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AnrekapeB A. ., Koxan P.
Huddepeninaibable ypaBHEHNS s PaUaIbHbBIX [IPEJIEJIOB B Z%r pereHnii
OJTHOW JUCKPETHOU MHTEIrPUPYyEeMOil CUCTEMbI

Mzyuaercs npejiesibHOE CBOHCTBO KO MUIIMEHTOB PEKYPPEHTHBIX COOTHOMIEHMI
J10 Oummekaiimux coceeit. KonkperHo, mnpe/nosarast HaJmdue IpeiesioB BI0b JIy-
qeil perreTkn Ko3pOUINEHTOB, MbI OIIUCHIBAEM 3TOT P B TEeMUHAX PelIeHni
HEKOTOPOIl cucTeMbl OOBIKHOBEHHBIX g dbepeHInaibibiX ypaBHenuit. s cu-
creM AHKeJIeCKO 9TOT Pe3yJibTaT WIIIOCTPUPYETCS YNCIEHO.

Karouesvie caosa: CrekTpajibHas TEOPHUsl Pa3HOCTHBIX OIIEPATOPOB, MaT-
punibl SIK0O1, COBMECTHO OPTOrOHAJIBLHBIE MHOI'OWIEHBI, PEKYPPEHTHbIE COOTHOIIIE-
HUS J10 OJIzKafmmx coceieil.

Aptekarev A.I., Kozhan R.
Differential equations for the radial limits in Zi of the solutions of a dis-
crete integrable system

A limiting property of the coefficients of the nearest-neighbor recurrence coef-
ficients for the multiple orthogonal polynomials is studied. Namely, assuming
the existence of the limits along rays of the lattice nearest-neighbor coefficients,
we describe the limit in terms of the solution of a system of ordinary differential
equations. For Angelesco systems, the result is illustrated numerically.
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1. Introduction

1.1. Orthogonal polynomials on the real line and the Jacobi matrices.
It is a well-known fact (see [I2]) that given a probability measure p on R with
infinite support, the sequence of its orthonormal polynomials {p, 72 satisfies the
three-term recurrence relation

xpn(x) = Anpn—i-l(x) + Bnpn(-r) + An—lpn—l(m) ) (11>

where the recurrence coefficients {A;, B; };?‘;0 satisfy A; > 0, B; € R, and p_; = 0.
The corresponding Jacobi matrix is

By Ay 0
Ay B A

1.2
0 Ay B (1.2)

J(p) =

1.2. Multiple orthogonal polynomials and the nearest neighbor recur-
rence relations. Let us now describe multiple orthogonality situation with re-
spect to the vector-measure i := {y;}%, on R. For any i := (ni,...,nq) € Z2,
let Q7 be the monic polynomial of degree < |7i| :==ny + ...+ ng which satisfies

/Qﬁ(x)xkdm:O, ke {0, .mi—1}, ic{l...d. (13

The polynomial Q(x) is called the type I multiple orthogonal polynomial (MOP).
We say that 7 is a normal multi-index if Q7 is unique (it is equivalent to deg Q7 =
|73]). If all multi-indices of the lattice Z% are normal then the system of measures
{ui}L, are called perfect. It is known [I3], 14} 3], that (similarly to the case with
one measure) MOPs for the perfect systems satisfy the following nearest neighbor
recurrence relations (NNRR) system

d

2Qa(2) = Qrive,(2) + BrQa(2) + > Qi (2). (1.4)

1=1

Here we have d recurrence relations for 7 = 1,...,d. Thus for each 17 € Z‘i
we have two sets of the coefficients for NNRR, namely {ﬁm}?:l and {aii} .
In order to define by means of the polynomials {@Q7(z} in unique way the
NNRR coefficients cannot be taken arbitrary. As it was shown in [14](see also [1]),



_ 4 _
the recurrence coefficients must satisfy the compatibility conditions (CC):
V;Bii = ViBa,;
BiiViBii — BijViBa; = <<€j — ei)a 55ﬁ> (1.5)

(Viln)az;j = (V1) (Bize,i — Biie,.j)

where we denote

V;Bii = Biive;i — B 61 = (V- Vi), (Viln)ay := (amej — 1) :

Here we present CC in a form taken from [2] which is equivalent to CC from [I4].
The system of difference equations is also called Discrete Integrable System
(DIS) for details see [I]. The boundary problem for DIS in Z¢ means the
following. Given the boundary data: coefficients of the d-collections of the three-
terms recurrence relations, corresponding to usual orthogonal polynomials with
respect to each {u;}% ; measure. Then solving equations we have to find all
NNRR coefficients {,}9_; and {ov,} ).

