
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 177, 2018

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

Chikitkin A.V., Rogov B.V.

Two variants of parallel
implementation of high-order
accurate bicompact schemes

for multi-dimensional
inhomogeneous transport

equation

Recommended form of bibliographic references: Chikitkin A.V., Rogov B.V. Two variants of
parallel implementation of high-order accurate bicompact schemes for multi-dimensional
inhomogeneous transport equation // Keldysh Institute Preprints. 2018. No. 177. 24 p.
doi:10.20948/prepr-2018-177-e
URL: http://library.keldysh.ru/preprint.asp?id=2018-177&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2018-177&lg=e
http://library.keldysh.ru/author_page.asp?aid=4066&lg=e
http://doi.org/10.20948/prepr-2018-177-e
http://library.keldysh.ru/preprint.asp?id=2018-177&lg=e

KELDYSH INSTITUTE OF APPLIED MATHEMATICS

R u s s i a n A c a d e m y o f S c i e n c e s

A.V.Chikitkin, B.V.Rogov

Two variants of parallel implementation

of high-order accurate bicompact schemes

for multi-dimensional inhomogeneous

transport equation

Moscow — 2018

Aleksandr Viktorovich Chikitkin, Boris Vadimovich Rogov

Two variants of parallel implementation of high-order accurate bicompact

schemes for multi-dimensional inhomogeneous transport equation
In this paper, we compare the efficiency of two parallel algorithms for solution

of the equations of multidimensional high-order accurate bicompact schemes for a

multidimensional inhomogeneous transport equation. The first one is a space-

marching algorithm for computing non-factorized schemes, and the second one is

based on the approximate factorization of multidimensional schemes. The latter

algorithm uses iterations to preserve the high (higher than second) order of accuracy

of bicompact schemes in time. The convergence of these iterations is proved for a

nonstationary two-dimensional and three-dimensional linear inhomogeneous

transport equation with constant positive coefficients. Model computations show that

the factorization scheme is preferable from the point of view of parallel

implementation.

Key words: multidimensional inhomogeneous transport equation, bicompact

schemes, parallel algorithms, iterative approximate factorization method

Чикиткин А.В., Рогов Б.В.

Два варианта параллельной реализации высокоточных

бикомпактных схем для многомерного неоднородного уравнения переноса

В работе проведено сравнение эффективности двух параллельных

алгоритмов решения уравнений высокоточных бикомпактных схем для

многомерного неоднородного уравнения переноса. Первый из них есть

пространственный маршевый алгоритм счета нефакторизованных схем, а

второй основан на приближенной факторизации многомерных схем. В

последнем алгоритме используются итерации для сохранения высокого (выше

второго) порядка точности бикомпактных схем по времени. Доказана

сходимость этих итераций для нестационарного двухмерного и трехмерного

линейного неоднородного уравнения переноса с постоянными

положительными коэффициентами. Модельные расчёты показывают, что

алгоритм на основе факторизованных схем является предпочтительным с точки

зрения параллельной реализации.

Ключевые слова: многомерное неоднородное линейное уравнение

переноса, бикомпактные схемы, параллельные алгоритмы, метод итерируемой

приближенной факторизации

This work was supported by the Russian Foundation for Basic Research, project no.

18-01-00857-a.

3

1. Introduction

The linear inhomogeneous transport equation needs to be solved in problems

related to radiative transfer and transport of uncharged particles (neutrons). Such

problems arise in many areas of science and engineering raging from computing

atmospheric radiation [1] and thermonuclear targets [2] to computing nuclear reactor

cores [3].

The solution of the transport equation is a distribution function in a phase space

and, according to its physical interpretation, it must be nonnegative. In many cases,

this equation has to be solved in a strongly heterogeneous medium with numerous

contact discontinuities (atmospheric clouds or various materials in a nuclear reactor

core). Accordingly, a scheme for computing the transport equation must satisfy the

following requirements. First, it must be conservative and its resolution must be

sufficient for adequately taking into account the discontinuities in the coefficients and

sources of the equation. This goal is best achieved when the governing equation is

approximated on a stencil lying within a single mesh cell. Second, the scheme must

ensure that the numerical solution is positive.

A scheme satisfying these requirements was proposed in [4] for the one-

dimensional (1D) homogeneous linear transport equation. It is constructed using the

method of lines on a minimum spatial stencil consisting of two nodes and is known as

a bicompact scheme. In semidiscrete form, this scheme has fourth-order accuracy in

space, which is achieved by supplementing the sought functions with an auxiliary

dependent variable, namely, the primitive of the main sought function. For this

dependent variable, an additional discrete equation is derived that approximates an

integral consequence of the basic differential equation. Since only a finite difference

of the primitive was involved in the scheme in [4], starting from [5], the bicompact

scheme was written in a computationally more convenient form: the finite differences

of the primitive were replaced by integral averages of the sought function over grid

cells. Later, bicompact schemes were constructed for the two-dimensional (2D) and

three-dimensional (3D) nonstationary inhomogeneous linear transport equations

[6, 7] and for systems of nonstationary multidimensional quasilinear hyperbolic

equations [8]. Note that, in bicompact schemes [8, 9] for quasilinear hyperbolic

equations, an increase in the order of accuracy is ensured not with the help of

auxiliary integral averages of the sought function over grid cells, but rather with the

help of auxiliary values of the sought function at half-integer spatial grid nodes. To

find these quantities, additional difference equations are derived that approximate

consequences of the basic differential equations. The equations of semidiscrete

bicompact schemes are usually integrated with respect to time using A- and L-stable

diagonally implicit Runge–Kutta (DIRK) methods [4–8]. In the case of smooth

solutions, the important advantages of bicompact schemes include the preservation of

their order of accuracy on an arbitrary nonuniform spatial grid and the low cost of the

marching method used to solve the equations of the scheme in each spatial variable.

In [6, 8] high-order accurate bicompact schemes were used to construct hybrid

schemes for computing discontinuous solutions of hyperbolic equations.

