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Пономарёв О.А., Шигаев А.С., Лахно В.Д. 

Новый метод обрыва цепочек Боголюбова для квантовых моделей 

В данной работе подробно описан метод исследования эффектов 

динамической связи в процессах переноса энергии и квантовых частиц с учётом 

усреднённого внешнего поля всех частиц системы. В рамках метода введено 

ограничение парными корреляциями для взаимодействующих частиц, 

позволяющее эффективный обрыв цепочек Боголюбова. Показано, что данный 

метод позволяет эффективный учёт температуры и хорошо подходит для 

большинства квантовомеханических систем, где маловероятны тройные 

корреляции квантовых частиц. Возможности подхода наглядно 

продемонстрированы на примерах исследования моделей Мацубары, Фрёлиха и 

Юкавы. 

Ключевые слова: расцепление цепочек Боголюбова, корреляционные 

функции, функции Грина, приближение парных корреляций 
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A new method for decoupling Bogolyubov’s chains for quantum models 

The paper describes in detail a method for investigating the effects of dynamical 

coupling in the energy- and charge-transfer processes with regard to an averaged 

external field of all the particles of the system. The particles are assumed to take part 

only in pair correlations which makes possible effective truncation of Bogolubov's 

chains. It is shown that the method enables effective consideration of temperature and 

is well suited for most of quantum-mechanical systems where triple correlations of 

quantum particles are hardly probable. To demonstrate the potentialities of the 

approach the models by Matsubara, Froehlich and Yukawa are investigated. 
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1. Introduction 
Analytical investigation of quantum models of various physical and chemical 

systems is one of the most complicated problems of the present-day physics. The 

vital role in its solution belongs to general methods of modern statistical physics, the 

most fruitful of which are the methods of correlation functions (CF) and Green’s 

functions. Various variants of the last were developed by Bogolyubov's school. The 

main results are presented in papers [1 – 7]. Some important findings in this field can 

also be found in paper by Peletminsky [8]. 

It is well known that the methods of CF and Green’s functions lead to a system 

of coupled linear equations. For most of nontrivial systems their number is infinite. 

Therefore, to solve the problem one should reduce the number of equations so that to 

make it finite. This is achieved in two ways. The first way is to choose the “critical” 

order of CF followed by omitting all higher-order CF. The second one is approximate 

expression of higher-order CF in terms of lower-order CF. In both the cases an 

infinite system of linear equations becomes a finite one which can easily be solved. 

Such approximations are suitable only for systems with weak dynamical 

coupling. Besides, CF obtained by such methods describe properly the asymptotic 

behavior of molecular systems only for long-range time. Another drawback of these 

two ways of truncating a chain of equations is that they cannot be used in studies of 

systems with intermediate and strong dynamical coupling. The main contribution into 

CF in these cases is made by a region of relatively short-range time. 

Besides, the change-over to a finite system of linear equations produces a 

serious risk that some effective correlations between the modes can be lost in the 

course of calculations. This may lead to erroneous results. In this context of 

importance is development of an effective method for truncating Bogolubov’s chains 

in which the risk of error is minimum. 

The paper describes in detail a new method of decoupling Bogolyubov’s chains 

equations for quantum models. The method is suitable for investigating the effects of 

dynamical coupling in the energy- and charge-transfer processes with regard to an 

averaged external field of all the particles of the system in the short-range timescale. 

Moreover, the method enables one to assess the measure of inaccuracy of the 

solutions obtained. For neighboring particles, we restrict ourselves only by pair 

correlations. It is shown that the method is highly effective for the study of quantum 

models, in particular in the cases when the temperature contribution should be taken 

into account. 

The method presented is new. It is well suited for investigation of systems with 

strong interaction since the perturbation theory is based not on the interaction force 

but on the number of interacting particles. Therefore in small-size systems the 

method has proved to be rather efficient [9, 10]. To demonstrate its reliability the 

models by Matsubara, Froehlich and Yukawa are investigated. 

The paper is arranged as follows. In Section 2 we describe the method and 

determine the models for which its application gives exact results. In Section 3 the 

method is used to investigate the Matsubara model. The Matsubara model simulates a 
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one dimensional system of states without the conductivity band which contains a few 

charge carriers [11]. This method was earlier developed by us for the case of charge 

transfer in DNA [10]. The perturbation theory in this case is constructed relying on 

the width of the conductivity band (exchange integral). 

In Section 4 we study the interaction between two nucleons in the model by 

Yukawa. It has turned out that our method readily leads to an exact result which 

reproduces those obtained by N. Mugibayashi [12] with the help of a much more 

laborious method (using Feynman diagrams, see [13]). 

In Section 5 consideration is given to a two-level model of non-adiabatic 

chemical reactions. In this case we can restrict ourselves by the second order of the 

perturbation theory with respect to exchange integral. In this approximation the 

method proposed also yields exact results. This enables one to develop the 

perturbation theory with respect to exchange integral. 

The method developed is well suited for systems with any dynamical coupling 

provided that triple correlations are hardly probable. In our method insignificant 

correlations are automatically excluded in the course of formation of a system of 

relevant differential equations. The physical meaning of this approximation is to 

consider accurately pair correlations and exclude triple ones. In the course of 

analytical investigation it turned out that the method has an intrinsic  criterion of 

accuracy. This enables one to determine the limits of its applicability for various 

molecular systems. 

The authors believe that the wide use of their method can provide obtaining new 

results and finding new models solvable by this method. 

2. General formalism of the method 
Since the approach under discussion is universal it makes sense to express its 

formalism for an arbitrary Hamiltonian of the form 

  , , ,H H a a b b  , (1) 

where a is a set of electron operators an, b is a set of boson operators bq; a
+ and b+ 

stand for Hermite-conjugate operators a and b. Let us consider the correlation 

function 

 ( ) ( ) (0) , 0G t A t B t   , (2) 

where A(t) is a product of an arbitrary number of operators 

nn
aa ,  and 

qq
bb , , 

depending on time t; B(0) is the same or a different product of operators at zero 

moment of time. The angle brackets  ...  symbolize averaging with the density 

matrix 

   exp ( ) / (exp ( ) )H F Sp H F         
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0

exp ( ) ( )q qT u t z t dt
 



 
 

   
 
 . 

where F is the Helmholtz free energy, 

q
u are external auxiliary classical fields, Т is 

the operator of chronological ordering, β is the reciprocal temperature. For 

compactness of the notation, we use the designation 

1 2 3 4

1 2 3 4, , ,q n q n q q q qz a z a z b z b     . 

