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Galina Vasil’evna Shpatakovskaya 

Dependence on Ionization Degree and Relativistic Effects in  Electron 

Binding Energies in Free Atoms and Ions 

The electron binding energy analysis proposed before for atoms is applied to 

positive free ions.  As a result the binding energy self-similar dependence on atomic 

number and ionization degree of ions is shown up. The revealed scaling enables to 

compare electron binding energies in a large number of atoms and ions, manifests the 

relativistic spin-orbit interaction effect in heavy atoms and can be used for the new 

data verification. Оne can represent the orbital energies in filled shells of arbitrary 

many-electron atom or ion through two independent of the atomic number functions. 

The polynomial fit approximation of the last ones is constructed to estimate the 

binding energies in ions. The estimation can be used as initial value in more perfect 

computation and for rough calculation of the ionization cross section of many-

electron atoms and ions by other particles. 

Key words: many-electron atom, free ion, ionization degree, electron binding 

energy, atomic number self-similarity, ionization cross-section, relativistic effects 

 

 

Шпатаковская  Г.В. 

Зависимость от степени ионизации и релятивистские эффекты в 

энергиях связи электронов в свободных атомах и ионах  

Анализ энергий связи электронов, предложенный ранее для атомов, при-

меняется к свободным положительным ионам. В результате обнаружено  

свойство подобия энергий связи по атомному номеру и степени ионизации 

ионов. Найденный скейлинг позволяет сравнивать энергии связи в большом 

числе атомов и ионов, наглядно показывает влияние релятивистского спин-

орбитального взаимодействия в тяжелых атомах и может быть использован для 

проверки новых данных по орбитальным энергиям связи. Энергии связи в 

заполненных оболочках могут быть выражены через две не зависящие от 

атомного номера функции. Для последних построены полиномиальные 

аппроксимации с целью аналитической оценки энергий связи в произвольном 

многоэлектронном ионе. Эти оценки  могут быть использованы, например, как 

начальные значения в более точных расчетах или для приближенного вычис-

ления сечения ионизации многоэлектронных атомов и ионов другими 

частицами.  

Ключевые слова: многоэлектронный атом, свободный ион, степень 

ионизации, энергия связи электрона, подобие по атомному номеру, сечение 

ионизации, релятивистские эффекты 



3 

Introduction 

The calculation and experimental measurement of the electron binding energies 

in the free atoms and ions are still an actual problem [1, 2]. These values are 

necessary for spectroscopic research method, astrophysical applications, computation 

of the ionization cross section of atoms and ions by other particles and so on.  

Large experimental material on the energy levels of electrons in atoms and ions 

is contained in the tables [3]. The subsequent refinement of data for the neutral atoms 

is presented in [4]-[6]. Experimental data on binding energies in the neutral atoms 

from hydrogen to uranium are summarized in the report [2]. Inaccuracies in the 

measured   energy levels of inner electron shells in atoms and ions are discussed, e.g., 

in [1],   [7]. 

Two main theoretical approaches are used to calculate the binding energies of 

electrons in atoms and ions: the  density functional method [8]-[10] and the self-

consistent field approximation [11]-[17]. In spite of great success in the theory and 

computational capabilities, the problems remain, especially for intermediate and 

heavy atoms. The discrepancies between theoretical and experimental data in this 

region are discussed in the review [1], where detailed tables of experimental and 

theoretical X-ray K and L terms are presented for all neutral atoms from neon to 

fermium. 

The spectroscopic accuracy forces to take into account relativistic effects, the 

effects of size and strain of a nucleus, and quantum electrodynamic effects. A 

separate problem is that theoretical calculations are performed for an isolated atom, 

whereas the experimental data are obtained for elements in their natural state [4]-[6] 

or in their compounds [18].  

The non-relativistic quantum-mechanical calculation of the energy levels of 

electrons in an atom is reduced to the search for the eigenvalues of the Schroedinger 

equation. It is a difficult problem, which should be solved individually for each atom.  

The corresponding equations are usually solved by an iterative process with a 

reasonable initial approximation, e.g., the semi-classical one, where Thomas-Fermi 

(TF) statistical model [19]-[22] is used for the atomic potential and values, obtained 

from the Bohr-Sommerfield quantization condition are applied for the electronic 

spectrum. However, this spectrum should be also calculated individually for each 

atom. It is yet known that the characteristics of a free atom within the TF model are 

similar in atomic number Z. In particular, the self-consistent TF atomic potential can 

be represented in terms of a single function universal for all elements.  