1.3. Zero asymptotics and limits of the recurrence coefficients. Our goal
is to investigate the asymptotic behavior of the recurrence coefficients {Oéﬁ’i, Bﬁ’i}
as | 7 | grows. This behavior is intimately connected to the asymptotic zero
distribution of multiple orthogonal polynomials ()5z. To state the problem, we
need to place some restrictions on the way | 77 | approaches infinity as well as the
measures j;. The same time we have to be in a class of the perfect systems to
keep NNRR.

The important example of a perfect system of measures {y;} is the so-called
Angelesco system defined byf

supp(pi) = [a;, bi], and [a;, b Na;,b;] =@ when i # j. (1.6)

Multiple orthogonal polynomial with respect to Angelesco system has the form:

HH (2 = @iin), i € lai, bil.

1=1 1=1
Moreover, we restrict our attention to sequences of multi-indices such that

ni=t|i|+o(|@]), T=(t,... .t)e O, |fl=1 (L7

*If supports of measures are intervals with nonintersecting interiors then system {u;} is perfect as well.
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Asymptotic zero distribution for Qz(z) (or limiting zero counting measure):

w(z) = lim ZZ(S — Tiil), (1.8)

\n|—>oo‘n‘ = =

for Angelesco systems (1.6) with u; > 0 a.e. on [a;, b;] in the reg1me (L.7) obtained
by Gonchar and Rakhmanov [10]. To state their result we fix £ as in (I.7), and
denote

M{({CLZ‘, bl}cll) = {17 = (1/1, N I/d) Y€ Mti(ai, bl), 1€ {1, Ceey d}},
where M;(a, b) is the set of positive Borel measures of mass ¢ supported on |a, b].

Theorem 1 ([10]). 1) There exists the unique vector of measures & € Mz({a;, b;}{)

d
I[[@]= min I[7], J[ﬁ];:Z(QJ[WHZ[[W,%D, (1.9)

pd
veMq{a; b;}¥) i—1 ki

where I|v;] := Iy, 1) and Iy, v == — [ [log \z — x|duz( Ydvg(z).
2) Moreover, for the limiting counting measure it holds: w = |dJ|.

An important feature of the case d > 1 (in comparison with classic d = 1) is the
fact that measures w; might no longer be supported on the whole intervals [a;, b;]
(the so-called pushing effect), but in general it holds that

supp(wi) = [ag;, by;] € [ai, bi], ied{l,...,d}. (1.10)

Namely the supports of the extremal measures (not the supports of the multiple
orthogonality measuresﬂ) define the recurrence coefficients limits.

To describe the asymptotics of the recurrence coefficients, we shall need a
(d + 1)-sheeted compact Riemann surface, say R, that we realize in the following
way. Take d + 1 copies of C. Cut one of them along the union Ule [a{,z’: btji},
which henceforth is denoted by $8(?). Each of the remaining copies cut along only
one interval [aﬁw bﬁi] so that no two copies have the same cut and denote them
by |, To form R, take R and glue the banks of the cut [aai, bf,z'] crosswise
to the banks of the corresponding cut on R . It can be easily verified that thus
constructed Riemann surface has genus 0. Denote by 7 the natural projection
from R to C. We also shall employ the notations z for a point on SR and z(®) for
a point on R with 7(z) = 7(2) = 2.

TFor d = 1 both these notions coincides.
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Since R has genus zero, one can arbitrarily prescribe zero/pole multisets of
rational functions on R as long as the multisets have the same cardinality. Hence,
we define Y;, 7 € {1,...,d}, to be the rational function on R with a simple zero at
00 a simple pole at 0o, and otherwise non-vanishing and finite. We normalize
it so that Y;(2())/2 — 1 as z — oco. Then the following theorem holds.

Theorem 2 (|2]). Let {u;}¢, be a system of measures satisfying (1.6) and such
that

dpi(2) = pile)d, (1.11)
where p; is holomorphic and non-vanishing in some neighborhood of |a;, b;]. Fur-
ther, let N> = {ii} be a sequence of multi-indices as in ([L.7) for some t € (0,1)<.
Then the recurrence coefficients {Oéﬁyj, Bﬁ’j} given by (L.4) and (1.3) satisfy

limag; =ap;, and limpBz; =Py, i€{l,...,d}, (1.12)
AR A

t
where ag; and By; are constants: 27;(20) = ap;(z+ Bzi) + O(271) as z = oo.