Having taken the variational derivative of expression (2) with respect to field 

 1tuq




 we have  

1 1

1

( ) (0)
( ) ( ) (0) ( ) ( ) (0)

( )
q q

q

TA t B
Tz t A t B z t TA t B

u t  



 



  
     


 

or 

  1 1

1

( ) ( ) (0) ( ) (0)
( )

q q

q

Tz t A t B z t TA t B
u t 



 



 
       

  

. (3) 

Expression (3) makes possible reducing the order of CF by introducing variational 

derivatives with respect to external auxiliary classical fields. The procedure can be 

continued. Let us replace an arbitrary number of operators by a relevant number of  

variational derivatives. Having acted on both sides of the last expression by the 

operator 

  2

2( )
q

q

z t
u t








  


, (4) 

we get 

1 2( ) ( ) ( ) (0)q qTz t z t A t B
 

  

 1 2

1 2

( ) ( ) (0)
( ) ( )

q q

q q

z t z t TA t B
u t u t 

 

 

 

   
          

       

. 

This equality is exact. In the general case we have 

  
1 1

( ) ( ) (0) ( ) (0)
( )i

i

N N
i i

qi i q i ii i
q i

T z t A t B z t TA t B
u t 

 
         

  

, (5) 

Now let us determine the new functional );(
1

ttM
q




 by the relation 
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1 1( ) ( ) (0) ( ; ) ( ) (0)q qTz t A t B M t t TA t B
 

    

 1

1

( ) (0)
( )

q

q

z t TA t B
u t







 
      

  

 1

1

( ) (0) ; 1
( )

q

q

TA t B M t t
u t







 
    

  

. 

Convenience of this formal notation will be seen in the subsequent discussion. 

The last part of this equality is an identity. Let us consider it in greater detail: 

   1 1

1 1

( ) (0) ( ) (0) ; 1.
( ) ( )

q q

q q

z t TA t B TA t B M t t
u t u t 

 

 

 

    
          

       

 

Having acted on both sides of this expression by operator (4) we get 

 1 2

1 2

( ) ( ) (0)
( ) ( )

q q

q q

z t z t TA t B
u t u t 

 

 

 

   
         

       

 1 2

1 2

( ) (0) ( ; ) 1
( ) ( )

q q

q q

z t TA t B M t t
u t u t 

 

 

 

   
          

       

 1 2

1 2

( ) (0) ; ( ; ) 1
( ) ( )

q q

q q

TA t B M t t M t t
u t u t 

 

 

 

   
       

       

. 

In the general case 

   
1 1

( ) (0) ( ) (0) ; 1
( ) ( )i i

i i

N N
i i

q i q ii ii i
q i q i

z t TA t B TA t B M t t
u t u t 

    
            

       

. 

Taking (5) into account, we get the exact relation 

    
1

1

( ) (0) ( ) (0) ; 1
( )

i i

ii i

i

N

N

q i q i
i

q i

i

T z t A t B TA t B M t t
u t 



 





 
       

  

. (6) 

This is the most important relation which is central to all subsequent 

calculations. It is a new representation of CF of arbitrary rank. Approximate 

representation of higher-order CF in terms of lower-order ones is chosen just on the 

basis of this relation. 
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Without being related to any particular Hamiltonian, this approximation of CF is 

monotypic for any model. The main point of the approximation is that in the right-

hand side of equation (6) there remain only the terms with functionals 

 ;i

i
q iM t t


     and     
( ; )

, ;
( )

j

ji j

ii j

i

q j

q q i j

q i

M t t
D t t t

u t



 





 







, 

determined implicitly. Derivatives  ttM
iq

i

i

;



 with respect to  tu

q

  of the second and 

higher orders are omitted, since we carry out investigations approximately only with 

regard to pair correlations. 

If we write down expression (6) in the form 

( ) (0) ( ) (0) 1

N

NTz A t B A t B M
u

 
      

. 

then the approximate decoupling will be: 

 
2( ) (0) ( ) (0) ( 1) 1N N NM

Tz A t B A t B M N M
u

 
         

, (7) 

where the symbol «≈» signifies the error of this approximation. 

Then the problem is reduced to determining M and DuM  , which depend 

on the form of the system; they are different for different Hamiltonians and 

determined from dynamical equations. To determine M and D exactly let us use 

motion equations for operators. Suppose )()( tztA
q




 . For this operator, motion 

equation has the form: 

( ) ( ),q q

d
i z t z t H
dt  

     . 

Suppose that the right-hand side of this expression can be presented in the form: 

1 1

1

( ), ( , , , ) ( )q q q q
q

z t H F a a b b z t
   



         . 

where ),,,(1

 bbaaF
qq





 are the well-known operator functions. Then the expression 

for CF is written as: 
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 1 1

1

( ) (0) ..., ( ),... ( ) (0)q qq q q
q

d
i z t B F z t z t B
dt    



       , 

1 1

1

( ) (0) ..., ( ; ) ,... 1
( )

qq q q
q q

z t B F M t t
u t  

 

  



 
     

 
 

 , 

(8) 

Exact equality (8) is obtained with regard for expression (6) without any 

approximations. 

Now let us describe the way of closing the system of equations of Bogolubov’s 

chain.  For this purpose we should write down expressions for functional );( ttM
q




. In 

this case it is convenient to use the equation 

 

( ; ) ( ) (0) ( ) ( ) (0)q q q q

d d
i M t t z t B i z t z t B
dt dt   

        
 

, 

1 1

1

( ) (0) ..., ( ; ) ,... ( ; ) 1
( ) ( )

qq q q q
q q q

z t B F M t t M t t
u t u t   

  

   

 

   
        

   
  

 , 

 
1 1

1

( ) (0) ..., ( ; ) ,... ( ; ) 1
( )

qq q q q
q q q

z t B F M t t M t t
u t u t   

  

   

 

   
       

   
  

 . 

(9) 

When (9) is transformed to approximation (7) its right-hand side will contain 

only functionals M, D and G. Now the problem is reduced to determining the 

functional D. To do this we write down the equation: 



9 

 

( ) ( ) ( ) (0)q q q

d
i z t z t z t B
dt   

     

 { ( ) (0) ( ; ) ( ; ) ( , ; ) }q q q q q

d
i z t B M t t M t t D t t t
dt     

         

1 1

1

( ) (0) ..., ( ; ) ,... ( ; )
( )

q qq q q
q q

z t B F M t t M t t
u t   

 

   



 
     

  
  

   1

( ; ) 1q

qq

M t t
u t u t





 

  
    
  
 

 

1 1

1

( ) (0) ..., ( ; ) ,... ( ; )
( )

q qq q q
q q

z t B F M t t M t t
u t   

 

   



 
     

  
  

   1

( ; ) 1
q

q q

M t t
u t u t

 



 

  
    
  
 

 

1

1

( ) (0) ..., ( ; ) ,... ( ; )
( )

q qq q q
q q

z t B F M t t M t t
u t   

 

   



 
     

  
  

   
( ; ) 1q

q q

M t t
u t u t

 



 

  
   

  
 

. 

(10) 

Bearing in mind approximation (7), we find that in this approximation there also 

remain only functionals M, D and G with various indices. Nevertheless the action of 

the operators δ/δu on these functionals enable us to pass on to the limit u → 0 and 

solve the system (8)-(10) not for the functionals but for functions.  

The initial conditions for relevant equations can be found from the relations of 

the form 

 (0) ( ) (0), (0) 0G G i A B u


    

 ( ) ( ) [ (0), ] , (0) 0 0
d d

i G t i G t i A H B u t
dt dt

 
      . 

etc. 