It has been shown in [23], [24] that the electron energy levels in filled shells of 

atoms also have an atomic-number similarity within both the TF model, and 

moreover in more accurate quantum mechanical ones. The revealed properties have 

been also confirmed for experimental binding energies. 
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1. Semi-classical approach 

The varied models such as LDA (local density approximation) and relativistic 

RLDA [10], Dirac-Fock (DF) [15] and many-configuration Dirac-Fock (MCDF) [16] 

are applied to calculate the orbital energies in atoms and ions. In [23, 24] the analysis 

of the experimental [2] and calculated [10] electron binding energies has been done 

for all the free atoms from neon (atomic number Z = 10) to uranium (Z = 92). The 

analysis was based on the semi-classical approach.  

If one uses the semi-classical Thomas-Fermi (TF) atom model [22], Bohr-

Zommerfeld quantization condition  

 
𝑆𝐸𝑛𝑙

(𝜆) = ∫ 𝑝𝐸𝜆

𝑅𝐸𝜆

𝑅𝐸𝜆
′

(𝑟)𝑑𝑟 = 𝜋 (𝑛 − 𝑙 −
1

2
) = 𝜋(𝑛 − 𝜆),

𝑙 > 0, 

(1) 

 𝑆𝐸𝑛0
(0) = 𝜋𝑛,   𝑙 = 0, (2) 

and assumption of the orbital energy Enl square-law dependence on the orbital 

quantum number l  [25], n being a principal one,  

𝐸𝑛𝑙 = 𝐸𝑛0 −
𝑆𝐸𝑛0

′′(0)

2𝑇𝐸𝑛0

 𝜆2,  (3) 

the Z-scaling of the semi-classical orbital energy data is revealed:  

𝐸𝑛𝑙 = 𝑍4 3⁄ 𝑒(𝜎𝑛) + 𝑍2 3⁄ 𝑑(𝜎𝑛) 𝜆2,    𝜎𝑛 = 𝜋𝑛𝑍−1/3 .        
(4) 

Here 𝑆𝐸(𝜆) and 𝑝𝐸𝜆(𝑟) = √𝑝𝐸
2(𝑟) − 𝜆2/𝑟2 are the radial action and momentum of an 

electron with the energy 𝐸 and orbital momentum 𝜆 = 𝑙 + 1/2, 𝑝𝐸
2(𝑟) = 2[𝐸 −

𝑈(𝑟)], 𝑈(𝑟) is the TF self-consistent potential, 𝑇𝐸 = 𝜕𝑆𝐸/𝜕𝐸 is a classical time, 

𝑆𝐸𝑛0

′′(0) is a second derivation of a radial action 𝑆𝐸(𝜆) in 𝜆 at the point 𝜆 = 0, a 

value 𝐸𝑛0 is computed from Eq. (2), the integration region is restricted by turning 

points 𝑅𝐸𝜆
′,  𝑅𝐸𝜆. The two unique functions 𝑒(𝜎𝑛) and 𝑑(𝜎𝑛) in Eq. (4) are calculated 

through the TF atomic potential.  

The inverse problem is to construct the dependences 𝑒(𝜎𝑛) and 𝑑(𝜎𝑛) from the 

known theoretic or experimental values  𝐸𝑛𝑙(𝑍). This procedure has been done in [23, 

24] and also showed a Z-scaling (but not precise, and approximate one) of electron 

binding energies in filled shells of many-electron atoms. The scaling may be used to 

estimate analytically the orbital energies. Besides the allocation of the functions  

𝑒(𝜎𝑛) and 𝑑(𝜎𝑛)  has allowed to represent the orbital energy data for all the free 

atoms from neon to uranium in two figures. It is very convenient to analyze and 

compare a large array of the orbital energies of many atoms, and also test new 

calculated or experimental data.  

Below the similar approach is extended to the positive many-electron ions. 
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2.  Electron binding energies in free ions by the TF-model 

and calculated from the MCDF-model 

First the ion TF model is used and the type of the corresponding scaling is 

searched. Then we use the electron binding energy tables [15], [16] to build the 

dependencies 𝑒(𝜎𝑛) and 𝑑(𝜎𝑛).   
The TF equation for a free ion with a charge 𝑧 differs from one for an atom by 

the boundary condition only [26]:  

𝑈𝑇𝐹(𝑟) = −𝑍𝜑(𝑥)/𝑟,   𝑟 = 𝑐 𝑥𝑍−1/3,   𝑐 = 0.88534, 

√𝑥𝜑′′ = 𝜑3/2,    𝜑(0) = 1,  𝑥0𝜑′(𝑥0) = −𝛼 = 𝑧/𝑍. 