Remarks. 1) We note that Theorem [2|is valid for d = 1 as well.

2) It is not too difficult to extend the proof (from [10]) of Theorem (1] to include
the case of touching intervals.

3)We also can affirm (at least for d = 2) that Theorem [ remains valid for the case

of touching intervals (technicalities can be taken from [5]) and for weight functions
(1.11]) singularities of the types: Jacobi and Fisher-Hartwig weights [16]. W

We say that a probability measure on R belongs to the Nevai class (see [12]
and references therein for more details) N («, /) if its Jacobi coefficients (in (1.1]))
satisfy B,, — 8 and A, — « as n — o0.

Weyl’s theorem on compact perturbations says that any measure in N(a, ()
has oess(pt) = [B — 2, B 4 2a]. For the (partial) converse, we have the Denisov—
Rakhmanov theorem stating that if o..(1) = [8 — 2, 5 + 2a] and Z—‘; > 0 a.e.
on [ — 2, 6 4 2a] then p € N(a, B).

By the analogy, let us say that an perfect system of measures {u; }¢_; belongs
to the multiple Nevai class if the nearest neighbor recursion coefficients have
limits along each ray of ZSZF, starting at origin, that is: for every ¢ in (L.7). Thus,
Theorem [2]is a partial analogue of the Denisov—Rakhmanov and Andeleso system
(from Theorem [2)) belongs to the multiple Nevai class.

In the next Section [2] we state and proof our main result: a conditional
theorem on ODE (with respect to variable t) for the limiting value (in the regime
(1.7)) of the NNRR coefficients (d = 2). Then in Section [3| we present numeric
illustrations. Finally in Section 4] we consider the case of touching intervals.
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2. ODE for the limits of NNRR coefficients

2.1. Preliminaries for (d = 2). Now let us restrict ourselves to the special

case when two measures p; and uo form a perfect system.
We rewrite NNRR ([1.4]) for d=2 (changing the notations for the recurrence
coefficients):

mem(x) — Qn—&—Lm(x) + Cn,an,m (37) + aanQn—l,m + bn,an,m—l (21)
mem(x) — Qmm—&—l(x) + dn,an,m(x) + amen—l,m + bn,an,m—l (22)

for some sequences of coefficients ay, ., bp.m, Cnm, dnm satistying ag ., = bpo = 0.
Note that {c,0}nlg and {,/@no}neg are the diagonal and off-diagonal co-
efficients of the Jacobi matrix J (1), and {dom}re—y and {1/bom}oe_, are the
diagonal and off-diagonal coefficients of the Jacobi matrix of J (u2).
As for the first time was shown in [14] (see also [1), the recurrence coefficients
must satisfy the compatibility conditions (CC):

Ap m+1 o Cnom — dn,m 93
Qpm Cn—1,m — Gp—1.m
bn—l—l,m . Cnom — dn,m (2 4)
= , .
bn,m Cnom—1 — dn,m—l
dn+1,m - dn,m = Chm+1 — Cnyms (25)
. Ap+1,m + bn+1,m — Qpm+1 — bn,m+1 9
Chnom+1 — Cpym = d ) ( 6)
Cn,m - Unm

together with the boundary-type conditions ag,, = 0 and b,y = 0 for all n, m.
In other words the coefficients of NNRR ([2.1))—(2.2) are solutions of the BVP for

DIS (23) [20)

Note that one can take po,(r) = Qun(x), Poant1(z) = Qni1n(z), which
results in the “recurrence relation along the step-line™:

Zﬁpn(l’) = pn+1($> + /fnpn<$) + Vnpnfl(x) + 5npn72($)7 (27)
where
Ron = Cnon, Ron+1 = dn+1,n7
Yon = Ann + bn,na Yon+1 = An4+1n + bn—&-l,n,
5211 = an,n(cn—l,n—l - dn—l,n—l); 62n—|—1 = bn+1,n(dn,n—1 - Cn,n—1)7

see, e.g., [0, 9].
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In this section we consider perfect systems (u1, p2) belonging to the multiple
Nevai class N(A, B, C, D): the nearest neighbour recursion coefficients have limits
along each ray, that is: for every ¢ € [0,1]

lim Anm = A(t) (2.8)
n+m—>oo,nj:m—>t

lim by = B(t) (2.9)
n+m—>oo,n+—m—>t

lim Cnm = C(1) (2.10)
n+m—>oo,n+Lm—>t

lim  dym = D(t) (2.11)
n+m—>oo,n_|_Lm—>t

for some real-valued functions A(t), B(t), C(t), D(t) : [0,1] — R.