For Hamiltonian (1), if we successively reduce the number of operators in CF we can 

get a number in its right-hand side. In this case we have to solve systems like (8)-(10) 

for relevant CF of lower order. For more complicated systems we should determine 

the average values of relevant commutators. 

There exists another way of getting equations for functionals M and D, which 

sometimes appears to be more convenient. It implies determining M via 

 )0()( Btz
q




 in the form 
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 1 1( ; ) ( ) ln ( ) (0)q q q

q

M t t z t z t B
u  



  




    


, (11) 

 

2

1 2 1 1 2 2

1

( ; )
( , ; ) ( ( ) ( ) )( ( ) ( ) )

( )

q

q q q q q q

q

M t t
D t t t z t z t z t z t

u t



     





    




         


 

1 2

ln ( ) (0)
( ) ( )

q

q q

z t B
u t u t 

 



 

 
  
 

. 

(12) 

In this approach, initial conditions can also be obtained from commutation 

relations. In the subsequent text the technique presented here will be used for simple 

mathematical models of lattice structures. It will be shown that for some models our 

method provides results to a good approximation and in some cases – exact solutions. 

On the other hand, the use of particular models enables us to elucidate more 

thoroughly the peculiarities of our method and reveal the limits of its applicability. In 

what follows we will also demonstrate the physical meaning of our approximation 

more precisely. 

3.  The use of the method for generalized Matsubara model 
The first model to which our method will be applied is generalized Matsubara 

model [11] which is a particular case of a commonly known one-dimensional 

Holstein approach. Hamiltonian of Matsubara model has the form: 

 ,n n n q q q qn q n n q q qH E a a b b A r a a r b b           , (13) 

The distinctive feature of Matsubara model is the possibility of its analytical solution. 

Therefore it is an especially suitable instrument for testing the method under 

discussion. 

Besides, the model is intuitively clear and has easily understandable physical 

meaning. It corresponds to the problem of electron interaction with a phonon field in 

zero approximation with respect to the width of the conductivity band. Matsubara 

Hamiltonian is a limit case of Fröhlich Hamiltonian for zero overlapping integral: 

I → 0. Therefore this model suits well to test our method. 

The spectral densities of absorption and irradiation of the probability of 

nonradiative nonadiabatic processes as well as the probabilities of electron transfer in 

a one-dimensional molecular lattice are conveniently expressed in terms of  CF. In 

calculations of these CF it is sufficient to take account of the second order with 

respect to the exchange interaction in view of negligibly small probability of triple 

correlations. Therefore, in finding CF for calculating the constants of the chemical 

reactions rates of the first order in a one-dimensional lattice, a real Fröhlich-type 

Hamiltonian can also be replaced by Matsubara Hamiltonian. 
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Actually, collisions of more than two quantum particles in a one-dimensional 

system are practically impossible if spaced apart sites of a one-dimensional chain do 

not contact with one another in 3D space. Moreover, if such a contact is possible, 

these collisions are extremely improbable too. Therefore this approximation can be 

considered to be exact. 

To determine the electronic spectrum of the system described by Hamiltonian 

(13) we should calculate CF in the form: 

    0( ) exp ( ) ( ) (0) ( ) (0)mn m n m nG t Sp F H a t a a t a      . (14) 

Closed equations in functional derivatives are exact and therefore are suitable for 

various approximations. To construct these equations let us consider a generalized 

CF: 

  ( ) ( ) (0) ( ) (0)mn m n m nG t Sp a t a a t a     , (15) 

where 

  1 1 1

0

0

exp ( ) / , exp ( ) ( )q q

q

F H T u t r t dt

 
           

 
 . 

For this CF, we have retained the same denotation as for any correlation functions 

described above. For uq → 0 expression (15) takes the same form as expression (14). 

Introduction of classical fields uq into the definition of CF enables one, with the use 

of classical differentiation, to close formally the chain of equations for any 

correlation function (see, for example [5]). Indeed, a motion equation for functions 

like Gnm (t) will have the form 

 ( ) ( ) (0)nm n nm qn q n m

q

d
G iE G i A r t a t a

dt

    , (16) 

Having taken the variational derivative of Gnm (t) with respect to uq, we get 

 1 1

1

( )
( ) ( ) (0) ( )

( )

nm
q n m q nm

q

G t
r t a t a r t G t

u t


    


 

or 

 1 1

1

( ) ( ) (0) ( ) ( )
( )

q n m q nm

q

r t a t a r t G t
u t


 

     
  

. (17) 

Substituting (17) into (16), we get a “closed” equation 
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 ( ) ( )
( )

nm n nm qn q nm

q q

d
G iE G i A r t G t

dt u t

 
     

  
 . (18) 

Let us rewrite it in the integral form. To do this we introduce a new function 

Mq (t1; t, nm): 

 1 1

1 1

( ) ( ) ( ; , ) 1
( ) ( )

q nm nm q

q q

r t G t G M t t nm
u t u t

    
        

       

, (19) 

Having substituted (19) for t1 = t into (18) and performed integration we get an 

integral form of equation (19): 

 1 1 1

0

( ) (0)exp ( ; , )

t

nm nm n qn qG t G iE t i A M t t nm dt
 

  
 

 . (20) 

This equation together with expression (19) for M forms a closed system of 

functional equations. Earlier it was shown [14], that 

1 1
( ) ( ) (0) ( ) ( ; , ) 1

( )i i

i

N N

q i n m nm q i
i i

q i

T r t a t a G t M t t nm
u t



 

  
      

  

. 

This equality enables one to express CF of higher order in terms of M and 

variational derivatives of M. We will believe that 

 
1

/ ... 0, 1
k

k

q qM u u k     . (21) 

In approximation (21) we get 

 1 1( ) ( ) (0) ( ) ( ; , )q n m nm qr t a t a G t M t t nm  , (22) 

 
11 2( ) ( ) ( ) (0)q q n mTr t r t a t a   

1 11 2 1 2( ) ( ; , ) ( ; , ) ( , ; , )nm q q qqG t M t t nm M t t nm D t t t nm    , 
(23) 

 

1 2 31 2 3( ) ( ) ( ) ( ) (0)q q q n mTr t r t r t a t a   

1 2 31 2 3( ) ( ; , ) ( ; , ) ( ; , )nm q q qG t M t t nm M t t nm M t t nm   

1 2 31 2 3( ; , ) ( , ; , )q q qM t t nm D t t t nm   

2 1 3 3 1 22 1 3 3 1 2( ; , ) ( , ; , ) ( ; , ) ( , ; , ) ...q q q q q qM t t nm D t t t nm M t t nm D t t t nm     , 

(24) 
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where 

1 11 2 2 1( , ; , ) ( ; , ) ( )qq q qD t t t nm M t t nm u t   . 

is causal Green’s function, see [3, 4]. 

Decoupling (21) reduces an infinite system of linear equations to a finite system 

of nonlinear ones. The functional Mq (t1; t, nm) is determined by functions  

),;,(
211

nmtttD
qq

. At the same time no other functions are introduced in the theory. 