Therefore a new dependence of the function 𝜑(𝑥, 𝛼) on the ionization degree 𝛼 as on 

the parameter appears. It means that all the functions in the equations (1)-(4) depend 

on 𝛼 too.  

The functions lg | 𝑒(𝜎, 𝛼)| and lg 𝑑 (𝜎, 𝛼) from the TF-model for different 𝛼 are 

shown in figure 1.  The TF calculation is produced for 𝑍 = 1 and so 𝛼 = 𝑧 here. One 

can see a monotone decreasing functions lg | 𝑒(𝜎, 𝛼)| with overall parts for different 

values 𝛼. The right figure 1 shows that a function lg 𝑑 (𝜎, 𝛼) by the TF-model 

weakly depends on the ionization degree 𝛼, especially for filled shells (𝜎 < 3).  

 
 

Fig. 1 Functions lg |e(σ, α)| (left) and lg 𝑑(𝜎, α) (right) calculated from the TF 

model. Different colors of lines and symbols signify the different degree ionization: 

see ciphers nearby lines on the left figure.   

Below these regularities are verified in the orbital energies of free ions calcula-

ted from a more accurate MCDF-model [16]. We suppose the equation (4) to be true 

for all the MCDF data {𝐸𝑛𝑙} and find the couples of values:  
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𝑒𝑛(𝛼) =

𝐸𝑛0(𝛼)

𝑍4/3
  and  𝜎𝑛 =

𝜋𝑛

𝑍1/3
; 

(5) 

 
𝑑𝑛(𝛼) =

𝐸𝑛𝑙(𝛼) − 𝐸𝑛0(𝛼)

𝑍2/3𝜆2
  and  𝜎𝑛. 

(6) 

The results obtained thus from the binding energies {𝐸𝑛𝑙} for the elements with 

atomic number 𝑍 = 10,20,30,40,50 and 𝛼 = 0,0.1,0.3,0.5,0.7,0.9 are shown in 

figure 2, the relativistic spin-orbital level splitting being replaced by its average. One 

can see the similar dependence with the TF one (see figure 1) except some points 

with cipher nearby symbol on the right figure 2. The cipher signifies the number of 

electrons 𝑁𝑒 in the ion. It means that the approach is true only for the many-electron 

ions (𝑁𝑒 ≥ 10) that corresponds to the TF-model area of application.  

 
 

Fig.2 Functions lg |e(σ, α)| (left) and lg 𝑑(𝜎, α) (right), reconstructed from the 

spectra Enl by the MCDF-model [16]. The different colors of lines and symbols 

signify the different ionization degrees: see the corresponding ciphers nearby the 

lines ─ square interpolations (7) ─ on the left figure. The line on the right figure is 

the cubic interpolation (10) and the cipher nearby the symbol denotes the number of 

electrons 𝑁𝑒 in the ion. 

The curves on the left figure 2 are the square polynomial fit  

 lg | 𝑒(𝜎, 𝛼)| = ∑ 𝑎𝑘

2

𝑘=0

𝜎𝑘 , (7) 

approximating the correspondent dependence at different values 𝛼. The coefficients 

of the square polynomial are presented in table 1. One can see a smoothed depen-

dence of the coefficients 𝑎𝑘 on 𝛼 which may be interpolated by square polynomials 

too:  
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 𝑎𝑘(𝛼) = ∑ 𝑐𝑚
𝑘

2

𝑚=0

𝛼𝑚. (8) 

Table 1  

Polynomial fit data 𝒂𝒌 for the function 𝐥𝐠 | 𝒆(𝝈, 𝜶)| = ∑ 𝒂𝒌
𝟐
𝒌=𝟎 𝝈𝒌 calculated 

from electron binding energies by MCDF-model [16] for certain values 𝜶 in ions 

with atomic number 𝒁 = 𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎. 