4

For efficient computations of the nonstationary multidimensional

inhomogeneous transport equation, a parallel space marching algorithm for

computing difference equations of high-order accurate bicompact schemes was

proposed in [6]. In this paper, we consider another parallel algorithm for solving the

difference equations of high-order accurate bicompact schemes. It is based on an

approximate factorization of multidimensional difference operators. This algorithm

makes use of iterations in order to preserve the high (higher than the second) order of

accuracy of the schemes in time [9, 10]. We compare the efficiency of two parallel

algorithms for computing the equations of multidimensional bicompact schemes,

namely, the space marching algorithm for unfactorized schemes and an algorithm for

computing factorized schemes.

2. Bicompact schemes

Without loss of generality, the basic points of the method used to construct

multidimensional bicompact schemes [6, 7] can be described as applied to the three-

dimensional nonstationary transport equation

 3 3() 0, () (, , ,)
u u u u

L u L u a b c u q x y z t
t x y z

   
      

   
 (1)

and its two-dimensional analogue

 2 2() 0, () (, ,)
u u u

L u L u a b u q x y t
t x y

  
     

  
, (2)

assuming that a, b, c, and  are constant positive parameters.

Semidiscrete schemes for the transport equation are derived by discretizing

spatial derivatives on a minimum stencil by applying the method of lines. The spatial

stencil consists of two nodes 1,j jx x in the one-dimensional (1D) case, four nodes

(xj, yk), (xj+1, yk), (xj, yk+1), (xj+1, yk+1) in the two-dimensional (2D) case, and eight

nodes (x, y, z),  =j, j+1,  =k, k+1,  =l, l+1, in the three-dimensional (3D) case.

The schemes are called bicompact because the stencil consists of two points in each

spatial direction. A bicompact scheme will be derived for the 3D case. Since we use

the minimum spatial stencil, the derivation procedure is valid in the general case of

nonuniform Cartesian grids with steps , 1/2 1x x j j jh h x x    , , 1/2 1y y k k kh h y y    ,

, 1/2 1z z l l lh h z z    .

To obtain a semidiscrete scheme of high order of accuracy in space, along with

the values of the sought function u at the stencil nodes,

 , , , , 1, , 1, , 1u j j k k l l            , (3)

we introduce the following auxiliary values:

5

(1) the integral averages over twelve edges of the 3D cell

3 1 1 1[,] [,] [,]D j j k k l lG x x y y z z     :

1 1

1

1/2, , , 1/2,

, , 1/2

1 1
(, , ,) , (, , ,) ,

1
(, , ,) , , 1, , 1, , 1,

j k

j k

l

l

x y

yx
j k

x yx y

z

z
l

z z

u u x y z t dx u u x y z t dy
h h

u u x y z t dz j j k k l l
h

 



        

    

 

         

 



 (4)

(2) the integral averages over six faces of the cell:

1 11 1

1 1

1/2, , 1/21/2, 1/2,

, 1/2, 1/2

1 1
(, , ,) , (, , ,) ,

1
(, , ,) , , 1, , 1, , 1,

j jk l

j k j l

k l

k l

x xy z

xy xz
j lj k

x y x zx y x z

y z

yz
k l

y z y z

u u x y z t dydx u u x y z t dzdx
h h h h

u u x y z t dzdy j j k k l l
h h

  

 

      

  

 

         

   

 

 (5)

(3) the integral average over this cell:

1 1 1

1/2, 1/2, 1/2

1
(, , ,)

j k l

j k l

x y z

xyz
j k l

x y z x y z

u u x y z t dzdydx
h h h

  

       . (6)

In formulas (3)–(6), the quantities 1, 1, 1j k lu    , 1/2, 1, 1
x
j k lu    , 1, 1/2, 1

y
j k lu    , 1, 1, 1/2

z
j k lu    ,

1/2, 1/2, 1
xy
j k lu    , 1/2, 1, 1/2

xz
j k lu    , 1, 1/2, 1/2

yz
j k lu    , and 1/2, 1/2, 1/2

xyz
j k lu    are unknown functions of

time for a > 0, b > 0, and c > 0 (the other signs are treated in a similar manner), while

the other quantities are known either from the computations in the neighboring cells

or from the initial and boundary conditions. Equations for these variables can be

obtained by integrating the original equation (1) and its seven independent

differential consequences

3 3 3

2 2 2 3
3 3 3 3

() () ()
0, 0, 0,

() () () ()
0, 0, 0, 0

L u L u L u

x y z

L u L u L u L u

x y x z y z x y z

  
  

  

   
   

        

 (7)

over the spatial cell G3D.

The results of integrating Eqs. (1) and (7) over G3D can be represented in the

compact form

6

1 11

1 2 1 1 1 1 11

1 11 1 2 1 1 1

11

() (σ) ,

() (σ) ,

() (σ) ,

(

yz y x z y x z x z y x z y x z y x
t C C C

yz y x z y x z x z y x z y x z y x
t C C C

y y y y y yz x z x z x z x z x z x
t C C C

yz x

A A A u aA A bA A c A A A A A u A A A q

A A u aA A bA c A A A u A A q

A A u aA bA A c A A A u A A q

A u

       

            

            

  2 1 1 1 1 11 2 1 1 1

1 1 1 1 2 1 11

1 1 1 2 1 1 2 1 1 1 1 11

1 1

) (σ) ,

() (σ) ,

() (σ) ,

y y y y yz x z x z x z x z x
t C C C

yz y x z y x z x z y x z y x z y x
t C C C

yz y x z y x z x z y x z y x z y x
t C C C

z

aA bA c A u A q

A A u a A b A c A A A A u A A q

A u a A b c A A u A q

               

            

                 

  1 1 1 2 1 11 2 1 1 1

1 1 1 2 1 1 2 1 1 1 1 11 1 2 1 1 1

() (σ) ,

() (σ) ,

y y y y y yx z x z x z x z x z x
t C C C

y y y y y yz x z x z x z x z x z x
t C C C

A u a b A c A A u A q

u a b c u q

               

                      

(8)

if we introduce the operators

1/2, , 1/2, , , 1/2, , 1/2, , , 1/2 , , 1/2

1 1/2, , 1, , , ,

1 , 1/2, , 1, , ,

1 , , 1/2 , , 1 , ,

2 1/2, , 1, ,

, , ,

() ,

() ,

() ,

6(

x x y y z z

j j k k l l

x

j j j x

y

k k k y

z

l l l z

x

j j

A u u A u u A u u

u u u h

u u u h

u u u h

u u

                 

       

       

       

    

  

  

  

  

  2

1/2, , , ,

2

2 , 1/2, , 1, , 1/2, , ,

2

2 , , 1/2 , , 1 , , 1/2 , ,

2) ,

6(2) ,

6(2) .

x

j j x

y y

k k k k y

z z

l l l l z

u u h

u u u u h

u u u u h

     

          

          

 

   

   

(9)

In Eqs. (8), tu du dt and (1 2, 1 2, 1 2)C j k l    is a multi-index. The operators

1 2, ,r r rA   (, ,r x y z) are interpreted as the operators of averaging and of the first

and second difference derivatives, respectively.