Therefore approximation (21) means that we are limited by the case when the 

oscillatory system is completely described by pair CF. This property is peculiar to 

only Gaussian systems: in all other cases it is an approximation whose validity should 

be checked. 

From definition of functional Mq (t1; t, nm) by formula (19) we get: 

 1 1

1

( ; , ) ( ) ln ( )
( )

q q nm

q

M t t nm r t G t
u t


  


. (25) 

Expressing Gnm (t) via Mq (t1; t, nm), we have 

 
1

1

1 1 1

2 2

1 1 2

1 10

( ; , ) ln (0)
( ; , ) ( )

( ) ( )

t
q nm

q q q n

q q q

M t t nm G
M t t nm r t i dt A

u t u t

 
   

 
 . (26) 

Let us consider the functional derivative (26). For our Hamiltonian 

nmnnnm
GG )0()0(  . Let us consider the expression 

1 1 1

1

( ) (0) (0) ( ;0, ) ( ) (0) (0)
( )

q nn nn q q n n

q

r t G G M t nn r t a a
u t


 
      

  

1 1 1( ) ( ) ( ) (0) (0) (0) (0;0, ) (0)q n n q n n q nnr t a t a t r a a M nn G     

In deriving this expression we used the property of generalized Matsubara model 

)()()0()0( 11 tataaa nnnn

  . Hence, Mq (t1; 0, nn) = Mq (0; 0, nn). 

To determine functions Mq (0; 0, nn) let us consider the expression )(
qq

bb   

( ) ( ) ( ) 0 ( ) ( ) ( )q n n q q n n

d
i b t a t a t b t a t a t
dt

          

 

 )()()()( tatatataA
nnppqp

. 

Since the approximation of a small density of quantum particles is assumed to be 

fulfilled, then 

( ) ( ) ( ) ( )p p n n n n pna t a t a t a t a a      , 



14 

and one can readily see that 

2
(0;0, )

qn

q q

q

A
M nn r   

 ,    and    
(0)

0
( )

nn

q

G

u t





. 

Now expression (26) takes the form 

 
1

1

1 1

2 2

1 1 2

10

( ; , )
( ; , ) ( )

( )

t
q

q q q n

q q

M t t nm
M t t nm r t i dt A

u t


  


 . (27) 

Accordingly, for a pair CF we have: 

 
1 2 1

1 2

2 1 2

1 2 1

1 2

2 1 2

( ; , ) ( ; , ) ( )
( , ; , )

( ) ( ) ( )

q q q

q q

q q q

M t t nm M t t nm r t
D t t t nm

u t u t u t

    
  

   . (28) 

The quantities Mq (t1; t, nm) and ),;,(
211

nmtttD
qq

 are the new and main objects in 

the theory, in terms of which all the characteristics of the studied system are 

expressed. Therefore it makes sense to elucidate their physical meaning in detail. 

It follows from the definition of the function Mq (t1; t, nm) that it describes a 

certain effective field which acts on the aforementioned particles. This function has 

some peculiarities. It depends on the type of the system, the form of CF it belongs to 

and the energy of interaction between the particles. Besides, Mq (t1; t, nm) depends on 

the temperature, on the time t which characterizes the state of the electron subsystem 

and also on the oscillatory time t1. 

Functions ),;,(
211

nmtttD
qq

 are generalizations of causal Green’s functions of 

phonons. They depend on the electron time t and two oscillatory times t1 and t2 

correspondingly. These functions also depend on the form of CF, parameters of the 

Hamiltonian and the temperature. 

The physical meaning of the suggested approximation is that the indirect 

interaction between bosons caused by their interaction via electrons is considered to 

be small. The explicit form of the function ),;,(
211

nmtttD
qq

 in the case of linear 

interaction after passing on to the limit uq → 0 is: 

1

1 2 1 2

2

1

1 2 1 2

2

( )
( , ; , ) ( ) ( )

( )

q

q q q q

q

r t
D t t t nm Tr t r t

u t

  
    




1 2 1 2

0

1 2 1 2( ) ( ) ( )q q q qr t r t D t t       

where )(
21

0

21
ttD

qq
  is the causal Green’s function of the phonon subsystem. 

To determine the explicit form of )(
21

0

21
ttD

qq
  we will write down a differential 

equation for it with the use of the equations for operators 
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 q q q q

d
i r b b
dt



        ,       2q q q q qn n n

n

d
i b b r A a a
dt

 

     . 

and the expression 

( ) ( )n na t a t const  . 

For this purpose we twice differentiate )(
21

0

21
ttD

qq
  with respect to time and get: 

 
1 2 1 1 2 1

2

0 2 0( ) ( ) 2 ( )q q q q q q

d
i D t D t i t
dt

 
     

 
, (29) 

The initial conditions for this expression are calculated straightforwardly and equal to 

   
1 2 1

0

1 2(0) 2 1q q qD N q q    ,  
1 2

0

1 2( 0) ( )q q

d
i D t q q
dt

    . 

The solution of equation (29) is a function 

     
1

0

1( ) exp ( 1)exp , 0q q q q q qD t N i t N i t q q t         
 

. 

Substituting it into (27), we have for uq = 0: 

1( ; , ) 2
qn

q

q

A
M t t nm


  



         1 1 1exp 1 exp exp ( 1) exp 1
qn

q q q q q q

q

A
i t N i t i t N i t           

 
. 

Putting in this expression t1 = t we have: 

    ( ; , ) 1 exp ( 1)exp
qn

q q q q q

q

A
M t t nm N i t N i t

          
 

. (30) 

Substituting (29) into (20) and performing integration we obtain the expression 

 

2

( ) (0) exp
qn

nm nm nm n

q

A
G t G iE t i t


   


  

2

2
( 1) ( 1)( 1)q qi t i tqn

q q

q

A
N e N e

  
        

 . 

(31) 

It is specific that, expression (31) coincides with the exact result obtained by 

summation of all Feynman diagrams. 
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Even if there were not an exact solution of Matsubara model one could prove that 

conditions (7) and (21) are automatically fulfilled for it [15]. To do this no special 

assumption is needed. In order to make sure that this is the case let us write down 

equations for higher variational derivatives of Mq (t1; t, nm) with respect to u and 

calculate them with the use of Wick's theorem [16]. On the assumption that the 

system contains N phonon particles let us write down an equation for δN
 M / δuN = 0. 

Then it follows from functional equations that δN–1
 M / δuN–1 = 0; all the previous 

terms up to δ2
 M / δu2 are also equal to zero [9]. Hence the suggested decoupling is 

exact for the model under consideration. 

