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3aiiyes H. A., Cogpponos H. JI.

IlocTpoenne mnpo3pavyHbIX TPAHMYHBIX YCJIOBMH I MOJEJMPOBAHUSA
pacnpocTpaHeHus BOJIH B AaHM30TPOINHBIX cpeaax

[IpenpuHT COAEPKUT MATEMAaTHYECKUE OCHOBBI M YHUCICHHBIE METOABI IS
MOCTPOEHUsT YCIOBHM moJHON mpo3padyHocTd (YIIII) mnga opToTpomHbIX Ccpen.
PaccMoTtpena nBymMepHast 3a/1a4a paclipoOCTPAHEHUs BOJIH B MOJIIPHBIX KOOP/IWHATAX.

Knrwueswvie cnoesa: HCOTPAXAOIINC TI'PAHUYHBIC YCJIOBHUA, YCJIOBHUA IIOJTHOM
IMPO3PaYHOCTHU, AHU3O0TPOIIHBIC CPCAbI, TMHAMHWYCCKUC 3a1a491 YIIPYTI'OCTH

N. A. Zaitsev, |. L. Sofronov

Generation of transparent boundary conditions for modeling wave
propagation in anisotropic media

The preprint contains results on development of mathematical foundations and
numerical approaches of generating transparent boundary conditions (TBCs) for
orthotropic anisotropic elastic media. A two-dimensional wave propagation problem
in polar coordinates (r, 0) is considered.

Key words: non-reflecting boundary conditions, transparent boundary
conditions, anisotropic media, dynamic elastic problems
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Introduction

Numerical modeling of wave propagation in rock with anisotropic properties is
the challenging problem. One of main difficulties of the physical phenomena consists
of necessity to resolve accurately much more complicated wave fronts picture
comparing to the case of isotropic media.

The original problem of the wave propagation is usually considered in
unbounded media. However, numerical methods can only use bounded computational
domains. Evidently, so-called “open boundaries” of computational domains must be
genuine transparent for outgoing waves: otherwise, the spurious reflections strongly
change the solution. That is why the generation of reliable low-reflecting boundary
conditions on the open boundaries in anisotropic media is a crucial task for numerical
modeling.

A typical setup is shown in Figure 1. The original problem is formulated in the
whole space or in some unbounded domain whereas we want to know the
solution in a bounded domain Qy, — observation domain or domain of interest.
It is desirable to have the computational domain Q as small as possible (of
course, Q, < Q). The original problem formulation may have some boundaries,

internal or external, for which there are natural correct conditions based on properties
of physical phenomena. In order to make the computational domain bounded we have
to add some artificial boundary I" which originally is free of boundary conditions —
it belongs to interior of the problem formulation domain where only the governing
equations should be satisfied. The open boundary here is the circle I, the
computational domain Q is the interior of I'.

Domain of interest
(scatterer)

Computational domain Q

Figure 1. A computational domain and open boundary I
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We have to state at I' the corresponding boundary conditions which at least
provide correctness of the corresponding Initial-Boundary Value Problem (IBVP).
Among all possible boundary conditions providing the uniqueness there exists a set
of boundary conditions that give solutions which are more or less close to the
solution of the original problem. But we want to construct the exact boundary
conditions. The boundary conditions are said to be exact, if solutions of the problem
computed in the restricted domain Q with these conditions are identical to restrictions
to Q of the corresponding solutions of the original problem in the whole space with
the same governing data (initial and/or boundary values).

Applying to acoustic problems such coincidence of the solutions means that
these boundary conditions permit outgoing waves, or disturbances, to leave Q
without any “reflection” from artificial boundary I'. That is why we call such
boundary condition operator a Transparent Boundary Conditions (TBC) operator. We
can also call these conditions equivalent boundary conditions because satisfying TBC
on I' is equivalent to solving the problem in the whole space outside Q.

Evidently, generation of TBC is a separate task (even for a given geometry and
media inside I') which is formulated by considering auxiliary external initial-
boundary-valued problems outside I".

Let the medium outside I" and in some vicinity of I' inside it is a linear
anisotropic elastic medium with constant coefficients. Let the right hand side of the
governing equations is equal to zero outside I'. And let disturbances outside I are
absent at the initial time moment. Then we can compute the TBC on T,

Remark. In the domain of interest the governing equations and geometry can be
much more complex than outside it.

It is known that the popular PML approach can fail in elastodynamics with
anisotropy (though it is good enough for many isotropic cases). The PML method
does not work here when both “outgoing” and “incoming” wave fronts present on the
open border of the computational domain; such case is out of the framework of the
base idea of the method, see de-tails in [1]-[2]. However, the original wave problem
formulated on the unbounded domain is the well-posed one, i.e. there are no physical
restrictions to have desired TBC.

