

0R  
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where ,M M
-1Q Q  are matrices of the discrete Fourier transform for the vector-functions 

 ,rf v v  in sin-cos basis; 1 0,P P  are given constant matrices in Fourier space, and 

the matrix ( )tK with entries  

 

 
1

( ) exp( ), Re( ) 0
m
nL

m m m m
n n l n l n l

l

K t t   


    (17) 

 

contains given kernels of convolutions. 

After the first step (update in internal grid points) we know solution in points 

drawn in Figure 6 by circles, (  direction, normal to the figure plane, is not shown).  

 

 
Figure 6. Grid setup for approximation of TBC 

 

The aim is to update the solution 
1k

Nrf


 at the square point by using (16). First we 

calculate the Fourier coefficients 0
ˆ { }m M

mf f   of f  in points with 1rN
r r    and 

rN
r r  by using matrix MQ . Then we consider the central-difference discretization 

of TBC  

  1 0

ˆ ˆ
ˆ ˆ( ) 0

f f
f t f

t r

 
    

 
P P K  (18) 

 

in the Fourier space for the central point (cross in the figure). First three terms in (18) 

are approximated by 

2rN
r                1rN

r                      
rN
r  

1kt   

 
kt  

 
1kt   

 

r  

t  
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 1 1
1 1

ˆ ˆ ˆ ˆ ˆ
,

2

k k k k
Nr Nr Nr Nrf f f f f

t 

 

    




 

 1 1
1 1

ˆ ˆ ˆ ˆ ˆ
,

2

k k k k
Nr Nr Nr Nr

r

f f f f f

r h

 

    




 

 
1 1

1 1
ˆ ˆ ˆ ˆ ˆ0.25( )k k k k

Nr Nr Nr Nrf f f f f 

    
 

 

with unknown values 
1k̂

Nrf


.  Provided that the fourth, integral, term is known, we, 

evidently, can write out a matrix resolution equation for 
1k̂

Nrf


 from (18). 

Explicit calculation of the integral term in the central point (cross) is made as 

follows. We consider integration over the interval shown by the vertical line in 

Figure 6. Using (17) we have for ( ) ( )ma t f t : 

 
1

1

( /2) ( /2) exp( ( /2)) ( /2)

( /2),

m
n

m
n

L
m m m
n n l n l

l

L
m m
n l n l

l

K t a t t a t

I t

     

 





      

 




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The integral in (19) is approximated by the Simpson rule: 
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where 
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Thus the Fourier coefficients 1k̂
Nrf
  are known. After this we calculate 

1 1ˆk k
Nr M Nr

-f f  1Q .  

Notice that (19) provides recurrent calculations of elementary convolutions 

( /2)m
n lI t  .  

 

§ 6. Numerical examples  
We put the density 1  . List of anisotropic media cases studied in [1], [2] is 

as follows: 

 

Anisotropic medium I. 

 
11 4c  , 12 3.8c  , 13 0c  ,  22 20c  , 23 0c  , 33 2c   

 

Anisotropic medium II. 

 
11 20c  , 12 3.8c  , 13 0c  ,  22 20c  , 23 0c  , 33 2c   

 

Anisotropic medium III. 

 
11 4c  , 12 4.9c  , 13 0c  ,  22 20c  , 23 0c  , 33 2c   

 

Anisotropic medium IV. 

 
11 4c  , 12 7.5c  , 13 0c  ,  22 20c  , 23 0c  , 33 2c   

 

Coefficients ijc  are the coefficients in Hooke’s law (2). 

 

Note that the case IV cannot be treated by PML at all as shown in [1].  

 

Parameters of the annulus: 0 2R  , 10R  . Dirichlet data at 0R  exiting the 

elastic waves is sum of the first three azimuth harmonics multiplied by a time pulse 

with the support on the interval [0,2]t  . At r R  we put our TBCs. 
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We use four grids for test calculations: 

 

 Grid1 (N =100), 
2

100
h


 , 0

50r

R R
h    

 Grid2 (N =300), 
2

300
h


 , 0

150r

R R
h    

 Grid3 (N =900), 
2

900
h


 , 0

450r

R R
h    

 Grid4 (N =2700), 
2

2700
h


 , 0

1350r

R R
h    

 

All numerical experiments show low reflection of outgoing waves and the long 

time stability. 

Denote TBCU  solutions computed in the computational domain 

0 TBCR r R R   , 0 2    with TBCs on boundary r R . For comparison 

we compute also extU  in the extended domain 0 8extR r R R   . Computational 

grids for the extended domain have the same rh  as grids for domain 0R r R   

with the same N . Figures 7 – 13 show TBCU  and restriction of extU  on the domain 

0R r R   for different t  for the most difficult medium IV (remind that 

 ,rU v v ). One can see that reflections are not visible. 

In order to show stability we run calculations until 100T   on Grid2, see 

Figure 14 and Figure 15. For comparison we compute refU  which is extU  

computed on the Grid3 for medium I and is extU  computed on the Grid4 for medium 

IV. The difference TBC refU U  until 25T   continued by TBCU  at 25t   (where 

|| || || ||ref TBCU U ) is shown. We use norms 

 
max | |CU U




 

 

and  

 
1

1
| |LU U

N 

   

 

All the cases are stable. However more analysis is necessary.  
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Figure 7. Anisotropic medium IV, t=1.9199: upper left — field of rv  component 

of TBCU , upper right — field of rv  component of EXTU , lower left — field of v  

component of TBCU , lower right — field of v  component of TBCU  
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Figure 8. Anisotropic medium IV, t=2.618: upper left — field of rv  component 

of TBCU , upper right — field of rv  component of EXTU , lower left — field of v  

component of TBCU , lower right — field of v  component of TBCU  
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Figure 9. Anisotropic medium IV, t=3.3161: upper left — field of rv  component 

of TBCU , upper right — field of rv  component of EXTU , lower left — field of v  

component of TBCU , lower right — field of v  component of TBCU  
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Figure 10. Anisotropic medium IV, t=5.4105: upper left — field of rv  component 

of TBCU , upper right — field of rv  component of EXTU , lower left — field of v  

component of TBCU , lower right — field of v  component of TBCU  
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Figure 11. Anisotropic medium IV, t=6.1087: upper left — field of rv  component 

of TBCU , upper right — field of rv  component of EXTU , lower left — field of v  

component of TBCU , lower right — field of v  component of TBCU  
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Figure 12. Anisotropic medium IV, t=6.8068: upper left — field of rv  component 

of TBCU , upper right — field of rv  component of EXTU , lower left — field of v  

component of TBCU , lower right — field of v  component of TBCU  
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Figure 13. Anisotropic medium IV, t=12.0428: upper left — field of rv  component 

of TBCU , upper right — field of rv  component of EXTU , lower left — field of v  

component of TBCU , lower right — field of v  component of TBCU  
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Figure 14. Long-time stability for medium I 

 

 
Figure 15. Long-time stability for medium IV 
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