In conclusion let us take a brief look at Fröhlich model for small-radius polarons 

[17]. This model as well as some more complicated ones is considered in detail in 

[18]. Fröhlich model is widely used in solid state physics and can present both the 

limit cases of the system: stochastic and dynamic ones. It enables one to consider 

theoretically the motion of a hole (or electron) over a DNA fragment with due regard 

for the relaxation process [19, 20] and calculate the yield of luminescence upon 

recombination of an anion-radical with a cation-radical. The recombination time 

reflects the hole path and depends on the fragment structure [21, 22]. The decoupling 

considered in the previous section is approximate for Fröhlich model described by 

Hamiltonian in impulse representation: 

 k k k q q q q k q k qH E a a b b A a a r  

     . (32) 

In what follows we will restrict ourselves to the case of small density of electrons 

which is justified in considering semiconductors. Let us consider the electron 

spectrum of this system. For this purpose we should calculate causal Green’s function 

of the form 

1 1
( ) ( ) (0)kk k kG t Ta t a  . 

Upon bringing the function to the diagonal form its poles will determine the spectrum 

of excitations. 

Recall that in our case the symbol  ...  means averaging with regard to ρ1 which 

includes external fields uq(t). Therefore functions 
1kk

G  are nondiagonal with respect to 

k and k1; for uq(t) = 0 they become diagonal automatically. 

Formally a closed functional equation, by analogy with (18), has the form 

1 1 1
( ) ( ) 0

( )
kk k kk q q k qk

q

d
G t iE G i A r G t t

dt u t


 
        

 . 

Let us rewrite it in the integral form: 
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 
1 1 1
( ) exp (0)kk k kk kkG t iE t G    

 
2 2 2 1

2

2 2 2

20

exp ( )
( )

t

k q q k q k

q

i dt iE t A r G t
u t



 
      

   
 . 

(33) 

Having acted on both the sides of this equation by the operator 

1

1

1

1

( )
( )

q

q

r t
u t

 
   

  

, 

we have: 

 

1 1 1 1

1

1 1 1

1

( ) ( ) ( ) ( ; , , )
( )

q kk kk q

q

r t G t G t M t t k k
u t

 
     

  

 

1 1 1

1

1

1

( ) (0)
( )

kiE t

q kk kk

q

e r t G
u t

 
      

  

 

2

2 1 2 2 1

1 2

2 1 2 2

1 20

( ) ( ) ( )
( ) ( )

k

t

iE t

q q q k q k

q q

i dt e A r t r t G t
u t u t





     
           

         
  

1 1 1

1

1

1

( ) (0)
( )

kiE t

q kk kk

q

e r t G
u t

 
      

  

 

2

2 2 1 12 2 1 2 1

0

( ) ( ; , , )k

t

iE t

q k q k qi dt e A G t M t t k q k



    

2

1

2 2 1

1

( ; , , )
( )

q

q

M t t k q k
u t

 
   
   

 

1 1 1

1

1

1

( ) (0)
( )

kiE t

q kk kk

q

e r t G
u t

 
      

  

 

2

2 2 1 1 22 2 1 2 1 2 2 1

0

( ) ( ; , , ) ( ; , , )k

t

iE t

q k q k q qi dt e A G t M t t k q k M t t k q k



     


1 2 1 2 2 1( , ; , , )q qD t t t k q k    , 

(34) 

where 

 
1 2 1 2 2 11 2 1 2 2 1( , ; ,...) ( ; ,...) ( ) ( ; ,...) ( )q q q q q qD t t t M t t u t M t t u t      , (35) 

Assessing the terms involved in (34) we get from (32)  
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     
1 1 1, 2 1q q q q qq qM A D N q q         

and also  

  2 2 2, ,q q q q q qr A G u G G u G             . 

Assuming γq << 1, we obtain from (35) 

   
1 2 1 2 1

0

1 2 1 2 1 2 1 2( , ; ,...) ( ) ( ) , 0q q q q q qD t t t r t u t D t t q q u         . 

where 

     
1

0

1( ) exp ( 1)exp , 0q q q q q qD t N i t N i t q q t         
 

. 

is the causal function of free bosons. 

Functions 

 
11 1; , , ( )q k qkM t t k q k G t . 

are obtained from (34) for < rq > = 0: 

 
11 1; , , ( )q k qkM t t k q k G t       

   
1

1

0

2 2 1 2 2

0

exp exp ( ) ( )

t

k q k q q q kki iE t dt iE t D t t A G t     . 

Substituting this expression into (33) we get the integral equation 

 

 
1 1 1
( ) exp (0)kk k kk kkG t iE t G    

    
1

1

2 0

1 1 2 2 1 2 2

0 0

exp ( ) exp ( ) ( )

tt

k k q q k q q kki dt i E E t A dt iE t D t t G t       , 
(36) 

To solve this integral equation let us pass on to an equivalent system of differential 

equations. Having differentiated (36) with respect to time we get: 

 
 

1 1 1 1

2 (1) 21kk k kk q q kk q q q kk q

d
i G E G A N P A N P
dt

      , 

1 1

0(0)kk k kkG G  , 

(37) 

where 

    
1 12 2 2

0

exp ( ) exp ( ) ( )

t

kk q k q q k q q kkP i i E t dt i E t G t     , (38) 
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    
1 1

(1)

2 2 2

0

exp ( ) exp ( ) ( )

t

kk k q q k q q kkP i i E t dt i E t G t      (39) 

Differentiating (38) and (39) with respect to time we have 

 
1 1 1 1

, (0) 0kk q k q q kk q kk kk q

d
i P E P G P
dt

     ,

 
1 1 1 1

(1) (1) (1), (0) 0kk q k q q kk q kk kk q

d
i P E P G P
dt

     . 

Having solved the obtained system of three linear equations with the use of time 

Fourier transform we finally have 

 
1 1

101
( ) ( )

2
kk k kk k kG E G E E M E


   


, 

where 

2
1

( )
q q

k q

k q q k q q

N N
M E A

E E E E 

 
  

     
 . 

This result completely coincides with the result obtained in [2]. There use was made 

of a constant self-consistent field and traditional simultaneous decoupling. 

The other limiting case is a strong dynamical coupling and the condition 

 / 1qn q qnA     . 

In this case it is convenient to use Fröhlich Hamiltonian in discrete presentation: 

 n n n n g n q q q qn q n nH E a a I a a b b A r a a   

        . (40) 

If the last term in expression (40) is large, the second term of the Hamiltonian can be 

neglected. As a result the Hamiltonian takes the form similar to Matsubara model for 

which our approximation gives exact results. In what follows use is made of the 

perturbation theory with respect to transfer integral. Notice that in the limit of very 

strong dynamical coupling any other regular approaches do not enable getting an 

exact solution. 

4. Investigation of Yukawa model 
The well-known Yukawa model describes interaction of two nucleons (Fermi 

particles) separated by a distance r and interacting due to exchange by mesons 

(bosons). The case of different nucleons – a proton and a neutron (i.e. deutron) is 

considered in [23]. This model is similar to Matsubara one. However it includes not 
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one but two particles occurring at different distances. Hamiltonian of this system 

takes the form: 

 
( )n

q q q q q n nH b b A r a a     , (41) 

where 

1 1
2 2 ( ) 32 2( ) , 2(2 ) exp ( 1)

2

n n

q q q

i
q A g qr

  
           

 
, 

nn
aa ,  are operators of the creation and annihilation of nucleons, 

qq
bb ,  are the 

operators of the creation and annihilation of mesons, μ is the meson mass, g is the 

interaction parameter. A similar Hamiltonian also describes binding of two fermion 

or paulion states with one another due to their interaction with the boson field. 