The first equation in (8) is the result of the exact integration of the basic

equation (1), while the other equations in (8) are derived from (7) with the use of the

Euler–Maclaurin quadrature rules

1

1

1

2

5

1 1

2

5

1 1

2

5

1 1

() () (), ,
2 12

() () (), ,
2 12

() () (),
2 12

j

j

k

k

l

l

x

x x

j j x j x j x x

x

y

y y

k k y k y k y y

y

z

z z
l l z l z l z z

z

h h u
udx u u u u O h u

x

h h u
udy u u u u O h u

y

h h u
udz u u u u O h u

z







 

 

 


        




        




        









(10)

and have the fourth order of accuracy in space.

7

The equations of a semidiscrete 2D bicompact scheme can be obtained by

integrating the original equation (2) and its three independent differential

consequences

2
2 2 2() () ()

0, 0, 0
L u L u L u

x y x y

  
  

    (11)

over the spatial cell 2 1 1[,] [,]D j j k kG x x y y   . A semidiscrete bicompact scheme for Eq.

(2) consists of four ordinary differential equations (ODEs)

1 1

1 2 1 1 1 1

1 1 1 2 1 1

1 1 1 2 2 1 1 1 1 1

() (σ) ,

() (σ) ,

() (σ) ,

() (σ)

y x y x y x y x y x

t C C C

y x y x y x y x y x

t C C C

y x y x y x y x y x

t C C C

y x y x y x y x y x

t C C C

A A u aA b A A A u A A q

A u aA b A u A q

A u a b A A u A q

u a b u q

     

         

         

             

(12)

for determining four unknowns 1, 1j ku   , 1/2, 1
x
j ku   , 1, 1/2

y
j ku   , 1/2, 1/2

xy
j ku   for a > 0 and

b > 0 (the other signs are treated in a similar fashion). The multi-index C in (12) is

equal to (1 2, 1 2)j k  .

As a time-stepping technique for ODEs (8) and (12), we propose A- and L-

stable diagonally implicit Runge–Kutta (DIRK) methods, which ensure the absolute

stability of fully discrete bicompact schemes. Moreover, DIRK methods are low-cost

techniques as compared with fully implicit Runge–Kutta (RK) methods. At each

stage of a DIRK method, the computations are reduced to solving the equations of a

fully discrete baseline bicompact scheme with its own stage initial condition and time

step. The baseline bicompact scheme is obtained by integrating the semidiscrete

scheme by the implicit Euler method. For the 2D transport equation (2), this scheme

consists of four difference equations and has the form

   

   

   

   

1 1

1 2 1 1 1

1 1 1 2 1

1 1 1 2 2 1 1 1

ˆ ˆ(1) = ,

ˆ ˆ(1) = ,

ˆ ˆ(1) = ,

ˆ ˆ(1) = ,

y x y x y x y x

C C C

y x y x y x y x

C C C

y x y x y x y x

C C C

y x y x y x y x

C C C

A A aA b A u A A u q

A aA b u A u q

A a b A u A u q

a b u u q

   

   

   

   

     

        

        

           

(13)

where  is the time step,
1ˆ ,n nu u u u  , and n is the time level number. For the 3D

transport equation (1), the baseline bicompact scheme consists of eight difference

equations

8

 

 

 

1 11

1 2 1 1 1 11

1 11 1 2 1 1

ˆ ˆ(1) (),

ˆ ˆ(1+σ) (),

ˆ ˆ(1+σ) (),

(1+σ)

yz y x z y x z x z y x z y x
C C C

yz y x z y x z x z y x z y x
C C C

y y y y yz x z x z x z x z x
C C C

A A A a A A b A A c A A u A A A u q

A A a A A b A c A u A A u q

A A a A b A A c A u A A u q

    

    

    



        

           

           

 

 

 

1 2 1 1 1 11 1 2 1 1

1 1 1 1 2 11

1 1 1 2 1 1 2 1 1 11

ˆ ˆ(),

ˆ ˆ(1+σ) (),

ˆ ˆ(1+σ) (),

y y y y yz x z x z x z x z x
C C C

yz y x z y x z x z y x z y x
C C C

yz y x z y x z x z y x z y x
C C C

A a A b A c u A u q

A A a A b A c A A u A A u q

A a A b c A u A u q

   

    

    

               

           

               

 

 

1 1 1 1 2 11 1 2 1 1

1 1 1 2 1 1 2 1 1 11 1 2 1 1

ˆ ˆ(1+σ) (),

ˆ ˆ(1+σ) ().

y y y y yz x z x z x z x z x
C C C

y y y y yz x z x z x z x z x
C C C

A a b A c A u A u q

a b c u u q

    

    

               

                   

(14)

3. The iterative approximate factorization method
As the dimension d of the problem increases, the number of equations in each

cell grows as 2d . According to the space marching method, a system of dimension

2d is solved in each cell with the help of direct Gaussian elimination, which has the

complexity 3 3(2) = 2d dC C  . For = 3d , this leads to considerable growth of the

computational costs as compared with the one-dimensional case. Among the methods

used to avoid such growth, we can mention dimensional splitting (local one-

dimensional scheme—LOD scheme), the alternating direction method, and

approximate factorization of linear systems of difference equations. In most of these

techniques, the accuracy of the solution degrades to the second order.

The difference equations of multidimensional bicompact schemes can also be

approximately factorized. To preserve the high order of time-stepping schemes, an

iterative procedure is constructed on the basis of approximate factorization. Below,

this procedure is described for 2D and 3D bicompact schemes intended for the

numerical solution of the inhomogeneous transport equation.

3.1. Two-dimensional scheme

Consider baseline scheme (13) in the case of ODE system (12) integrated by

applying the implicit Euler method. Define the operators

1 1 2 1 2

1 1 2 1 2

() = (), () = (), = , ,

1 1
() = , () = .