We have developed TBCs for such problems and numerical methods for their
implementations and for calculation of coefficients of the TBC operator. The
approach was announced in [3], some results of their application were given in [4].
Also in [4] was announced a detailed description of the correspondent numerical
method to compute operators of the TBCs. Here we present the announced numerical
method and some numerical tests that demonstrate the accuracy and stability of the
problems with our TBCs.



§ 1. Governing equations
The equations of motion in an elastic medium in Cartesian coordinates are
o o’ _ oo s
ot ox;
(we use the Einstein notation for implicit sums over repeating indexes in a term).
Here p is the density, u'are Cartesian components of displacements, A’ is an
external force per unit volume, and the stress tensor o’ is related to the tensor of

deformation
1(ou' ou’
g =— +
72\ 0z, O

o’ =", (1)

by Hooke’s law

Here ¢”* is the tensor of elastic coefficients (which is constant in case of
homogenous media).

Tensors o, ¢ and & are symmetric. In their indices, we replace pairs “11” by
“17, “22” by “2”, and “12” and “21” by “3” (withe, = &, + &, = 2¢,, = 28,,).
Hooke’s law (1) then becomes
o' =c"¢,, ne{l23}. (2)

Due to symmetry,c™ = ¢™. For orthotropic media with principal axes coinciding

with z, andz,, we havec” = ¢* = 0.
In the 2D case in polar coordinates the equations of motion are

a?u'r B 60_7'7' N l 807'9 . 07‘7‘ _ 099 N hr
P " or 1 00 . ’ -
v’ 00 10c” 207 0
P—F = + — + +h.
ot or r 06 r

Here «" and »’ are the displacements expressed in local physical coordinates. The
tensor of deformations in polar coordinates is

ou" 10u’ wu 10u" ou’ u’
g, = , Egg=——+—T, 26,=— +— 4)
or r 00 r r 00 or r

Hooke’s law is



o’ =ci,, (5)

where ¢ are physical components of the elasticity tensor, which have the following

relations with Cartesian components:

z/kl — b bjbkbl IJKL

4 cos@ sinf
b, = :
! —sinéd cos@

Formula (5) becomes, after replacing in indices “rr” by 1, “60” by 2, and “r@”
by 3 (withe, = ¢, +¢,, =2¢,, =2¢g,,),

where

n __ _nm
o'=cp &

., nef{l,23}. (6)
H H mn nm 13 23
Besides symmetry relation ¢)" = ¢/, we also have ¢, =c7 and c; =c; for

cylindrical anisotropy.
After excluding components of the stress tensor o using (6) and (4) equations
(3) in the absence of external forces read:

an All a f AQQ a f A12 a f Al 5f A2 af + AO

7
or or’ ol orod or 00 d ")

where f = (u",u’)",

13 12
e L 2¢cp cp +cCp
=p T 12 902 ’
cp +Cp Cph
13 33
n . Ocp 3 OCp
CP + - P
A = p—lr—l 00 00
- 12 23 |”
2 + 6%+ Ocp om0
P P P
00 00
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AQ — -1 -2 ‘ ,

’ e+t + oy’ Ocy
L ! 00

22 861233 23 8013;3

A0 — p—l ) P 00 F 00

En 50;2 33 8012)3

P00 P00

Remark. Matrices in (7) do not depend on time, so components of velocities
satisfy exactly the same equation. So we will consider components of velocities as
unknown functions rather than components of displacements because it is more
convenient for practical problems.

§ 2. Generation of TBC

Let us consider the homogeneous governing equations (7) outside I" written
formally in the operator form f, —Lf =0 (see Figure 2). Function f can be

represented on the circle » = R. as Fourier series:

U, + i(U’” cos(m@) + U, sin(m@))
m=1

U
s -
7 us, + Y (Uy cos(m@) + Uy, sin(mé))

m=1

One can see that each m-th Forier harmonic contains four independent basis
functions that correspond to four Fourier coefficients: U",, U, Uy, and U, . Itis

r.c! r.s !

convenient to numerate the basis function as a single sequence:
{9"(0),m =1,2,3,...}, so that f(t,0) = Zc

TBC operator is obtained after the foIIowmg steps:
Stage 1: Consider set of auxiliary external initial boundary-value problems
(IBVPs) outside the circle S with the boundary I (set wrt “m™):

f,—Lf=0 in R*/S
fliy =0 (8)
fle = 6(t)p"(0)
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where &(t) is the Dirac delta function; {¢™(8)}._, is the basis on I" consisting of set

sinuses and cosines {sin mé,cosmb},i.e. f(t,0) = Zcm(t)gom(e) :

Let f"(r,0,t) be the solution of the m -th problem (8).