Therefore it is straightforwardly related to the superconductivity problem. 

One way to solve this problem is our method of approximate pair correlations 

which enables one to solve the problem exactly. It is convenient to base ourselves on 

paper [12] where an exact equation for the transition amplitude is obtained. The main 

aim of this section is to test once again the quality of   our approximation on various 

models. Therefore, following paper [12], we will try to get equations for the 

transition amplitude (rather than for CF, as it was done herein above). Let us consider 

the amplitude 

1 1 2 2(1,2) 0 ( ) ( )Ta t a t k   

at zero temperature. Here 0
21

 aak , and suppose t1 > t2. Let us write down motion 

equations for the amplitudes φ(1,2): 

 

 (1) (1)

1 1 1 2 2 1 1 2

1

(1,2) 0 ( ) ( ) ( ) ; , (1,2)q q q q

q q

i A Ta t r t a t k A M t t t
t


   


  , 

 (2) (2)

1 1 2 2 2 2 1 2

2

(1,2) 0 ( ) ( ) ( ) ; , (1,2)q q q q

q q

i A Ta t r t a t k A M t t t
t


   


  . 

(42) 

The last identical equality in this expression is a definition of Mq. For this quantity, 

holds 

1 1 2( ; , ) 0 ( ) ln (1,2)
( )

q q i

q i

M t t t r t k
u t


  


. 

We also have 

   
1

1
1 2 1 2, ; , ; , ( )qq j q j q

D t t t t M t t t u t   . 
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To determine Mq let us use differential equation 

 

1 1 1 2 2 1 1 2

1 1

0 ( ) ( ) ( ) ( ; , ) (1,2)q qi Ta t b t a t k i M t t t
t t

  
     

 

(1)

1 1 2 1 1 1 1 1 1( ; , ) (1,2) 0 ( ) ( ) ( )q q qM t t t Ta t A a t a t      

(2)

2 1 2 1 2 2( ) ( ) ( )qA a t a t a t k    

1

1

(1)

1 1 1 1 2 20 ( ) ( ) ( ) ( )q q q

q

A Ta t b t r t a t k . 

(43) 

Since for the model under consideration 

1 1 2 2 1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) (0) (0), ( ) ( ) ( ) ( ) 0n n n n n na t a t a t a t a a a t a t a t a t      , 

then, bearing in mind the equation for the amplitude φ(1,2) and equality 

11 1 1 1 2 20 ( ) ( ) ( ) ( )q qTa t b t r t a t k 

11 1 2 1 1 2 1 2 1( ; , ) ( ; , ) ( ) ( ) (1,2)q q qM t t t M t t t D t t q q         , 

where 

1 1 2 1 1 2 1 1 2( ; , ) ( ; , ) ( ; , )q q qM t t t M t t t M t t t   . 

With regard to (42), expression (43), finally yields 

 

(1) (1)

1 1 2 1 1 2

1

( ; , ) ( ; , )q q q q qi M t t t M t t t A A
t

 




   


, 

(1)

1 1 2 1 1 2

1

( ; , ) ( ; , )q q q qi M t t t M t t t A
t

 




  


. 

(44) 

Solution of equations (44) has the form 

 
   (1) (1)

1 1 2 2 1( ; , ) (0;0, )exp /q q q q q qM t t t M t i t A A 

       

  (1)

1 1 2 2 1( ; , ) (0;0, )exp /q q q q qM t t t M t i t A 

    . 
(45) 

Functions  

1 2 2 1 2 1( ) ( ; , ) / ( )q q qD t t M t t t u t      

depend on the time difference. This fact results from the linear character of the 

interaction between fermions and bosons. To get a final solution we should determine 

how the integration constants ),0;0( 2tM q

  in expression (45) depend on the second 

oscillatory time t2. Let us use the equations 
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(2)

2 2 2 1 2 2 2

2

0 (0) ( ) (0) ( ) ( )q qi Ta a t k A a r t a t k
t







1 2 2 2

2 2

0 (0) (0) ( ) (0;0, ) (1,2)q qi Ta b a t k i M t
t t

  
     

1 1

(2)

1 2 2 20 (0) (0) ( ) ( )q q qTa b A r t a t k   

These equations yield 

 (2)

2 2

2

(0;0, ) expq q qi M t A i t
t






 


,    (2)(0;0,0) ( / )q q qM A

   б 

2

2

(0;0, ) 0qi M t
t





 ,     (0;0,0) 0qM   . 

Solving these equations with regard to the initial conditions we have: 

 
   (2)

2 2(0;0, ) / expq q q qM t A i t

      

2(0;0, ) 0qM t  . 
(46) 

Substitution of (46) into (45) yields 

 

1 1 2 1 1 2 1 1 2( ; , ) ( ; , ) ( ; , )q q qM t t t M t t t M t t t 

   , 

 
(2) (1) (1)

1 2

2
exp ( )

q q q

q

q q

A A A
i t t

 
     

 
. 

(47) 

The second equation for determining Mq takes the form: 

 

1 1 2 2 2 2 1 2

2 2

0 ( ) ( ) ( ) ( ; , ) (1,2)q qi Ta t b t a t k i M t t t
t t

  
     

 

(1)

2 1 2 1 1 2 2 1 2 1 2( ; , ) (1,2) 0 ( ) ( ) ( ) ( )q q qM t t t Ta t a t A a t a t    
(2)

2 2 2 2( ) ( )qA a t a t k    

1 1

1

(2)

1 1 2 2 2 20 ( ) ( ) ( ) ( )q q q

q

Ta t b t A r t a t k  . 

 

(48) 

With regard to (42) expression (48) yields  
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(2) (2)

2 1 2 2 1 2

2

( ; , ) ( ; , )q q q q qi M t t t M t t t A A
t

 




   



(1) (2)

2 1 2 2 1 2

2

( ; , ) ( ; , )q q q q qi M t t t M t t t A A
t

 

   


   


. 

Solutions of these equations have the form 

   (2) (2)

2 1 2 1 2

1
( ; , ) (0; ,0)expq q q q q

q

M t t t M t i t A A 

    


   (1) (2)

2 1 2 1 2

1
( ; , ) (0; ,0)expq q q q q

q

M t t t M t i t A A 

      


. 

To determine the integration constants )0,;0(
1
tM

q

  let us use the equations 

(1)

2 2 2 1 1 1 2

1 1

0 (0) ( ) (1,0) ( ) ( ) (0)q qi Ta a t k i A a t r t a k
t t

 
  

 


1 1 2 1

1 1

0 ( ) (0) (0) (0; ,0) (1,0)q qi Ta t b a k i M t
t t

  
     

1 1

1

(1)

1 1 1 20 ( ) ( ) (0) (0)q q q

q

Ta t A r t b a k  . 

from which it follows that 

1

1

(0; ,0) 0qi M t
t





,    (0;0,0) 0qM  

 1(1)

1

1

(0; ,0) qi t

q qi M t A e
t

 

 





,   1(1) 1

(0;0,0) qi t

q q

q

M A e
 

 


. 