2 2

r r r r r r

r r r r r r

B s A C s B s C s r x y

C s A s C s s

 

 

  

    
 (15)

The operators on the left-hand sides of Eqs. (13) can be represented in the form

9

2

1 1 1 1 1 1

2

1 2 1 1 1 2 1 2

2

1 1 1 2 2 1 2 1

1 1 1 2 2 1

(1) () () () (),

(1) () () () (),

(1) () () () (),

(1)

y x y x y x y x y x

y x y x y x y x y x

y x y x y x y x y x

y x y x y x

A A aA b A B b B a C b C a

A aA b B b B a C b C a

A a b A B b B a C b C a

a b

   

   

   

  

      

        

        

          2

2 2 2 2() () () ().y x y xB b B a C b C a

(16)

In view of (16), Eqs. (13) can be written as

2

1 1 1 1

2

1 2 1 1 2

2

2 1 1 2 1

2

2 2 1 1 2 2

ˆ ˆ ˆ() () = () () () ,

ˆ ˆ ˆ() () = () () () ,

ˆ ˆ ˆ() () = () () () ,

ˆ ˆ ˆ() () = () () () .

y x y x y x

C C C C

y x y x y x

C C C C

y x y x y x

C C C C

y x y x y x

C C C C

B b B a u A A u q C b C a u

B b B a u A u q C b C a u

B b B a u A u q C b C a u

B b B a u u q C b C a u

 

 

 

 

 

  

  

   

(17)

The structure of system (17) suggests that it can be approximately factorized for

small  with the last terms dropped from the right-hand sides. As a result, system

(17) can be solved using the iterative method

(1) 2 ()

1 1 1 1

(1) 2 ()

1 2 1 1 2

(1) 2 ()

2 1 1 2 1

(1)

2 2 1 1

ˆ ˆ ˆ() () = () () () ,

ˆ ˆ ˆ() () = () () () ,

ˆ ˆ ˆ() () = () () () ,

ˆ() () = (

y x i y x y x i

C C C C

y x i y x y x i

C C C C

y x i y x y x i

C C C C

y x i y x

C C

B b B a u A A u q C b C a u

B b B a u A u q C b C a u

B b B a u A u q C b C a u

B b B a u u

 

 

 









 

  

  

  2 ()

2 2
ˆ ˆ) () () ,y x i

C Cq C b C a u  

(18)

where i is the iteration number. The initial approximation (0)û can be set to zero. The

solution (1)ˆ iu  of Eqs. (18) can be found by solving two systems for the grid functions

1 2,v v , namely,

2 ()

1 1 1 1

2 ()

2 1 1 2 1

2 ()

1 2 1 1 2

2 ()

2 2 1 1 2 2

ˆ ˆ() = () () () ,

ˆ ˆ() = () () () ,

ˆ ˆ() = () () () ,

ˆ ˆ() = () () () ,

y y x y x i

C C C

y y x y x i

C C C

y y x y x i

C C C

y y x y x i

C C C

B b v A A u q C b C a u

B b v A u q C b C a u

B b v A u q C b C a u

B b v u q C b C a u

 

 

 

 

  


  

   


   

(19)

and then solving the system of equations

10

(1)

1 1

(1)

2 2

ˆ() = ,

ˆ() = .

x i

x i

B a u v

B a u v









 (20)

Boundary conditions for
1 2,v v in problems (19) are calculated using (20).

The one-dimensional equations (19) have to be solved on the coordinate lines

1/2= jx x  , =1, xj N (
xN is the number of grid cells in the x direction):

2 ()

1 1, 1/2, 1/2 1 1

2 ()

2 1, 1/2, 1/2 1 2 1

2 ()

1 2, 1/2, 1/2 1 1 2

2 2, 1/2, 1/2 1

ˆ ˆ() = () () () ,

ˆ ˆ() = () () () ,

ˆ ˆ() = () () () ,

() =

y y x y x i

j k C C C

y y x y x i

j k C C C

y y x y x i

j k C C C

y y

j k

B b v A A u q C b C a u

B b v A u q C b C a u

B b v A u q C b C a u

B b v

 

 

 

 

 

 

 

  


  

  

  2 ()

1 2 2
ˆ ˆ() () () .x y x i

C C Cu q C b C a u 




 

(21)

The one-dimensional equations (20) have to be solved on the coordinate lines

1/2= ky y  ,

(1)

1 1/2, 1/2 1, 1/2, 1/2

(1)

2 1/2, 1/2 2, 1/2, 1/2

ˆ()() = ,

ˆ()() =

x y i y

j k j k

x y i y

j k j k

B a u v

B a u v



   



   





 (22)

and on the lines 1= ky y  , =1, yk N (yN is the number of grid cells in the y direction)

(1)

1 1/2, 1 1, 1/2, 1

(1)

2 1/2, 1 2, 1/2, 1

ˆ() = ,

ˆ() = .

x i

j k j k

x i

j k j k

B a u v

B a u v



   



   





 (23)

Equations (22) are derived from Eqs. (20) by applying the averaging operator
yA .

Finally, at every time level, we need to solve 2()x yN N one-dimensional

problems. Each one-dimensional problem is solved by the space marching method.

The factorized scheme has two advantages over the original (unfactorized) scheme.

First, the solution of one-dimensional problems involves the inversion of 2 2 rather

than 2 2d d matrices. Second, one-dimensional problems along different grid lines at

every iteration step can be solved independently. Therefore, the algorithm can be

efficiently parallelized, in contrast to the original scheme with a more complicated

dependence of data.

Let us analyze the convergence of iterative method (18). This method can be

written in the matrix-vector form

11

1/2, 1/2 1

1, 1/2 2(1) ()

1/2, 1 3

1, 1 4

ˆ ˆ= , ,

xy

j k

y

j ki i

y x x

j k

j k

u

u

u

u









 

 

 

 

   
   
     
   
    

  

M M v Nv ψ v ψ ,

0 0 0 0

0 0 12 6 0 0
,

12 0 6 0 0 0

0 12 0 6 0 0 12 6

y x

y x x

y x

y y x

y y x x

   

    

    

     

   
   

     
    
   

       

M M

,
2(1) (1) (1)

12(1) (1)(1 6) 12 (1 6)

12(1) 12 (1)(1 6) (1 6)

144 12 (1 6) 12 (1 6) (1 6)(1 6)

x y x y

x x x y y x

y x y y x y

x y y x x y x y

      

         

         

           

   
 
        
        
 

           

N

,

(24

)

where 1 () 2   ; = , =x x y ya h b h    are the Courant numbers; ψ is a column

vector containing known values from the preceding time level, values known from

the boundary conditions, or computed in preceding cells and the values of the given

source function q .