Figure 2. Outline of the auxiliary external problems

Stage 2: Make the Laplace transform and pass to set of elliptic BVPs
(parameterized by s ):

$f-Lf=0 in R*/S
fl. = 2"(0)

f — 0 at infinity

9)

Stage 3: Solve (numerically) the problems and evaluate aif"’”(r, @) on T". Thus,
r
we obtain the Dirichlet-to-Neumann maps

Oyl (=20 -,

Stage 4: Form matrix of the Poincare-Steklov operator by taking arbitrary data
onT



f(r,0,5) =D ¢.(s)9p"(0)

m

and writing out the representation of its normal derivative on T

U89 — ¢ (O] = Xé (9B (59 (0)

or r m

where P"(s) are the Fourier coefficients of " (6).
Thus, we obtain the Poincare-Steklov operator in space of Fourier coefficients:

or, in matrix form:

T
with ¢ = {éo, ¢l } . (Here we use symbolic notation for the Fourier coefficients of

the normal derivative of (s, 9) :

2 i(5.0) - 52 %60) g

r ~ Or
Stage 5: Make inverse Laplace transform for the Poincare-Steklov operator.

This procedure is made numerically. First, we represent matrix f’(s) by sum of three
matrices in order to separate asymptotic at s — oo :

A A~ A

P(s)=Ps+P, +K(s); P,P, are consts, K(s)=o(1). (10)

Then we calculate rational approximations to each entry in K(s) such that all
poles have negative real parts, i.e.

2

J
a
Km =
;5_;8711

m
n

., Re(B")<5<0.

As it is known the rational representation admits analytical inversion of K (s).
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Thus, the approximate analytical inverse Laplace transform of 8;_(5) = P(s)&(s)
r

has the form:
oc(t)
or

20

-t Pc(t) + K(t) * c(t)

~ ]?1

with the explicit kernels f(’”’( )'

Za exp(B"t), Re(B")<5<0.

Stage 6: Formulate TBC operator in physical space. We introduce Q, the
operator of Fourier decomposition for
Zcm m

Q: f(t,0) > {c, (1)}
Finally we obtain the following relationship between functions and derivatives

onI:
of o , o N PO
QPQ~ -~ +QRQS + QM {K()*{Qf = 0 (11)

This equation is our desired TBC.
Let us mention some numerical aspects.

Stages 1-6: we take discrete basis on the uniform azimuth grid

27
6. =k—,k=1..N,, 12
L=k : (12)
for the radial and azimuth components:
N’l[ NM

Z f” sin(m@,) Zf“’ cos(m@,)

m=1 m=0

‘NM_1 N\[

) = ng sin(mé, ) +Z o0, COS(MB,),

m=1 m=0
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where N, is the highest Fourier harmonics treated by approximate TBCs, and write
the transformation in the matrix form

Jro

0.0

F0)rn, i)
J— _1 |
= Qi | | (13)
f‘g(ek)kzl.‘Ne ][‘:in
| ﬂ;m m=1..Ny,

Here the left vector is column of two sets with N, values; the right vector is column
of N,, quadruples except for the top pair (m = 0).

Stage 2 [Laplace image]: we take a finite interval [0,S . ] and choose set of
knots {s,} €[0,5

max

] which are representative enough to use discrete counterparts

f(,:l(sj) of kernels for the rational approximation (Stage 5). Currently {s, jzl are
nodes of the Chebyshev’s grid

5. = %(1—cos(n(j—o.5)/J)), j=1..,J.

The magnitude of S depends on the number of harmonics m like
S .. =0(m).

max

Stages 3-4 [Poincare-Steklov operator]: For each given s, we discretise

problem (9). Thus we have J elliptic problems. Each problem is solved on the set of
finer and finer grids unless the so-called mesh convergence to a given residual &
achieves. These grids with doubled number of nodes permit to use the Richardson
extrapolation increasing essentially the accuracy of our solution.

The radius R, of the outer boundary is unknown in advance. Therefore we

make also calculations with greater and greater value of R_  unless the difference

between solutions becomes less than ¢ .
Further details of the algorithm see below.
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Stage 5 [inverse Laplace transform]. After running the previous stages we have
set of matrices f’(sj) depending of s;. For each entry ]371’”(3].) we make asymptotic

decomposition
P"(s)=P"

n 1n

s+ B +o(l), as s —> o

Estimation of constants P"

1,n?

Fy is made by analyzing the rational

approximation
R(s;)= B (s;)

on the interval [0,S

max ]

with help of the Chebyshev-Padé algorithm.
Afterwards, we form the matrix K(s,):=P(s,)-Ps —P, and find
(numerically) the rational approximations of entries IA(;”(sj) on the set {s]}j:1 by an

optimization algorithm minimizing the residual

2

(s) =Y —=

— min, Re(f) < <0;
s, = B,

{5]'}

L
1

=

here the indices (") at terms K, L,«,  are omitted for clarity.