By the discussion in the previous section, Angelesco systems, satisfying to the
condition of Theore belong to the multiple Nevai class M N (A, B,C, D). Thus
MN (A, B,C, D) is non empty and the Angelesco systems (mentioned above) have
p1 and pio in the Nevai class N(1/A(1),C(1)) and N(1/B(0), D(0)), respectively.

Therefore we get the application of Weyl’s theorem: these Angelesco systems from
MN (A, B,C, D) have
Oess (,ul) - [51 - 2041, 51 +2051] and Oess (,UZ) - [52 - 2042, 62 +20&2]7

where
a1 = \/A(l), 51 = C(l), (212)
ay = 4/ B(0), Po = D(0). (2.13)

It is an interesting open problem to generalize the above analogue of Denisov—
Rakhmanov result (i.e. Theore to more general measures (i.e. to Angelesco
systems with p; > 0 a.e. on oegs(1;)).

In this paper we investigate the possibility of describing functions A, B, C, D
through differential equations. This is done in Theorem 3| below.

For the perfect systems from the multiple Nevai classessee also, [15]. Note
that if an Angelesco system is in the Nevai class, then the coefficients {x,}, {v;}, {d;}
of the step-line recurrence are asymptotically two-periodic (see |11, 6], &, [7],
and references therein).

Regarding to asymptotic zero distribution of MOP from Angelesco class, for
the case of d = 2 we can add to the statement of Theorem|[I| the fact, that support
of the limiting zero density is [51 — 2a1, e1] U [ea, B2 + 2a5], where e < 1 + 204
and ey > B9 — 2a5. Moreover, e; — e — 0 (that is, e; — e and ey — e for some
e) in the limiting case of touching supports (82 — 2a2) — (1 + 2a1) — 0.
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2.2. Statement. Before to state the main result we introduce approximations
of the limiting functions of the Nevai class N(A, B, C, D), see (2.8)—(2.11]).
For each k € Z. , let us “pack” the diagonal sequence {Cln,k—n}ﬁ:o into a piece-

wise linear function A, as follows. For any k, we let m = k —n, tﬁ{” = =1
) = L =1 Define
n+m k

Ak:(t%k)) = Apk—n
and connect these points to make A(t) piecewise linear on [0,1].
Similarly for By(t), Ci(t), Di(t).
Then (2.8)—(2.11)) is equivalent to Ay, By, Ck, Dy converging pointwise on
[0,1] to A(t), B(t),C(t), D(t) as k — 0.
Let us assume
(i) A, B,C, D are piecewise continuously differentiable on [0,1];
(ii) The convergence is uniform and fast enough:

|Ak(t) — A(t)| < 0(%) = o(ae(k))7 k — oo, (2.14)
and similarly for B, C, D.

Theorem 3. 1) Given a perfect system (u1, pu2) € N(A, B,C, D) satisfying the
condition (i), (it) above. Then the limiting functions A(t), B(t), C(t), D(t) satify
to the following system of differential equations:

tE(t) 0 (1—t)A(t)\ [A'(t) 0
0 (Q—-tE®F) tB(t) B'{#t)] =1{0 (2.15)
i i E(t) E'(1) 0

where E(t) = C(t) — D(t).

2) Suppose a system of Angelesco satisfies conditions of Theorem [3. Then
there exist ¢y, co € (0,1) such that the functions A, B,C, D : [0,1] — R are smooth
on [0,¢1) and (c2,1], and satisfy the system of differential equations

(1+t)tK'(t) + 4tK(t) + (2 —t)(1 —t) L' (¢t) — 4(1 — ¢)L(t) = 0
2K’ (t) (1 —1t)2L/(t)
0 + 2t = 70 —2(1 —t)

(2.16)

with initial /boundary conditions

K(0) = (81 — B> — 2a1)* — a3 K(1) = of
L(0) = a3, L(1) = (B1 — P2 — 2a2)* — af.
(2.17)
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where

Alt) = BK(t), B(t) = (1—2)L{t), C(t) - D) = VE@D + L0)
Moreover, A, B,C, D are constant on the interval [cy, ¢s].

Remarks. 1) We note that general (and conditional) part 1) of Theorem [3|admits
presence inside [0, 1] subdomain, where A(t), B(t), C(t), D(t) are constant. For
Angelesco systems it is a generic situation which happens when "pushing " is not
active, see [10].