The matrices , ,x yM M N can be represented in the form of Kronecker matrix

products

 , , () ()x x y y y x       M E P M P E N P E P E , (25)

where

1 0 0 1

, , , ,
0 1 12 6

r r r x y 
   

       
   

P E R E R . (26)

The product of the matrices ,y xM M is transformed as follows:

 ()()y x y x y x    M M P E E P P P . (27)

The iterative method (24) is written in the recurrence form

 (1) ()=i i  v Sv , (28)

where the step matrix of the method is given by

12

  
1

 y x



 M MS N . (29)

In view of formulas (25) and (27), the step matrix (29) of the iterative method

can be written as a Kronecker product of two matrices, each associated only with one

spatial direction:

   

       

1
1 1

1 1

() () () ()

,

y x y x y x y x

y x y x


 

 

               

     



 

P P P E P E P P P E P E

E P E P E T T

S

E
 (30)

where 1, ,r r r x y T P .

Due to representation (30) for the matrix S, its eigenvalues   S are equal to the

product of the eigenvalues ,y x  of the matrixes yE T , xE T :

   y x  S , (31)

where

2

2 2

12 (6 3 3) (1)
, ,

12 6

r r
r

r r

i
r x y

    


  

    
 

 
. (32)

The moduli of the complex conjugate numbers r (32) are identical and given by

 
2

2 2

2 2

2 2

12 3(2 1) (1) 3

12 6

6 2 1
1 1 0, 1,

12 6

r r r

r

r r

r
r

r r

     


  

 
 

  

    
 

 

 
     

 

 (33)

therefore, in view of (31), the spectral radius () S of the step matrix S is

 () 1 0, 0, 1y x x y          S . (34)

Since the spectral radius of the stationary iterative process (27) is less than unity for

any 0, 0, 1y x     , the iterations always converge.

Note that the convergence of the iterative approximate factorization method for

bicompact schemes as applied to the nonstationary 2D linear homogeneous transport

equation was proved in [9, 10].

3.2. Three-dimensional scheme

Consider the baseline bicompact scheme (14) in the case of ODE system (8)

integrated by the implicit Euler method. Define the operators

13

1 1 2 1 2

1 1 2 1 2

() = (), () = (), = , , ,

1 1
() = , () = .

3 3

r r r r r r

r r r r r r

B s A C s B s C s r x y z

C s A s C s s

 

 

  

    
 (35)

The operators on the left-hand sides of (14) can be approximately factorized as

2

1 1 1 1 1 1 1

2

1 2 1 1 1 1 1 1 2 2

1 1 1 2 1 1 1 2 1

(1) () () () ,

(1+σ) () () () ,

(1+σ) () () (

z y x z y x z y x z y x z y x

z y x z y x z y x z y x z y x

z y x z y x z y x z y x z y x

A A A a A A b A A c A A B c B b B a I

A A a A A b A c A B c B b B a I

A A a A b A A c A B c B b B a

    

    

   

        

          

          2

3

2

1 1 1 2 2 1 1 1 1 1 2 2 4

2

1 1 1 1 1 2 2 1 1 5

1 1 1 2 1 1 1 2 1

) ,

(1+σ) () () () ,

(1+σ) () () () ,

(1+σ)

z y x z y x z y x z y x z y x

z y x z y x z y x z y x z y x

z y x z y x z y x z y x

I

A a A b A c B c B b B a I

A A a A b A c A A B c B b B a I

A a A b c A B



    

    

   



             

          

             2

2 1 2 6

2

1 1 1 1 1 1 2 2 1 2 2 1 7

2

1 1 1 1 1 2 1 2 1 2 1 1 2 2 2 8

() () () ,

(1+σ) () () () ,

(1+σ) () () () ,

z y x

z y x z y x z y x z y x z y x

z y x z y x z y x z y x z y x

c B b B a I

A a b A c A B c B b B a I

a b c B c B b B a I



    

    



             

                

 (36)

where

1 1 1 1 1 1 1 1 1 1

2 1 2 1 2 1 1 1 1 1 2

3 2 1 1 1 1 1 2 1 2 1

4 2 2 1 1 2 1 2 1 1 2 2

5 1 1 1 2 1 2 1

,

,

,

,

z y x z y x z y x z y x

z y x z y x z y x z y x

z y x z y x z y x z y x

z y x z y x z y x z y x

z y x z y x z y x

I A C C C A C C C A C C C

I A C C C A C C C C C C C

I A C C C C C C C A C C C

I A C C C C C C C C C C C

I C C C C A C C C A











   

   

   

   

    2 1 1

6 1 1 2 2 2 2 1 1 2 1 2

7 1 2 1 2 1 1 2 2 2 2 1

8 1 2 2 2 1 2 2 2 1 2 2 2

,

,

,

.

z y x

z y x z y x z y x z y x

z y x z y x z y x z y x

z y x z y x z y x z y x

C C C

I C C C C A C C C C C C C

I C C C C C C C C A C C C

I C C C C C C C C C C C C







   

   

   

An iterative algorithm for solving the equations of the baseline scheme relies on the

approximate factorization (36) of the difference operators and is given by the

formulas

(1) 2 ()

1 1 1 1

(1) 2 ()

1 1 2 1 2

(1) 2 ()

1 2 1 1 3

(1)

1 2 2 1 1

ˆ ˆ ˆ() () () () ,

ˆ ˆ ˆ() () () () ,

ˆ ˆ ˆ() () () () ,

ˆ() () () (

z y x i z y x i

С C C С

z y x i z y x i

С C C С

z y x i z y x i

С C C С

z y x i z y x

С

B c B b B a u A A A u q I u

B c B b B a u A A u q I u

B c B b B a u A A u q I u

B c B b B a u A

 

 

 









  

   

   

   2 ()

4

(1) 2 ()

2 1 1 1 5

(1) 2 ()

2 1 2 1 1 6

(1) 2 ()

2 2 1 1 1 7

2 2

ˆ ˆ) ,

ˆ ˆ ˆ() () () () ,

ˆ ˆ ˆ() () () () ,

ˆ ˆ ˆ() () () () ,

() ()

i

C C С

z y x i z y x i

С C C С

z y x i z y x i

С C C С

z y x i z y x i

С C C С

z y

u q I u

B c B b B a u A A u q I u

B c B b B a u A u q I u

B c B b B a u A u q I u

B c B b B

 

 

 

 







 

   

    

    

(1) 2 ()

2 1 1 1 8
ˆ ˆ ˆ() () ,x i z y x i

С C C Сa u u q I u       

 (37)

14

where i is the iteration number.