As a result, we obtain the rational functions f{jf(s) satisfying inequality
| K (s;) = K'(s)) | < &

on the interval [0,S

Ina.x] '

These functions are explicitly inverted from the
Laplace space:

n

~ L)

K)'(s) = K'(t) = Za:z exp(B)"t), Re(f)") <6 <0
=1

Thus for each entry Pn"”’(sj) we find set of approximating parameters

L
m m m m m
Pl,n’ P(),n’ Ln’ {anb ﬂnl}

=1

Further details of the algorithm see below.
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Stage 6 [approximate TBC]: We introduce a parameter N, >N, , the
number of harmonics treated by the non-convolution terms of TBC, and
construct matrices Py, P of a lager dimension: N, xN, = instead of

N,, x N,,*. This is made by extrapolating the entries along the diagonals of the

matrixes, see Figure 3, to obtain a band matrix. The extrapolation uses a linear
low with respect to the index k£ of a matrix diagonal (i + &, j + k) where 4, j are

fixed. It is possible because of correspondent linear asymptotics observed in
P, P,. Figure 4 illustrates this behavior on the example of several entries of
the matrix P,. Note that for isotropic case this linear low can be derived
analytically.

N M N My
0
('*')
L] _
%
&
N %
(N %,
%
%
0

Figure 3. Band N,, x N, —matrices P/, P after diagonal extrapolation
of original N,, x N,, matrixes P,, P,

The reason of introducing N,, > N,, is motivated by wish of a more accurate

treatment of higher harmonics (underline that our TBC operator treats all harmonics
with numbers larger than NV, by just uniform Dirichlet condition).

! This is dimension in terms of blocks: actually each entry of the matrices is a
4x4 block; so the exact dimension of the matrices is (4N,, +2)x(4N,, +2)
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0.8F
06F
04F

0.2F

oF

value of entries

02F
0.4F

06F

N t AN R N TR [N SO N NI [N N IR N SN SN S N [ SR N
0'80 10 20 30 40

index k

Figure 4. Typical behavior of entries of the matrix P, depending on &

We generate additional matrices Q;}H, Q,,, similarly to Q;;, Q,, (13). Using
a) these matrices of the discrete Fourier transform for vector-functions f = (v,,v,)
on the grid (12), b) extrapolated band matrices P/, P;, and c) matrix kernels K(t),
we write out our approximate TBC:
of _of

==+ Qy PQ,, f+Qu{K®)*Q,f = 0. (14)

-1 Pe el
My 1QMH ot on

§ 3. Solution of elliptic problems obtained
after Laplace transform

2

In order to approximate differential operators %, on a uniform periodical

92
grid we use the pseudo-spectral approximation.
Let introduce the grid in the azimuth direction

0, = kZ k=1..N,
N

0

where N, is even. then for functions given in these nodes the following matrices of
numerical differentiation are applied:
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DY — %Co’c((i—j)ﬂ/]va), 1+ ]

0]

for the first derivative, and

_ i—j+1
pr=D 1 i,
2 sin’((i-j)7/N,)
e _ Ny+2
o 12

for the second one. It is simply established (from the definition of the matrices, in
fact) that the first-order differentiation is exact for the set of conventional Fourier
basis functions

{sin mH}N" AR {cos mH}N" AR

m=1 m=0

ie.for N,—-2=(N,/2-2+ N,/2) functions. That is why we need two extra grid
points to handle correctly discrete periodic functions given by the finite Fourier series

Ny-1 N N
f(6,) = Z fo sin(mé,) + Z £ cos(mb,)
m=1 m=0

le. N, =2N,, +2.
An exponential grid is used in the radial direction, shifted for half spacing from
the boundaries:

aih __ _0.5ah

e Rr i (Rmax - Rr) ea(lfo.sh) — loah ’ h = ]‘/Nr'7 1=0,....,N

. (15)
Here R . is the outer boundary of the computational domain of the auxiliary

problem shown in Figure 2.
The magnitude of R, depends strongly on s; if we put homogeneous Dirichlet

conditions at R . while approximating condition at infinity in (9). Approximately

R, =B =0(1/s)).
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Three-point central finite differences in radial direction are used to approximate
governing equations on the grid (15), the parametric differentiation is made wrt
X = th mapping [h/27 l_h/Q] = [RDRmdx]

The correspondent system of linear equations is then solved by the “matrix
progonka” method in radial direction. Evidently, the matrices in & —direction are
dense because of the pseudo-spectral differentiation. Therefore, the computational
costs of this direct method are estimated by the value O(N_N,). Although the latter

IS big enough, the advantage is that “matrix progonka” solves simultancously
4N,, +2 BVPs; each of these BVPs corresponds to a single discrete basis function

@"(6) in (13). Besides, the solution of the discrete equations is obtained with the
machine accuracy.

After solution of these 4N,, +2 BVPs we have 4N,, +2 discrete functions
aif’”(r, ¢) on I' in grid points (12). Decomposing them into Fourier components
r

by the operator Q,,, see (13), we obtain the discrete matrix ]%j”(sj) :
n,m=1...,4N,, + 2.