2) Conditions 1), ii) are fulfilled for Angelesco systems from Theorem [2} Namely,
condition i) follows directly from and for ii) (from the proof of Theorem
we even have in RHS of the bound O(:5).

3) We note that known information about support of zero counting measure of
MOP for Angelesco system (see [10]) allows us to identify the subdomain where
A(t), B(t), C(t), D(t) are constant, i.e. interval [c, co]. Then it is possible, using
BC to solve ODE system on [0, ¢1] and [co, 1].

4) It would be valuable to to show inductively, using the compatibility con-
ditions ( . . ) and additional assumptions on the speed of convergence of
marginal Jacobi coefficients, that |Ag(t) — Agr1(t)] = EI Note that if suc-
cessful this would generalize Denisov-Rakhmanov theorem from Theorem [2] to
non-analytic weights.

2.3. Proof. We start with limiting relations (2.8)—(2.8). Then by linearity (or
Taylor theorem/mean-value theorem also Work)

nm+1 = Apia( +1) Apa () + A;c+1(%) (ki—irl - %) = Apn(g) — ;f+1(%)k(k11)

= A (t) — PO 4] (1) + ()

Similarly,
An+1,m = Ak+1(k_+1 Ak‘—f—l(%) + A;c—l-l(%) (Z—_& — %) = Ak—i—l(%)
A () (P = ) = A (89 + (1= €D AL (1) + o),

as well as

1 = Ap1(B73) = Ap 1 (B) + Ay (2) (222 — 1) = A4 ()
+ A (7) (_k_il + %) = A () - (1

!The same for By, C, Dy.
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and
anm-1 = Ap1 () = Aea(f) + A1 (3) (% - %) = Ap1(3) + Ag@—l(%)k(kn__l)
— Apa(#) + H0 AL (19) + o),

Similar equalities hold for B, C, D.
Plugging these equalities into (2.3), and multiplying the terms out, we get

(Ap+1Cr—1 — AkCr — Ap1 D1 + Ar Dy )+
e (—Ap1(Cly — D)) (1 —t) — A} 1 (Choy — Dyy)t) + o(sW) = 0,

(everything is evaluated at ¢ = #{F) ). The first bracket is o(¢®)) by (2.14), so
dividing by e®) and taking the limit k — oo, we get

A (C'(t) = D'()(1 —t)+ A (t)(C(t) — D(t))t =0 (2.18)
Similar arguments applied to — lead to three more ODE’s
B(t)(C'(t) — D'(t))t + B'(t)(C(t) — D(t))(1 —t) =0 (2.19)

C't)yt+D'(t)(1—t)=0

1y~ A+ B'(Y)
—C'(t)t = CH D)

Let us simplify this system a bit. First of all, let
E(t)=C(t) — D(t).

Then from @221), ¢’ = =428 from @20), D' = —{-C" = é:ﬁé, so B =
C' — D' = —A%B_ Thus we end up with the following ODE system:

t1—t)E"
tE(t) 0 (1—t)A(t)\ [A'(t) 0
0 (1—-tE() tB(t) B'{t)] =1{0 (2.22)
g g E(t) E'(1) 0

Part 1) of the Theorem [3|is proved.
For Angelesco systems we have BC (2.12))- (2.13)):

C1) = pu, A1) =
D(0) = B, B(0) =

and the natural marginal BC

A(0) =0, B(1) = 0.
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Let us divide interval [0,1] into two disjoint sets:
L=1{te0l]: At)=Bt) =E® =0 and L =][01]\1.

From [10] we know that: I; consists of one point if Ay and A, are touching, and
otherwise 7 is an interval [cq, ¢o] inside (0,1).
For t € I, we have that the determinant of the matrix in (2.22)) must be
zero, 1.e.,
t(1—t)E@)°’ — AR E() — 5B)E() =0 (2.25)
which implies

E(t)* = pAt) + g2 B(t) (2.26)

on the set where F(t) # 0. This means that

2E(E'(t) = 5 A'(t) + 7 B'(t) — 5A([) + 553 B(t)

Plugging this into the third equation of (2.22)), we get

ag (A0 + BO) + 540 + B (1) - 5AW0) + 5 B() =0

which simplifies to

LEA(t) + LB/ () — 2F2A() + g2 B(t) = 0 (2.27)
The first two equations can be solved for % giving us
A(t) _ 1-tB'(t)
1L—t Al — Tt B(t)" (2.28)

L A(t) + ELB(t) — 22A() + g2z B(t) = 0 (2.29)
A'(t) _ 1-tB'(t)
1L—t Alt) — Tt B(t) (2.30)

A(l) = of B(1) =0, (2.31)
B(0) = a3.