These equations with regard to the initial conditions have solutions of the form 

1(0; ,0) 0qM t   ,     1(1)

1

1
(0; ,0) qi t

q q

q

M t A e
 

 


. 

Therefore we have: 

 

2 1 2 2 1 2 2 1 2( ; , ) ( ; , ) ( ; , )q q qM t t t M t t t M t t t 

    

 
(2) (2) (1) (1)

1 2

2
exp ( )

q q q q

q

q q

A A A A
i t t

   
    
 

. 
(49) 

Now we can return back to system (42). Having substituted therein the results 

obtained we get: 
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(2) (1) (1)

(1)

1

2
(1,2) (1,2)qi tq q q

q

q q q

A A A
i A e

t

  
 

         
  

(1) (2) (2) (1)

(2)

2

2
(1,2) (1,2)qi tq q q q

q

q q q

A A A A
i A e

t

   
  

         
 . 

(50) 

where t = t1 – t2. 

Noting that by condition of symmetry  

(1) (1) (1) (2) (2) (2)2 2q q q q q qA A A A A A 
             

we choose the starting point of the energy so that ε = 0. Then with regard to the 

explicit form of )(n

q
A  presented in (41), we can rewrite (50) as 

 

2

1

(1,2) (1,2)
4

q

iqr
i t

q q

e
i e

t

  
   

  
  

2

2

(1,2) ( ) (1,2)
4

q

iqr
i t

q q

e
i e V r

t


   

    
    

 , 

(51) 

where 

2
3

2 3 2 3 2 2

1
, ( )

(2 ) 2(2 ) 2(2 ) ( ) 4

iqr iqr r

q

g e e e
V r d q

q r

  

    
      

  . 

Having expressed the phase in the explicit form we can present the quantity φ(1,2) as 

1 2(1,2) ( )exp
2

t t
t iE

 
    

 
. 

Besides, let us introduce the new variables x = (it / r) and a function  

3

1
( )

4

q

iqr
rx

q

e
g x e




 
  

Now we can rewrite (51) in the form of Bethe-Salpeter equation 

1 2

(1,2)
t t

 
  
 

2

2 2

2 2 2

1 1
( ) (1,2)

4 4 (4 )

q q q

iqr iqr iqr
i t i t i t

q q q

e e e
e V r e e
     

  
      

         

    
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or, in terms of variables x, as a one-dimensional Schröedinger equation: 

 
 2

2
( ) ( ) ( )

4

Erd
U x x x

dx

 
      
 

 (52) 

with potential 

 

22
2 2 2

2

( ) ( ) ( )
( ) rd g x dg x dg x

U x e
dx dx dx

  
      

 
. (53) 

Equation (52) was also obtained in [12] by summation of all the orders of the 

perturbation theory. This coincidence makes it clear that our method provides exact 

results for Yukawa model. The “wave” function φ(x) should satisfy natural boundary 

conditions φ(∞) = 0 and φ'(0) = 0. Therefore φ(x) differs from zero only for some 

very special values of E. As a result the energy E (or the mean distance between 

nucleons) assumes quantum values. 

For phonons μ = 0 and expression (53) takes on the form 

     
22 2

2

1
( )

1
U x arcctg x arcctg x

x
      


 (54) 

This problem was solved exactly in paper [12]. Nevertheless, some researchers used 

such an approximation as partial summation of Feynman diagrams [13]. It should be 

noted that in the case of summation of ladder approximation we can obtain the 

expression [13] 

 
2

1
( )

1
U x

x
 


. (55) 

The solution of equation (52) considerably depends on the behavior of the potential 

as x → ∞. This behavior is different in the cases (54) and (55). The difference in 

asymptotics leads to different eigenvalues of quantities. 

The results obtained suggest that the methods of a constant field and restricted 

diagram summation (for example in ladder approximation) are invalid for solving the 

problems of the type being considered. In this case it is appropriate to use our 

approximation of pair correlations which enables getting an exact result. 

5. Method of pair correlations for systems  

with frequency effect 
Systems with frequency effect are more sophisticated than those with linear 

interaction. Let us consider a two-level model with the Hamiltonian:  

, 1,2n n n mn m nH H a a I a a m n      
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where  

2

n n qn q qn q q q qH E A r B r b b       . 

Let us calculate CF of the form  

( ) (0) (0) ( ) ( )mn n m m nG t a a a t a t   , 

in terms of which the transition probability is expressed. The motion equation for this 

CF is 

 
 2( ) ( ) ( ) ( ) ( ) ( )mn n m qn qm q qn qm q mn

d
i G t E E A A t B B t G t
dt

         
   

(0)pm pn pn mp mn m m mnI G I G G a a      , 

(56) 

where  

( ) ( )q q qt r t u     . 

Solution of equation (56) will be searched for in the form of the product: 

  ( ) (0) ( , )exp ( , )mn mn mn mnG t G g t u S t u  (57) 

where exp{Smn (t,u)} is a solution of equation (56) for Imn = 0. Having substituted (57) 

into (56) and performed integration we get for functional gmn (t,u) a system of linear 

equations: 

 
1 1( ) ( )( )

1 1 1

0

( , ) (0, ) ( ) ( )pm mpmn

t
S t S tS t

mn mn pm pn np mpg t u g u i e I e g t I e g t dt
    

    (58) 

that can serve as the basis for developing the perturbation theory so that to calculate 

Gmn (t). After that it remains to determine Smn (t,u). From (56) we have: 

 
( ) ( ) ( ; , )mn n m qn qm q

d
i S t E E A A M t t mn
dt

      

2( ) ( ; , ) ( , ; , )qn qm q qqB B M t t mn D t t t mn      

(59) 

where we introduced new functions Mq (t;t,mn), Dqq (t,t;t,mn) such that  

1 1 1( ; , ) ( ) ( ) ( )q q mn qM t t mn r t S t u t           

1 12 1 1 2( , ; , ) ( ; , ) ( )qq q qD t t t mn M t t mn u t   . 

Now solution of (59) will be written as 
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1 1 1

0

( ) ( ) ( ) ( ; , )

t

mn n m qn qm qS t i E E t A A dt M t t mn
 

      
 

   

2

1 1 1 1 1 1

0

( ) ( ; , ) ( , ; , )

t

qn qm q qqB B dt M t t mn D t t t mn


     


 . 

(60) 

Taking (60) into account, let us rewrite the expression for Mq (t;t,mn) in a new form: 

 
1 1 2 1 2 2

0

( ; , ) ( ) ( ) ( , ; , )

t

q q qn qm qqM t t mn r t i dt A A D t t t mn      

2 2 1 2 22( ) ( ; , ) ( , ; , )qn qm q qqB B M t t mn D t t t mn     

(61) 

Expression (60) can also be presented as 

1 1

0

1
( ) ( ) ( ) ( ; , )

2

t

mn n m qn qm qS t i E E t A A dt M t t mn
 

      
 

 

1 1 1 1

0

( ) ( , ; , )

t

qn qm qqB B dt D t t t mn


  


 . 