Numerical inverse Laplace transform requires high accurate estimation of
P"(s;) . That is why we use Richardson extrapolation to increase and control the
accuracy. The process is as follows. Fix desired accuracy ¢.

a) Fix parameter N, (evidently, N, > 4N,, +2).

b) Fix initial guess of « and initial guess of w, = R, — R in (15).
c) Consider R, . successively for w,, 2w, 4w, ... ;
d) Consider N, =16, 32, 64,... for given R _,, calculate

correspondent ]57{”(5].) and make Richardson extrapolation until

the difference A,, between two successive extrapolations
decreases. Return to level c) and continue until difference A
between best Richardson extrapolations for neighbor R
decreases. Break if A < ¢.

Here indents mark nested loops. Evidently, the above process provides the so-called
internal mesh convergence (control of A, ), as well as convergence with respect to

R .. (control of A ).
Remark 1. The value of « is also varied on the level d) if required.

Remark 2. Values of A, and A, are estimated by C-norm over all entries of
P"(s;) .
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Remark 3. Richardson extrapolation is made under assumption that discrete
solution has O(h*)accuracy:

for p=1:pmax
f ,=solution
for order=1:p

f = (20rder+1fp7order—1 _fp-l ,order-1 ) / (20rder+1 -1 )

p,order

end

end

Here solution, is Pnf”(sj) calculated on the grid with N =16*2""; f is

p,order

Richardson extrapolant; pmax is the maximal number of grid refinement.

Remark4. Inclusion of the level a) into the internal mesh convergence control by
successive increasing NV, is also possible.

§ 4. Approximation of the DtN Matrix

Algorithm briefly described in the previous section allows to compute DtN
matrix P™ for any s. In this section we consider each element of the DtN matrix as
a function f(s) in the dual Laplace space, it is necessary to come back to the
physical space, i.e. to calculate its inverse Laplace transform g¢(t) in time domain.
Generally, it is not possible to get exact g(t). Moreover, we only know approximate
values of f(s) in several points on the real axis. Our approach consists of
approximation of f(s) by a sum of functions that have exact inverse Laplace

transform.
Because of the second order of the governing equations the functions in the
DtN matrix have linear asymptotic, f(s) = p;s+ p, as s = .

A reasonable choice of approximating the decaying remainder after subtraction
of the linear part is rational functions:

a,
+ pls + pO .
s—p,

- L
f=fr=Re)
(=1

The corresponding time-domain kernel is
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L
g(t) = ReZa[ e + p15'(t) + p05(t).
(=1

We call the coefficients g, € C the poles of the approximations, and
coefficients «, € C the weights of those poles.
Due to physical considerations, the exponentials in g(¢) must be decaying, i.e.
Re f, < 0. We may assume that Im g, > 0 (because we can replace «,, £, with
their conjugates and ¢(¢) will not change). From the numerical point of view, it is
desirable that the decay and the oscillations of the exponentials are not too fast, i.e.
Rep, > .. and Im B, < B . Generally, the poles of the approximation must meet
the following requirements:
B <Ref <0,0<Imp, < B .
Note that determination of the unknown coefficients p, and p, is also made by

using rational functions approximation technique.

A common tool of the rational approximation is the Chebyshev-Padé algorithm.
It can produce approximations of very high accuracy. However, it has significant
drawback: the linear system arising in this algorithm is extremely ill-conditioned.
Unfortunately, this is a fundamental issue caused by the unboundness of the inverse
Laplace transformation in the considered class of functions. The consequence of the
latter is the fact that even small perturbations of the functions being approximated can
lead to the appearance of poles with Re f, > 0. Sometimes such poles may be

avoided by changing the value of L, but it cannot be guaranteed.
The coefficients p,, p, are determined before looking for the poles as we shall

show further.

Algorithm Overview
The main part of the approximation algorithm is as follows:
1) Change of variables (“inversion”) from s to o which translated the ray
[0,0) in s to line segment (0,1] in o. This change of variable is

characterized by parameter o (the center of inversion).
2) Calculate f (o) in Chebyshev’s nodes on (0,1).

3) Calculate Chebyshev’s coefficients of f.
4) Estimate linear asymptotic p,o + p,.
5) Extract linear asymptotic from f (o) = f (o) + p,o + p,.
6) Apply Chebyshev-Padé algorithm:
P(o)

fo)~fo)y=—"22.
1 1 Q(G)
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7) Do a partial fraction expansion:

T L Qs
fitey=Re ), —

=1 O —

ol

8) Return to variable s:

L
a
f(s)zpls+p0+Rez L,

=18~ Py

9) If there are poles with Re 5, < ...
a)  correct p, , i.e. for each such pole set

a
Dy =D, —Re;ﬁ.

b)  gotostep 5 (unless the number of iterations is exceeded).
10) If there are poles outside of the desired box, reject them.
11) Do a least-squares fit for weights «, .
12) Fit random poles:

a)  Select a new pole in the desired box for £.

b) Do a least-squares fit for weights ¢, .