D
—~
=)
=
I
S

Warning: it might seem that this system is independent on Sy, 82, but it’s
not correct. 3, B2 will change the interval !

To end the proof we involve an extra boundary conditions. As discussed
in the introduction, the limiting zero distribution of @y m,(z) is supported on
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[B1 — 2au, e1], [ea, B2 + 2a] for some e; < 1 4+ 2aq and ey > P — 2. In the
limit this should give us the following two extra boundary conditions:

C(0) = f1 —2; (2.33)
D(1) = B2 + 20 (2.34)

Thus we have the system

tE(1) 0 (L=1)A@)\ [A(t) 0
0 (1-HE®)  tB() B | = (o (2.35)
e e E(t) E'(t) 0

with the boundary/initial conditions

A(0) = 0, A1) = of,
B(0) = o}, B(1) =0,
E(0) = 1 — P2 — 204, E(1) = p1 — B2 — 20.

Now recall that on the non-constant region Iy where F # 0, we have
E(t)* = pAt) + g2 B(t) (2.36)
Putting t = 0, we therefore should expect A(0) = A’(0) = 0 and
E(0)* = £A4"(0) + B(0),
which implies
A"(0) = 2E(0)* — 2B(0) = 2(B1 — B2 — 201)* — 202 (2.37)
Similarly ¢ = 1 gives us B(1) = B’(1) = 0 and
B(1)2 = A(1) + 1B"(1),
which implies
B'(1) = 2E(1)* = 2A(1) = 2(By — Bo — 2a)* — 202 (2.38)

We need to remove double zeros of A and B at 0 and 1, respectively, to
reduce our system to a standard initial value problem. So let

Aft)




Then our system ([2.35)) becomes:

tE(t) 0 (1—1t)K(t) K'(t) —2E(t)K (t)
0 (1-tE() tL(t) L'(t) | = 2E(t)L(t) (2.39)
(=] T E(t) E'(t) — 5K (t) + 1L(t)
with the boundary/initial conditions
K(0) = 3A4"(0) = (b1 = B2 — 21)* — a3, K(1) = A(1) = of,
L(0) = B(0) = a3, L(1) = 3B"(1) = (B — B2 — 200)* — o,
E(0) = B1 — B2 — 2a4, E(1) = f1 — B2 — 2aa.

The determinant of the matrix in ([2.39)) is equal to t(1 — t)E(t)(F(t)? —

K(t) — L(t)) which should be 0 on Iy due to (2.36]), so numerical simulation
of this system is not likely to work well. So we need to eliminate E(t) using
E(t)?> = K(t) + L(t). This leads to:

1+ tK' () + 4 K@)+ (2—-t) (1 —t)L'(t) —4(1 —¢)L(t) =0 (2.40)

Kt 1-t)2L/ (¢

K(t()) 42t = ( L)(t) @ _ 2(1 — 1) (2.41)

with initial /boundary conditions (2.17))
{K(O) = (B~ B2~ 200)* ~ a3 {K(l) =of

L(O) = Oé%, L(l) = (ﬁl — 62 — 20&2)2 — Oé%.

Theorem is proved.
This system of ODE’s can be simulated. See the pictures below. Note that
essentially it’s two initial value problems — one at ¢t = 0 and one at ¢ = 1.

llr 1.1p

Wof /—\- 10 _/\
'\'

0af r oef kY

o6l i o6l

o4l i o4l 5

5
5
&
0.1 & [1h] 3
F

L/ . . \
] 100 150 50 100 150
(a) (b)
Figure 1. The case a; = ap = 1, f; = —f3, = —2 (supports of y; and py are symmetric and

touching): (a) Function A(t) (b) Function B(t) (¢ € [0,1] corresponds to [0,200] on the graph)
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(a) (b)
Figure 2. The case ay = ap = 0.97, 81 = —f3 = 1 (supports of y; and uy are symmetric but

do not touch): (a) Function A(t) (b) Function B(t) (¢t € [0,1] corresponds to [0,2000] on the
graph, so t = 1/2 is at the x-coordinate 1000)

3. Comparing numerics: Angelesco system d = 2

The following is a simple but useful observation: the solution of the ODE
solved from ¢t = 0 depends only on the boundary conditions , that is only
on quantities (8; — B2 — 2a1)? — a3 and a3. So if ay and B, are fixed (i.e., the
support of po), and also 1 — 2a; is fixed (the left-most edge of the support of
1), then the boundary conditions at ¢ = 0 are going to be the same.