𝛼  𝑎0  𝑎1  𝑎2   

0.0  1.531368987532  −0.9508725990119  0.01988458441012   

0.1  1.600703744393  −1.054499781604  0.05720449135094   

0.3  1.690055054397  −1.198845561051  0.1204050430195   

0.5  1.732599828495  −1.269972650337  0.1630655789157   

0.7  1.724625214300  −1.261886757311  0.1838766051511   

0.9  1.709164710003  −1.222005721042  0.1967462630893   

 

Combining into one Eqs. (7) and (8) one can obtain  

 lg | 𝑒(𝜎, 𝛼)| = ∑ ∑ 𝑐𝑚
𝑘

2

𝑚=0

2

𝑘=0

𝛼𝑚𝜎𝑘 . (9) 

The coefficients 𝑐𝑚
𝑘  are presented in table 2.  

Table 2 

 Сoefficients 𝒄𝒎
𝒌 ,   𝒃𝒌  in Eqs. (9), (10)  

 𝑐𝑚
𝑘  𝑘  𝑏𝑘   

𝑚 ∖ 𝑘 0  1  2  0 2.1117   

0  1.5372  −0.9557  0.0204  1  −2.4106   

1  0.6420  −1.0414  0.3944  2  0.7424   

2  −0.5089  0.8363  −0.2225  3  −0.0956   
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The curve on the right figure 2 is the cubic polynomial fit: 

lg 𝑑(𝜎, 𝛼) = ∑ 𝑏𝑘
3
𝑘=0 𝜎𝑘.                                                 (10) 

The corresponding coefficients 𝑏𝑘   are also presented in table 2. So all the regularities 

are described with 13 coefficients  𝑐𝑚
𝑘 , 𝑏𝑘.  

The theoretical area of the approach application are  

1. the atomic number  𝑍 ≥ 10;  
2. the number of electrons in the ion 𝑁𝑒 ≥ 10; 
3. the filled shells.  

3. Analytical estimation of electron binding energies  

in many-electron free ions 

The functions 𝑒(𝜎, 𝛼) and  𝑑(𝜎, 𝛼)  were constructed from the definite ions 

MCDF data. Here we examine their validity for some other many-electron ions (10 ≤
𝑍 ≤ 56) by means of comparison with available MCDF-results [16]. To estimate 

analytically the electron orbital levels in a free ion it is enough to assign an atomic 

number Z, charge z and use Eq. (4) with the functions 𝑒(𝜎, 𝛼) and  𝑑(𝜎, 𝛼) by Eqs. 

(9), (10) and table 2. 

Table 3 

Electron binding energies (in eV) in Xe ions by the MCDF-model and its 

estimation by the equation (4) with functions (9), (10). 
Ions 𝐗𝐞+𝟐  𝐗𝐞+𝟏𝟐  𝐗𝐞+𝟐𝟐  

𝑛 𝑙 MCDF Eq. (4) MCDF Eq. (4) MCDF Eq. (4) 

1 0 34588  31869  34816  32657  35246  33636   
2 0 5482  5620  5708  5790  6127  6221   
2 1 5131, 4810  5165  5359, 5035  5334  5780, 5456  5766   
3 0 1174  1107  1393  1398 1781  1820   
3 1 1028, 966  957  1248, 1184  1248  1638, 1571  1670   
3 2 712, 699  689  932, 916  980  1324, 1310  1403   
4 0 245 243 441  460  752  842   
4 1 192, 179 189 390, 366 406  699  788   
4 2 91, 89 93 284, 283 309   
5 0 43 60     
5 1 31, 31 50     

Ions 𝐗𝐞+𝟑𝟐 𝐗𝐞+𝟏𝟐  𝐗𝐞+𝟓𝟐  
1 0 36097  34823  37370 36237 40270  37903 
2 0 6946  6972  8082 8149   
2 1 6615, 6276  6516  7763, 7430 7693   
3 0 2430  2443  3243 3381   
3 1 2305, 2212 2293     
3 2 2023 2026     

The estimation results are compared with MCDF data in some ions of xenon in 
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table 3 and in six different ions of the various elements in table 4. Two values  𝐸𝑛𝑙 at 

𝑙 > 0 by MCDF-model [16] are the relativistic level splitting. It is not great for 𝑍 <
60, the maximal one being for the energies  𝐸𝑛𝑙 at  𝑛 = 2, 𝑙 = 1. The relational 

estimation inaccuracy does not exceed 10% for filled shells. Other levels are properly 

estimated by order of magnitude only.  