Algorithm (37) can be written in the matrix-vector form

11/2, 1/2, 1/2

21, 1/2, 1/2

31/2, 1, 1/2

41, 1, 1/2(1) ()

51/2, 1/2, 1

61, 1/2, 1

71/2, 1, 1

1, 1, 1

ˆ ˆ= , ,

xyz

j k l

yz

j k l

xz

j k l

z

j k li i

z y x xy

j k l

y

j k l

x

j k l

j k l

u

u

u

u

u

u

u

u















  

  

  

  

  

  

  

  

 
 
 
 
 
 

   
 
 
 
 
 
 

M M M v Nv ψ v ψ

8

,



 
 
 
 
 
 
 
 
 
 
 
 
 

 (38)

 , , ,z z y y x x        M P E E M E P E M E E P (39)

() () () ()

() () () () (),

y x z x

z y z y x

          

          

N E P E P E P E E P E

P E P E E P E P E P E
 (40)

where ψ is a known column vector and the matrices rP (, ,r x y z) and E are given

by the formulas

1 0 0 11

, 1 , ,
0 1 12 63

r r   
   

        
   

P E R E R . (41)

Here, = , = ,x x y y z za h b h c h      are Courant numbers.

The matrix product on the left-hand side of (38) can be brought to the form

 z y x z y x  M M M P P P .

Iterative method (38) is written in the recurrence form

 (1) ()ˆ ˆ=i i  v Sv , (42)

where the step matrix of the method is given by

      
1 1

1 1 1 z y x z y x z y x

 
        M M M N P P P N P P PS N . (43)

In view of formulas (40) and (43), the step matrix S of the iterative method can be

brought into the form

15

       

          ,

z y x z y x

z y x z y x

         

          

 T E T E T E T T E T

E T E T T E T E T E T

S
 (44)

where 1, , ,r r r x y z T P .

Formula (44) shows that S is the sum of four 8 8 matrices, each being a

Kronecker product of three 2 2 matrices. In turn, the column eigenvectors of the

8 8 matrices on the right-hand side of (44) are Kronecker products of column

eigenvectors of 2 2 matrices [13, p.596]. Since the column eigenvectors of the 2 2

matrices rT and rE T coincide, the column eigenvectors of all four 8 8 matrices on

the right-hand side of (44) coincide as well. Therefore, the eigenvalues () S of the

step matrix S are equal to the sum of the eigenvalues of four 8 8 matrices on the

right-hand side of (44):

         

           

()

(1) (1) (1) ,

z y x z y x

z y x z y x

z y x z y x z y x z y x

  

 

           

          

           

      

S T E T E T E T T E T

E T E T T E T E T E T (45)

where r are the eigenvalues of the matrix rE T . In writing the last equality in (45),

we used the properties of eigenvalues of a matrix that is a Kronecker matrix product.

Since the matrix rE T has two complex conjugate eigenvalues

2

2 2

12 (6 3 3) (1)

12 6

r r
r

r r

i    


  

    


 
, (46)

formula (45) determines eight different eigenvalues of the matrix S . It follows from

(46) that

 

2

2 2 2 2

2 2

2
2 2

2

2 2 2 2 2

12 (6 3) (1) 3
Re() 1 ,

12 6 12 6

3
Im() ,

12 6

12 (6 3) (1) 3 6 2 1
1 .

(12 6) 12 6

r r r
r

r r r r

r
r

r r

r r r r
r

r r r r

      


     




  

       


     

    
  

   

 
 

      
  

   

 (47)

The squared modulus of the eigenvalue () S is calculated as

16

   

   

   

22 2 2 2

2 22 2 2 2

2 2

() () () 1 4Re 1 4Re

1 4Re 4 2 Re Re Im Im

2 Re Re Im Im 2 Re Re Im Im .

z y x y z x

x z y z y x z y z y x

z x z x y y x y x z

        

          

         

     

     

   

S S S

 (48)

Using (47) and (48), we find the squared spectral radius of S :

22

2 2 2 2 2 2

2 2 2

2 2 2 2 2

(, ,)
() max () 1 ,

(12 6)(12 6)(12 6)

(, ,) 144 ()

72 3 () () ()

12 (2 1)() (7 2 2)(

z y x

z z y y x x

z y x z y x z y x

z y x y x z z x y z y x

z y x z y z x

f

f

  
 

        

        

            

         

  
     

    

         

       

S S

3 2 3

)

6(4 2 3 2)() (3 2)(2 3 2).

y x

z y x

 

        

   

         

 (49)

It follows from (49) that the spectral radius of the step matrix of the stationary

iterative process (42) is less that unity for any 0, 0, 0, 1z y x       . Therefore, the

iterations always converge.

Note that the convergence of the iterative approximate factorization method for

bicompact schemes as applied to the nonstationary 3D linear homogeneous transport

equation was proved in [10].

4. Parallel implementation of numerical algorithms

Although bicompact schemes are implicit, due to their logical simplicity, they

can be efficiently solved by applying the space marching method, which is well

suited for parallelization. A parallel space marching algorithm is a method for wave

data processing with pipelining. The algorithm can be implemented on both shared

and distributed memory systems. It should be emphasized that the compact stencil of

a bicompact scheme leads to a minimum amount of data to be exchanged between the

processors in the case of distributed memory.

Moreover, the factorized version of the scheme can also be parallelized with

higher efficiency, since the one-dimensional problems along each grid line can be

solved independently.