In other words, suppose we have an Angelesco system with suppuy = [f1, fo],
suppia = [fs, f1]. Then the left parts (before the plateau) of functions A(t), B(t)
will coincide with the left parts of functions A(t), B(t) for the Angelesco system
having supppy = [f1, f3], supppia = [ f3, f4] (touching supports, so g(t), E(t) have
no plateaus).

Similarly, suppose we have an Angelesco system with suppu; = [f1, fo],
suppp2 = |f3, f1]. Then the right parts (after the plateau) of functions A(t), B(t)
will coincide with the right parts of functions A(t), B(t) for the Angelesco system
having suppin = [f1, f2l, suppiia = [f2, f4] (touching supports, so A\(t), E(t) have
no plateaus).

Let us illustrate this with the pictures below. The blue dots will always
correspond to the functions A(t) and B(t) approximated via the NNR coefficients:
A(t) = anm, B(t) = by, with t = —— and n +m ~ 200 (increasing n +m does
not seem to noticeably change the picture). The solid curves will corresponds to
the numerical approximation of the solution of the ODE (using Mathematica, not
sure if it’s Runge-Kutta or something else).

First, let us start with 51 = =2, ay = 1, B = 1, as = 0.5 (so that
supp i1 = [—4,0] and supp iz = [0,2]).

In the next three pictures we will modify the left endpoint of supp ps while
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010k
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1 L 1 1 I 1 L 1 1 Fag
02 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 3. Functions A(t) and B(t) when supp p; = [—4,0] and supp pz = [0,2]

keeping the other endpoints fixed.

So let us move to Fig[d} blue dots correspond to the simulations with ) =
—2, a1 =1, o = 1.25, g = 0.375, so that supp u1 = [—4,0] and supp pe = [0.5,2]
(note that supp p; is the same as before, and supp o has the same right endpoint
as before too, but now supports do not touch). On the same plot we include
the solutions to the ODE for the case supp u1 = [—4,0], supp p2 = [0,2] (orange
curve) and for the case supp pu; = [—4,0.5], supp o = [0.5,2] (red curve). Notice
the orange curve fits correctly around ¢ = 1 and red fits correctly around ¢ = 0.

10F 035

1ok - s g _— \
0.15% M \_'\o‘
N
"4

0.10

005

02 0.4 I 1] .I5 0 .IE, 1 .I':' 0.2 '3'.‘4 ':'.Iﬁ ':'.IE 1 .I':'
(a) (b)
Figure 4. Blue dots: limits of coefficients when supp p; = [—4,0], supp 2 = [0.5,2]; Orange

curve: ODE when supp p; = [—4,0], supp p2 = [0,2]; Red curve: ODE when supp p1 = [—4, 0.5],
supp ji2 = [0.5,2]

Now we move on to Fig[5 blue dots correspond to the simulations with
fr=-2, a1 =1, o = 1.5, as = 0.25, so that supp 1 = [—4,0] and supp ps =
[1,2] (supp p; and the right endpoint of supp ps are the same as before). On the
same plot we include the solutions to the ODE for the case supp u; = [—4,0],
supp po = [0,2] (orange curve) and for the case supp py = [—4,1], supp po = [1,2]
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(red curve). Notice the orange curve fits correctly around ¢ = 1 and red fits
correctly around ¢ = 0.

20 035

015

010 —

005 \}"+
1 1 \}kl
O 0.4 0.6 0.8 1.0
(b)
Figure 5. Blue dots: limits of coefficients when supp p; = [—4,0], supp 2 = [1,2]; Orange

curve: ODE when supp p; = [—4,0], supp pe = [0,2]; Red curve: ODE when supp p; = [—4, 1],
supp ptz = [1,2]

Finally we move on to Figlo} blue dots correspond to the simulations with
f1= -2, a1 =1, fs = 1.8, as = 0.1, so that supp p3 = [—4,0] and supp s =
[1.6,2] (supp 1 and the right endpoint of supp uo are the same as before). On
the same plot we include the solutions to the ODE for the case supp pq = [—4,0],
supp p2 = [0,2] (orange curve) and for the case supp u; = [—4,1.6], supp ps =
[1.6,2] (red curve). Notice the orange curve fits correctly around ¢ = 1 and red
fits correctly around ¢t = 0.