Table 4 

Electron binding energies −𝑬𝒏𝒍 (in eV) in some ions by the MCDF-model [16] 

and their estimation by the equation (4) with functions (9), (10) 

Ions 𝐀𝐥+𝟐(𝒁 = 𝟏𝟑) 𝐊+𝟖 (𝒁 = 𝟏𝟗) 𝐂𝐮+𝟏𝟓 (𝒁 =  𝟐𝟗) 

𝑛 𝑙 MCDF Eq. (4) MCDF Eq. (4) MCDF Eq. (4) 

1 0 1592  1639  3799  3925  9541  9790   
2 0 150  143  556  547  1644  1617   
2 1 104, 103  96  475, 472 460  1501, 1476 1446   
3 0 28  23  175  195  556  590   
3 1     514  540   

Ions 𝐑𝐛+𝟏𝟑 (𝒁 =  𝟑𝟕) 𝐂𝐬+𝟏𝟗 (𝒁 =  𝟓𝟓) 𝐁𝐚+𝟑 (𝒁 =  𝟓𝟔) 

1 0 15582  15624  36513  34511  37476  34254   
2 0 2447  2487  6248  6309  6032  6148   
2 1 2247, 2179  2375  5889, 5540  5840  5661, 5284  5665   
3 0 653  683  1722  1736  1332  1252   
3 1 585, 560  598  1572, 1503  1581  1176, 1102  1094   
3 2 446, 450  456  1243, 1229  1306  832, 817  810   
4 0   677  719  299  290   
4 1   614, 597  662  240, 224  231   
4 2     127, 124  126   
5 0     64  76   
5 1     48, 46  64  

 

4. Account for relativistic effects in many-electron atoms 

In this section the LDA- and RLDA-results [10] for the electron binding 

energies in free atoms are compared.  Non-relativistic LDA function 𝑒(𝜎) is calcu-

lated for all the atoms with 10 ≤  𝑍 ≤ 92 and shown on figure 3 to the left. Here (and 

below on the left figure 4) the big symbols ∇ correspond to rare gases data. The pairs 

of numbers 𝑒𝑛  −  𝜎𝑛 according (5) by RLDA  for the rare gases and uranium are 

shown on figure 3 to the right. One can see the relativistic effects little affect the 

dependence, without changing its single-valued monotonically diminishing nature.    
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Fig.3 Function lg |e(σ, α)| by Local Density Approximation [10]: non-relativistic 

(LDA) model (left) and relativistic LDA (RLDA) model (right). Lines are cubic 

interpolations, which coefficients are printed on the figures. 

If the relativistic effects are small, i.e. for elements  𝑍 ≤  40 the function 𝑑(𝜎)  

behaves similarly as it has been shown in [23], [24]. However, in the heavy atoms the 

single-valued nature of function 𝑑(𝜎) is lost. One can see on the right figure 4 the 

visible 𝑑𝑛𝑙(𝜎) branching for the different values 𝑙, and in addition, a bifurcation due 

to the spin-orbit interaction for each 𝑙. Here an increase in the relativistic effects with 

an increase in the atomic number is visually manifested, all the dependence on 𝜎 

preserving smooth nature and fitting the corresponding dependence for the rare gases.  

  

Fig. 4  Function  lg 𝑑(𝜎, α) by Local Density Approximation [10]: non-relativistic 

(LDA) model (left) and relativistic LDA (RLDA) model (right). Here red symbols is 

for l = 1, green and blue ones are for l = 2 and 3 correspondingly. Filled and non-

filled symbols correspond to levels with  𝑗 = 𝑙 − 1/2 and  𝑗 = 𝑙 + 1/2. 
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Conclusions 

In the paper the electron binding energies in atoms and ions were studied. 

Atomic number and ionization degree similarity (scaling) are shown in filled shells of 

free ions and relativistic effects visualization are demonstrated for many-electron 

atoms. The discovered scaling enables to estimate electron binding energies in ions 

by means of two independent on atomic-number functions 𝑒𝑛(𝜎) and 𝑑𝑛𝑙𝑗(𝜎). The 

estimation inaccuracy for filled shells of free ions is less than 10% and reasonably 

describes other levels. Therefore the proposed approach can be used as initial value in 

more accurate computation and for rough calculation of the ionization cross section 

of many-electron atoms and ions by other particles.  

The revealed continuous 𝑒𝑛(𝜎) and 𝑑𝑛𝑙𝑗(𝜎) dependences can be also used for the 

new data verification and for the recovery of the missing information about the 

binding energies in the neighboring atoms. 
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