In this section, we describe parallel implementations of the original and

factorized schemes. The efficiency of parallel processing and the scalability of both

algorithms are compared as applied to a test initial–boundary value problem for the

two-dimensional nonstationary transport equation with a stiff source term.

4.1. Parallel space marching algorithm
Consider a parallel implementation of the algorithm for the scalar

inhomogeneous transport equation on shared memory systems with OpenMP

17

technology. The sequence of computations in the parallel algorithm is schematically

shown in Fig. 1.

Fig. 1. Schematic view of parallel space marching computations for four threads.

Suppose that the computational domain consists of x yN N cells and the

number of threads is equal to p . The grid is divided into p parts in the x direction.

Assume that /xN p is an integer. The computation at a single time step within each

stage of the Runge–Kutta method is represented as a sequence of stages. At every

stage, each of the threads involved executes computations within a cell block of size

() 1xN p  . All threads perform computations in parallel and independently. The next

stage begins when all threads have completed all their procedures at the preceding

stage; i.e., a barrier for threads is necessary at the end of every stage. The sequence of

stages shown in Fig. 1 guarantees that, at every stage, in each block all boundary

values required for the space marching method are either known from the boundary

conditions or have been computed earlier.

The efficiency of parallelization can be roughly estimated neglecting the loss

due to the synchronization of the threads. Let 1T denote the computation time within a

single cell. Then the running time of the sequential algorithm at a single time step is

1x yN N T . The number of stages in the parallel method is 1yN p  , and each thread

18

computes /xN p cells, so the computation time is 1(1)y xT N p N  and the speedup S

is given by

1

1

= =
(1) / 1 (1) /

x y

y x y

N N T p
S

T N p N p p N   
. (50)

This formula shows that, even if the ratio / yp N is not very small, the

theoretical speedup is close to the ideal one.

It should be noted that the block size can be chosen depending on the cache

size and other parameters of the computing device in order to improve the scalability

of the computations.

The scalability of the parallel algorithm was checked by computing the test

initial–boundary value problem

0

= 0, (,) [0,1] [0,1], [0,],

(, ,0) = (,), (0, ,) = 0, (,0,) = 0

t x yu au bu u q x y t T

u x y u x y u y t u x t

      
 (51)

with an initial condition in the form of the compactly supported smooth pulse

   

7 6
2 2

0 1 (4 1) 1 (4 1) , | 4 1| 1, | 4 1| 1,
(,) =

0, | 4 1| 1, | 4 1| 1.

x y x y
u x y

x y

        


   

 (52)

The parameters were specified as = =1, = 0.5, =1a b T  , the source was defined as
0= (,)q u x at y bt   , and the exacxt solution was given by 0(, ,) = (,)exu x y t u x at y bt  .

The computations were executed on a grid consisting of 2048 2048 cells. The fifth-

order accurate ESDIRK75 method from [11] was used for time stepping.

The test computations were performed on a computational node of the MVS-

10P system consisting of two 8-core Xeon E5-2690 processors at the Joint

Supercomputer Center of the Russian Academy of Sciences and on an Intel Xeon Phi

5110p coprocessor at the Laboratory of Mathematical Simulation of Nonlinear

Processes in Gas Media of the Moscow Institute of Physics and Technology. The

Intel Xeon Phi 5110p coprocessor contains 61 physical cores, each supporting four

threads.

Figure 2 shows the computation time of a single time step as a function of the

number of threads on a logarithmic scale. In both cases, the speedup of the algorithm

is close to the ideal one. On the Xeon E5-2690 processor with 16 threads, the speedup

is equal to 11 and the efficiency of parallelization is approximately 70%. On the Intel

Xeon Phi 5110p coprocessor with 60 threads, the speedup is 47 and the efficiency of

parallelization is about 80%. These results suggest that the parallel space marching

algorithm is well scalable on shared memory systems. Moreover, the simple logical

structure of the algorithm makes it possible to easily use vectorization, which can

19

potentially speed up the computations by four times on Xeon processors and by eight

times on Xeon Phi processors.

The scheme of the algorithm described can be extended nearly without

modifications to the three-dimensional case. Specifically, the grid is divided, for

example, in the z direction into two-dimensional layers, and the computations in each

layer are executed in the order shown in Fig. 1. The only difference is that a linear

system of eight equations is solved in each cell.

Fig. 2. Computation time per step against the number of threads.

4.2. Parallel factorized algorithm
At every iteration step of the factorized 2D scheme, the space marching method

can be used to independently solve the one-dimensional problems (21) along each

cell layer = , =1, xj const j N , and the one-dimensional problems (22), (23) along the

cell layer = , =1, yk const k N . Algorithmically, these operations represent one-

dimensional loops. On shared memory systems, they can be parallelized with the help

of OpenMP by adding the simple instruction !$omp parallel do. Good load balancing

and good scalability of the algorithm can be expected if the number of cells in each

direction is a multiple of the number of threads or if it is not a multiple, but much

greater than the number of threads.

20

The scalability of the parallel factorized algorithm was examined as applied to

test problem (51), (52). In practice, such problems are solved on relatively small grids

with a number of cells being ≤102 in each direction. In the three-dimensional case,

this yields a grid with 106 cells. Therefore, it is important to compare the scalability

of the parallel space marching algorithm and the parallel factorized algorithm on such

grids: in the sequential case, the factorized scheme takes more time than space

marching, because of the large number of iterations. However, the parallel space

marching algorithm is poorly scalable when the ratio / xp N is large.

In the factorized scheme, the stopping criterion was as follows: at every step s

of the Runge–Kutta method, in solving an ODE system of semidiscrete bicompact

scheme with a right-hand side f , the difference between the values

=1
= (,)

sn

s s sq qq
k f t c u a k at the current i th and preceding (1i )th iteration steps

must be less in absolute value than the prescribe parameter tol :

() (1)

, ,
,

| () () |<max
i i

s j k s j k
j k

k k tol , (53)

where sc , sqa are the coefficients of the Runge–Kutta method (see Appendix). As an

initial approximation, we used zero values of ,()s j kk .

These features of algorithms are especially important in using modern

computational architectures with a large number of threads and a relatively low

efficiency of an individual core (computing device). For example, Intel processors of

the last Xeon Phi generation have 61 to 72 cores per processor, and up to four threads

can be executed on each core. Moreover, such processors possess low efficiency and

storage as compared with processors having fewer cores (8–12). Therefore, to use the

capabilities of such processors to a full extent, we need algorithms that are well

scalable on small-sized problems.