20 [ 035

7 0.30
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(a) (b)
Figure 6. Blue dots: limits of coefficients when supp p; = [—4,0], supp 2 = [1.6,2]; Orange

curve: ODE when supp p; = [—4,0], supp pe = [0,2]; Red curve: ODE when supp u; = [—4, 1.6,
supp ji2 = [1.6,2]
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4. Appendix: parametrization for the touching intervals case

Here we present formulas for the limits of recurrence coefficients ,
for MOPs with respect to the Angelesco system (d = 2) supported on two touched
intervals [—a, 0], a > 0 and [0, 1]. These formulas are based on a parametrization
of the end points of the support of zero distribution, see (1.8, (1.10). This
parametrization was proposed in [I8, 19] and developed in details (for the non-
diagonal case) in [I7]. We start with this parametrization.

Let a € (0,400), b € (0,1) and parameters s € (1,2), 7 € (1,400) and
U:=(1,2) x (1, +00) is half-strip in R%. The following smooth functions

A(s, 7):= Rs(1) — 1, B(s,7):= 1+§Z’TT))S£SEQ(S),

where o 2) (2 o)
TNT + 85— s(2—s
Ry(7) := ;o S(s) = —m=X,
() (2s —1)T —s (5) (2s — 1)3
define a diffeomorphism (A, B) of U on half - strip (0, +00), x (0,1);. The inverse
transformation: (a,b) € (0,400), x (0,1), — (s,7) € U is defined by solution

of the equations (the fact of 3! solutions was proven in [17])

b(1+a)
a+b

2
—9
C Tirs1 14a=ZTESZD

dls e (0,1): S(s) = (25— )7 —s

We also introduce a function © : U — (—1;1)

24+2sT—8—T 1/2
(2sT—s—T)(s+T)(s+T—2)

0(s.)i= (= 3)

Given {1, p2} : supppu; = [—a,0] and supp g = [0, 1], we consider ex-

tremal problem for
n=(1+0)/2, n=(1-0)/2, 6¢c(-1,1).
We would like to know answers for the following questions:
1) How to find the value of
0, := min{f : suppw; = [—a,0]} = max{# : suppwy = [0,1]} ?
2) How to findf| the value of by : suppwy = [bg,1] ?
The answers from [17] are:

1) Excluding the variable 7 from the equations A(2,7) = a and ©(2,7) = 6,
we can get 0, and ag.

2) 3! (5,7) : { (S ! B '_ = by := B(5,7).

SFor fixed 0 € (0,,1)
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Proposition 1. Let [—a, 0], [b, 1] be supports (1.10)) of extremal measures
of the Angelesco system {p1, o}, and let (s(a,b), 7 (a,s(a,b)) ) be the image
of transformation (4.1)). Then for limits (1.12) of the corresponding NNRR coef-
ficients we have

—at?(T — «) ZTT + 5 —2) (=27 — 1)

= (' = 4.2
G ! (1 —1)%(1 — 1)’ Bi 1and (1 — )47 —12)3 (42)
— 2
where T+ T =—(s+T7—2), TT= —S;_S(jiz_ 7_), T <To<T, (4.3)
P _
Cy = ari (1 — @) a=2—s. (4.4)

(11 = 7)2(11 — )’
Proof. The Riemann surface from the Subsection can be defined by means
of the conformal map of the sphere C,, — R, )
o  aRi(w) —aw*(w — «)

2w) =) = T T R T e D - mw =)
where 7 : 98 — C is the natural projection and for the preimages of 7'('71(00) :
T — 00p, T| — 001, Ty — 002 We have (4.3) .

Our goal is to define the meromorphic on R functions Y; and to deter-
mine their residues: z>Y;(2(?) = azi(z + Bzi) + O(z7!) as z — oo. We have

w—T <
T (2(w)) = C1w —, o= (zT(1)> ‘wT, Bri= [Z <_T(1) N 1)] ‘wT’

1 aq
where w € C and C] is defined from the normalization
T _ 2
S ’ =1, = ()= Z(w)w - ‘ = ari(n — o)
VA W=T1 w—T W=T1 (Tl—T)Q T — )
Thus we get (4.4) and by the same way the expression for oy 7 in |D Denoting
w(w — ) P’ 2 1 1
P = : —_ = — — _
(w) (w—1)*(w—1) "’ P(w) w+w—a w—T W—Ty
we arrive to ) ;
B, = Crona® T (r—a) Pw)—P(7) ’ _ C’loqa2T (T — )2+ 71 — 2a)
: (T—m)T—7) w—rT w=r (1 — )47 —1)3
=P/(7)

The Proposition is proved.
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