C) If the residual has decreased by a factor of at least 0,9, add this

new pole to the old ones.
d) Gotostepa.

Inversion
The formula for inversion is

Rational approximation in o and s

a( ao:, 4

- ,Ba,[

L
f(s):pls+p0+Rez

=1 S — P

L
, flo)y= Rez
(=1

are related by
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a, 1-5,, Oy
a =—-—7>=, B =a = poz—ZRe -
/an /fo (=1 /2,¢

Ratios of polynomials in o and s

P (s IT
for=22 0 fgy=2D
Qs ®(o)
are related by
degIT deg®
P = Z [Ma" s+, Q)= Z 0,a" (s + )"
k=0 k=0

Calculation of Chebyshev’s Nodes and Coefficients
Calculation of Chebyshev’s Nodes and Coefficients consists of the following
steps.
1. Fix a natural number N, usually N > 8L, where L is the desired number
of poles.
2. Chebyshev’s nodes in o are

1( n+§j
o, =—|1-cosx ,
2 N +1

3. Calculate corresponding values of s, the set s, .
4. Calculate f, = f(s,), n=0,...,N.
5. Calculate N +1 Chebyshev’s coefficients of f:

Il
=
=

1 1+5n0

I N+14

N +1

This is a linear operation, which means it may be interpreted as multiplication of
vector (f;,..., fy) by a matrix with appropriate entries.

Estimation of Linear Asymptotic with respect to s
For given K and AK calculation of the linear part of f(s) consists of the

following steps.
First, we apply Chebyshev-Padé algorithm and obtain
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For =2 GegP = K+AK, degQ=K.

Qo)
Then coefficients of linear parts of f(s)

7o

pp=— Pp="07+0N,
a
where
P(o) (P(G)j’
wW=——"—= » "=+~
Q)| _, Qo)

o=0

But the best choice of K is not known a priori. Algorithm for adjusting K is
the following.
1.Setpy =0, py, =0
2. Repeat for K from K, to K, :
a. Find p, ., p, by the main algorithm.,

2

2
b. Calculate 5, = (pl.,K—l _pu() +(po,K—1 _po,K) -
3. Choose K~ where &, is minimal.
4. Set p, = Diygr Po = Dy

Partial Fraction Expansion
To represent a ratio of polynomials f(s) = P(s)/Q(s) as a sum of rational

functions, we do the following:
1. Find roots g, of Q(s).

2. Discard all roots with Im g, < 0.
3. For each pole g, set

o L)

Q&(8)

where c¢=1 if ImpB =0 and c¢=2 otherwise. This is true since

a, = ((S_ﬂ[)f(s))‘ _g,” Q) = (S_ﬁ[)Q1 (), Q'(ﬁ() = Ql (ﬁé)

S=

Linear Fitting of «, p
It is easily seen that f"(s;a,,b’,p) is linear function of «, p. Therefore, the
problem
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2

(@ B.p) =4

fo=f(s8.p)

— min
a,p

for a fixed A is a linear least squares problem. Unfortunately, it leads to an ill-

conditioned system of linear equations. To overcome this, we apply regularization
and solve the following problem:

1
2

for=F(sapp)| +e(le—al +p- o) > min

where «, ,B and p are the values obtained using the optimization described in
previous section. & > 0 is a regularization parameter that should be smaller than the
desired level of accuracy.

The described technique reduces rapidly the residual r* by several orders of
magnitude sometimes.

Again, there is an option of fitting only « with fixed p = p.

§ 5. Time-domain solver in the annulus

We describe here setup and several discretization aspects of the test problems
used for verifying our TBC.

Governing equations are implemented in the polar system of coordinates. In
order to avoid issues with discretization and calculations at the origin we consider the
task in an annulus. The setup is as shown in Figure 5, where

e radius R, corresponds to the internal boundary where we prescribe

Dirichlet boundary conditions to initiate elastic waves (initial data of
solution in the annulus are zero);
e [ with radius R. is the external boundary where we put our

transparent boundary conditions.

The verification of TBC is made by comparing solution of this problem with the
solution of a second problem having a much bigger external radius R _, (extended
domain), so the reflections from this boundary achieve I" after a definite (long) time
of simulation.

We use the polar spatial grid

r. = R, +ih, hr:RFN_R“, i=0,1,...,N,

R
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6’j = jh&’ h9 = F, j: 0,1,,...,N9 —].

and the temporal grid

-

~
’
4
-
-
’j

<

P
-

R, (TBC)

Figure 5. Setup of the test problem in the annulus

Equation (7) is approximated by the usual explicit second-order central-
difference scheme with unknown functions defined in the nodes (¢",7;,6,). Below we
describe implementation of the TBC operator in frames of explicit difference
schemes integrating the elastodynamics equations.