In order to make sure that it is true it suffices to use the equality  

2 1 1 1 1

0 0

1
( ) ( ; , ) ( ) ( ; , )

2

t t

qn qm q qn qm qA A M t t mn dt A A M t t mn dt    

2

1 1 1

0

( ) ( ; , )

t

qn qm qB B M t t mn dt   , 

which is easily proved by integration of expression (61). Bearing in mind that  

2 1 2 2

0

( ; , ) ( ) ( , ; , )

t

q qn qm qqM t t mn i A A D t t t mn dt    , 

we have: 

 

( ) ( )mn n mS t i E E t    , 

1 1 11 2 1 2

0 0

1
( )( ) ( , ; , )

2

t t

qn qm q n q m qqA A A A dt dt D t t t mn


  


  , 

1 1 1 1

0

( ) ( , ; , )

t

qn qm qqi B B dt D t t t mn


  


  . 

(62) 
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Exact presentation of (62) is a generalization of a well-known expression for the 

constant of the electron transfer rate in the case of a nonlinear interaction. 

Potentialities of this presentation become especially apparent in considering systems 

with continuous spectrum.  In this case, as distinct from other approaches, the 

influence of a nonlinear interaction on the transition probability can be investigated 

most carefully. 

This expression is also valid in the case when B is a nondiagonal matrix, i.e. 

upon rotation of normal oscillation coordinates in the course of the reaction 

(Dushinsky effect). More thoroughly this point is considered in [24]. To get an 

equation for D let us take a variational derivative of Mq (t1 ;t, mn) in expression (61). 

We will have  

0

1 2 1 2 3 2 3 3 1 3 3

0

( , ; , ) ( ) 2 ( ) ( , ; , ) ( , ; , )

t

qq qq qn qm qq qqD t t t mn D t t i B B dt D t t t mn D t t t mn      

To make the formulae less cumbersome without losing the essence of the 

problem let us consider a particular case when Hamiltonian has the form  

1 1 1 2 2 2 12 1 2 2 1( )H H a a H a a I a a a a        

where 

2

1 1 1 q q qH E B r b b    ; 2

2 2 2 q q qH E B r b b    . 

In this case 

12 1 2 1 2 1 1 1 1

0

( ) ( ) ( ) ( , ; ,12)

t

S t i E E t i B B dt D t t t      . 

where 

1

1

1

2 1

2

( )
( )

( )

q

qq

q

r t
D t t

u t

  
 


. 

and  

 1 2 1 2 1 1 1 1

0

( ) (0)exp ( ) ( ) ( , ; ,12)

t

G t G i E E t i B B dt D t t t
 

     
 

  (63) 

 
0

2 1 2 1 1 2 3 2 3 3 1 3 3

0

( , ; ,12) ( ) 2 ( ) ( , ; ,12) ( , ; ,12)

t

D t t t D t t i B B dt D t t t D t t t     . (64) 

Function D0 (t) for the oscillator subsystem is equal to 
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0( ) ( 1) , 0i t i tD t Ne N e t        . 

This quantity was used in Section 3 devoted to Fröhlich model [25–28]. In this 

section concerned with transitions in media with nonlinear interaction we will 

consider transitions in high-viscosity liquids where oscillations are impossible [25, 

26]. The expression for D0 in such media will be written as  

 0 2

2 1 2 1 2 1( ) exp ,D t t d t t t t     . 

To solve integral equation (64), we present D(t2,t1;t,12) as  

 2

2 1 2 1 2 1( , ; ,12) exp ( )D t t t d t t t t t     . 

Then from integral equation (64) we have 

 2 2

1 2 3 3 3

0

( ) 1 2 ( ) exp 2 2 ( )

t

t i B B d t t t dt         . 

Differentiating this expression with respect to time we get  

2 2

1 2

( )
2 2 ( ) 2 ( ) ( )

d t
t i B B d t

dt


      . 

Solution of this equation has the form   

2

1 2

2
( ) ln( )

2 ( )

t td
t e Ce

i B B d dt

  
        

, 

where  

 
1

2 2 2

1 24 ( )i B B d     , 
2

1 2

2

1 2

2 ( )

2 ( )

i B B d
C

i B B d

 

 

. 

Having substituted φ(t) into (63) and performed integration we obtain the exact result 

as it was done in [24]  

 

1
2

1 2

1
( ) (0)exp ( )

t t t

C
G t G i E E t

e Ce e  

 
    

  

. 

It would take enormous effort to get this result by traditional summation of Feynman 

diagrams. It is yet more proof that our method is more advantageous as compared to 

the method of diagrams and other widely used approximations. 
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6. Conclusion 
We have described in detail a universal method for considering a dynamical 

coupling and other interactions in quantum-mechanical systems. This method has a 

wide range of physical and physicochemical applications. 

The paper is based on the idea that it is in principle possible to reduce an infinite 

system of linear equations for correlation functions to a finite nonlinear one.  This 

makes possible truncation of Bogolubov’s chains. The physical meaning of the 

approximation suggested is that an alternating self-consistent field is introduced. The 

method enables one to get exact solutions to well-known models of molecular 

systems. 

The possibility of effective truncation of Bogolubov’s chains is demonstrated by 

the example of Matsubara, Yukawa and Froehlich models with zero band for 

nonlinear and quadratic electron-phonon interaction.  In all the cases the method 

yields true results coinciding with those obtained earlier with the use of other 

approaches. A necessary condition for the exact solution is a small probability of 

triple and higher-order correlations. 

Though higher CFs were not taken into account in the above-presented method 

for closing chains, it is just this approach that enables one to consider them. No other 

methods can do this. Our method enables one to take account of any CF determined 

preliminarily. Their consideration can be especially effective in the studies of nuclear 

matter – in the case of light nuclei. 

A similar approach was suggested by Peletminsky school [8, 29-33]. The 

method is based on the introduction of an arbitrary effective coordinate and also 

makes possible reduced description of the system. In our method analogous 

coordinates are a result of calculations. 

Our approach suits well to investigate energy and/or charge transfer in crystals 

and films. However it is especially promising for quasi-one-dimensional models of 

polymer chains. Just in such systems dynamical interactions prevail while triple 

correlations are excluded in fact even if neighboring loops of a polymer chain may 

come in contact. This application of our method has become especially actual in 

recent decades when a huge number of investigations of charge transfer in DNA have 

been carried out [34-37]. 

Critical reduction of the number of equations enables one to decrease the 

machine time consumption by several orders of magnitude. Hence the method 

suggested offers exciting possibilities for investigation of quantum models. 

Automatical exclusion of irrelevant correlations is rather a useful feature of our 

method. Just this property makes possible “automatisation” of the methods in the 

simplest console applications. 
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