Ideology of explicit scheme yields the following approach of incorporation of
the TBC operator into the algorithm: having the solution at the time levels

LR we firstly update the solution in the internal points by using the
difference scheme; then we update the solution at the boundary I" using the TBC
operator.

Let us consider this second step. Operator of TBC reads

opo. o

WPQy— = = + QUPQ,f + QK+ Quf =0 (16)
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where Q};, Q,, are matrices of the discrete Fourier transform for the vector-functions
f = (v,,v,) insin-cos basis; P,, P, are given constant matrices in Fourier space, and

the matrix K(¢)with entries

Ly
K)'(t) = Za:znz eXP(ﬂ:th)a Re(ﬂ;"’l) <6<0 (17)
=1

contains given kernels of convolutions.
After the first step (update in internal grid points) we know solution in points
drawn in Figure 6 by circles, (& —direction, normal to the figure plane, is not shown).

A
t k+1

t O O— o
X

t* O O O

e Tn 2 Tn 1 A\ Ty
/\
A r

Figure 6. Grid setup for approximation of TBC

The aim is to update the solution f]@fl at the square point by using (16). First we

calculate the Fourier coefficients f = {f™}"_, of f in points with = r,, , and

r =1, by using matrix Q,,. Then we consider the central-difference discretization
of TBC

of of o femal
P - +Pf + {Kt)*}f = 0 (18)

in the Fourier space for the central point (cross in the figure). First three terms in (18)
are approximated by
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ﬁ f]€+1 — f]l\;r + ]\1;:_11 — f]\];r—l
ot 27

af fk+1 ]]\;:—11 + f]l\/?r - f]l\;r—l
or 2h ’

r

f O 25( it ]]\;:11 + .]?]\];7" + .]?]\];7"—1)

with unknown values f]f,“”. Provided that the fourth, integral, term is known, we,

evidently, can write out a matrix resolution equation for ]’V“l from (18).

Explicit calculation of the integral term in the central point (cross) is made as
follows. We consider integration over the interval shown by the vertical line in
Figure 6. Using (17) we have for a(t) = f"(%):

3

K't+71/2)*a(t+7/2) =Y a” exp(f(t+71/2))*a(t +7/2)

1

~
Il

1l

\
Il
—_

anlrrznz(t + 2'/2),

where
I'(t+7/2)=exp(B ) \(t—7/2)
t+7/2 (19)
+ | exp(B(t+T/2-1))a(t")dt"
t—1/2

The integral in (19) is approximated by the Simpson rule:

t+7/2

| exp(Br(t+ /2= 1a(t)dt' = Texp(B)ayg

t—-7/2
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where

a_ys = 0.5(1f" Ty + ")

Nr

a, = 0'5([fm]]1€v7~—1 + [fm]k )

Nr

ay; = 0.5([f" [yl + ")

Nr

Thus the Fourier coefficients f*' are known. After this we calculate
k+1 _ -1 pk+1
Nr =7 “SMJINr

Notice that (19) provides recurrent calculations of elementary convolutions
I (t+7/2).

§ 6. Numerical examples

We put the density o =1. List of anisotropic media cases studied in [1], [2] is
as follows:

Anisotropic medium 1.

11 12 13
c =4,¢c"=38,¢c" =

Anisotropic medium 1.

ct'=20,c"=38,c"=0, ¢#=20,c"=0,c*=2

Anisotropic medium I11.
ct=4,c%=49,2=0, ¢®=20,c"=0,c"=2
Anisotropic medium IV.

11
c =

4,7 =75,c2%=0, ¢®=20,c*=0,c"=2

Coefficients ¢V are the coefficients in Hooke’s law (2).
Note that the case IV cannot be treated by PML at all as shown in [1].

Parameters of the annulus: R, =2, R. =10. Dirichlet data at R, exiting the

elastic waves is sum of the first three azimuth harmonics multiplied by a time pulse
with the support on the interval ¢ € [0,2]. At » = R we put our TBCs.
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We use four grids for test calculations:

e Gridl (N,=100), h, = 2%, p, =t
100 50

e Grid2 (N,=300), h, = 2% b, = 1ot
300 150

e Grid3 (N,=900), h, = 2% p =T =14
900 450

e Grid4 (N,=2700), h, = 227%, h, = R{g})é{”

All numerical experiments show low reflection of outgoing waves and the long
time stability.

Denote  U,,, solutions computed in the computational domain
R, <r<R. =R,,, 0<6<2z with TBCs on boundary r = R.. For comparison
we compute also U, in the extended domain R, <r < R, = 8R.. Computational
grids for the extended domain have the same £ as grids for domain R, <r < R.
with the same N,,. Figures 7 — 13 show U,,, and restriction of U, on the domain
R, <r <R. for different ¢ for the most difficult medium IV (remind that
U = (v,,7,)). One can see that reflections are not visible.

In order to show stability we run calculations until 7" =100 on Grid2, see

Figure 14 and Figure 15. For comparison we compute U, which is U,

computed on the Grid3 for medium | and is U,,, computed on the Grid4 for medlum
IV. The difference U,,. —U,,, until T =25 continued by U, at t > 25 (where
| U, 11| Upge 1]) is shown. We use norms

U], = max | U

and
11, ——ZIUI

All the cases are stable. However more analysis is necessary.
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Vr: t=1.9199 min=-0.55853 max=1 3053 V¥ £=1.9199 min=-0.55853 max=1.3058

Figure 7. Anisotropic medium 1V, t=1.9199: upper left — field of v, component
of U, upper right — field of v, component of U, lower left — field of v,
component of U, lower right — field of v, component of U,
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Vr- t=2.618 min=-0.49818 max=1.0892 V' 1=2.618 min=-0.49799 max=1.0891

-10 5 o 5 10 -10 5 o 5 10
Figure 8. Anisotropic medium IV, t=2.618: upper left — field of v, component
of U, upper right — field of v, component of U, lower left — field of v,

component of U, lower right — field of v, component of U,
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VI t=3.3161 min=-0.35124 max=0.72167 V™ 1=3.3161 min=-0.35124 max=0.72365

IENEAsEEEREEEERRRRRRRNE [LLLLTTTTTTENY Al PEIITssssssEIRRRRRRRRRRRRRRRRRE BEFIENEAREEEEERERRRRRRR BN RN L RN ENNE RN NNRRR RN sar

.....................................................................

.......................

........................

......................

i

=10 -5 0 5 10 -10 -5 0 5 10

Figure 9. Anisotropic medium IV, t=3.3161: upper left — field of v, component
of U, upper right — field of v, component of U, lower left — field of v,
component of U, lower right — field of v, component of U,
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Vr: t=5.4105 min=-0.18426 max=0.16616 V™ 15,4105 min=-0.18323 max=0.16781

=10 -5 0 5 10 -10 -5 0 5 10

Figure 10. Anisotropic medium 1V, t=5.4105: upper left — field of v, component
of Uy, upper right — field of v, component of U, lower left — field of v,
component of U, lower right — field of v, component of U,
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Vr: t=6.1087 min=-0.17947 max=0.16358 V™ 1=6.1087 min=-0.1856 max=0.16064

IENEAsEEEREEERRRRRRRRNE NN R RN TN RN EI NN RN RRRRRRE BEFIENEAREEEEERERRRRRRR BN ENR R RN NNNNRENEI NN NRRRRRRRRRRRRE sar

.....................................................................

......................

........................

......................

.....................................................

10 5 o 5 10 -10 5 T 5 10
Figure 11. Anisotropic medium 1V, t=6.1087: upper left — field of v, component
of U, upper right — field of v, component of U, lower left — field of v,

component of U, lower right — field of v, component of U,
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Vi: t=6.8068 min=-0.10652 maxx=0.14821 V(" 16,8068 min=-0.10984 max=0.15403

Wt: t=6.8068 min=-0.44007 max=0.44007 V(¥ t=6.8068 min=-0.45513 max=0.45513

EEAANEEEIIENEEEENNEIRREEREEEENRRRNRE

L i 1

-1:) -5 0 5 10 -10 -5 0 5 10
Figure 12. Anisotropic medium 1V, t=6.8068: upper left — field of v, component
of U, upper right — field of v, component of U, lower left — field of v,

component of U, lower right — field of v, component of U,
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Vr: t=12.0428 min=-0.021496 max=0.021543 Vi 1=12.0428 min=-0.013923 max=0.014582

-----------------------------------------------------------------------------------------------------------------------------------------------------

waagannnassssss d I = = & & & & 66 660 aniccanaasasnsssssas IS < < << s ssssassspass

ceiHennasa e ———— 0000 TR

............

Fowin e
R

waageannnananssss e Y .  « o o & & & & & 66 apaaincanansssnaasasas -SRI - - - - = = = = = = = === pass

Wt: t=12.0428 min=-0.037879 max=0.037879 V™ t=12.0428 min=-0.030645 max=0.030645

AN NI I NN R RN RN T I NN NN EEI R RN EERE RN NIRRR RN NRRAE RN EEEEEEEEEEENENANNRRNENENNNNRRRRRREEN)

...................................

............

vy
......................

S I i

10 5 0 5 10 -10 5 = T 5 10
Figure 13. Anisotropic medium 1V, t=12.0428: upper left — field of v, component
of U, upper right — field of v, component of U, lower left — field of v,
component of U, lower right — field of v, component of U,
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History of the residual U_._.-U_.: Medium=1

C-norm, N=300 |
Ll-norm, N, =300 |

Figure 14. Long-time stability for medium I

History of the residual U, -U_.: Medium=4

C-norm, N=300 |
Ll-norm, N=300 |

Figure 15. Long-time stability for medium IV
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