In Fig. 3 the computation time required for the problem is plotted as a function

of the number of threads used in the space marching and factorized algorithms run on

a 12-core Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70 GHz processor. Problem (51),

(52) was solved by applying the SDIRK54 method [12] on a grid consisting of 48х48

cells. The number of time steps was 48. The parameter tol was specified as 2=10tol  ,

and the average number of iterations required for achieving the prescribed accuracy

was equal to 3.65. The factorized scheme gave the same error as the usual scheme:
4|| || = 4.0 10Err 

  .

As was expected, the space marching algorithm is poorly scalable on such a

fine grid, since the ratio of the number of threads to the number of cells in each

direction is rather large (0.25 for 12 threads). The efficiency of parallel execution is

40% for 12 threads.

The factorized algorithm demonstrates good scalability up to 12 threads, and

its efficiency is equal to 74%. The sequential factorized algorithm is slower by a

21

factor of 1.6 than sequential space marching. However, due to its good scalability, the

factorized scheme on 12 threads is faster than space marching.

Fig. 3. Computation time against the number of threads

for the original and factorized schemes.

In Fig. 4, the computation time required for solving problem (51), (52) on a

grid of 60х60 cells with the number of time steps equal to 60 is plotted against the

number of threads for the space marching and factorized algorithms run on an Intel

Xeon Phi 5110p processor with 61 physical cores, each executing up to four threads.

Here, 2=10tol  and the average number of iterations used for achieving the prescribed

accuracy is equal to 2.77. The factorized scheme gives the same error as the usual

scheme: 4|| || =1.6 10Err 

  .

In this example, the ratio of the maximum number of threads to the number of

cells in each direction is 1, so the space marching algorithm is scalable only up to 12

threads. The efficiency is 50% for 12 threads and 4% for 60 threads. This means that

the parallel space marching algorithm fails to use the entire efficiency of the Xeon

Phi processor as applied to such problems.

The factorized algorithm exhibits a satisfactory scalability. Its efficiency is

equal to 50% for 60 threads. On a single core, the factorized algorithm is slower by a

factor of 1.6 than the sequential space marching algorithm. On 60 cores, the

computation time required for the factorized scheme is 1/3 times as much as the least

computation time for space marching (on 12 cores).

22

These test computations show that the factorized scheme is preferable for

parallel implementation: first, the factorized sequential algorithm is easy to

parallelize and, second, on grids of middle size (which are most frequently used in

practice) the factorized scheme requires less time. It should be noted that the

advantage of the factorized scheme is even greater when three-dimensional problems

are solved.

Fig. 4. Computation time against the number of threads

for the original and factorized schemes.

5. Conclusions
The efficiency of two parallel algorithms for solving equations of high-order

accurate bicompact schemes as applied to the multidimensional inhomogeneous

transport equation was compared. The first of them is the space marching algorithm

for computing unfactorized schemes, and the second one is based on the approximate

factorization of multidimensional schemes. The latter algorithm involves iterations

used to preserve the high (higher than the second) order of accuracy of bicompact

schemes in time. The convergence of these iterations for the nonstationary two- and

three-dimensional linear inhomogeneous transport equations with constant positive

coefficients was proved. The test computations showed that the algorithm based on

factorized bicompact schemes is preferable in terms of parallel implementation.

23

Appendix: Coefficients of diagonally implicit Runge–Kutta

methods
The Butcher tableau for SDIRK54 [12], which is a fourth-order DIRK method

with five implicit stages, is given by

1 4 1 4

0 1 4 1 4

1 2 1 8 1 8 1 4

1 3 2 3 4 3 2 1 4

1 0 1 6 2 3 1 12 1 4

0 1 6 2 3 1 12 1 4

T










c A

b

Below is the Butcher tableau for ESDIRK75, which is a fifth-order DIRK

method with six implicit stages and one explicit stage [11]:

0 0

0.4 0.2 0.2

0.6 0.25 0.15 0.2

1 0.6214285714 -0.9642857142 1.1428571428 0.2

0.8 0.2657743915 0.4927153439 -0.3035089947 0.1450192592 0.2

0.2 0.0448367885 -0.2368271451 0.2540183114 -0.1402888244 0.0782608695 0.2

1 0.065

T 
c A

b

9722222 0.1736111111 0.1736111111 -0.1340277777 0.2604166666 0.2604166666 0.2

0.0659722222 0.1736111111 0.1736111111 -0.1340277777 0.2604166666 0.2604166666 0.2

References

1. Shilkov A.V., Gertsev M.N., Aristova E.N., Shilkova S.V. Benchmark «line-

by-line» calculations of atmospheric radiation // Computer Research and Modeling.

2012. V. 4, No. 3, P. 553–562 (Russian).

2. Rozanov V.B., Vergunova G.A., Aristova E.N. et al. Interaction of laser

radiation with a low-density structured absorber // JETP. 2016. V. 122. No. 2, P. 256–

276.

3. Baydin D.F., Aristova E.N. 3D hexagonal parallel code QuDiff for calculating

a fast reactor’s critical parameters // Math. Models Comput. Simul. 2016. V. 8, No. 4.

P. 446–452.

4. Rogov B.V., Mikhailovskaya M.N. Fourth-order accurate bicompact schemes

for hyperbolic equations // Dokl. Math. 2010. V. 81, No. 1. P. 146–150.

5. Aristova E.N., Rogov B.V. Boundary conditions implementation in

bicompact schemes for the linear transport equation // Math. Models Comput. Simul.

2013. V. 5, No. 3. P. 199–207.

6. Aristova E.N., Rogov B.V., Chikitkin A.V. Optimal monotonization of a

high-order accurate bicompact scheme for the nonstationary multidimensional

transport equation // Comput. Math. Math. Phys. 2016. V. 56, No. 6. P. 962–976.

https://link.springer.com/journal/12608/8/4/page/1
https://link.springer.com/journal/11470/56/6/page/1

24

7. Chikitkin A.V., Rogov B.V., Aristova E.N. High-order accurate bicompact

schemes for solving the multidimensional inhomogeneous transport equation and

their efficient parallel implementation // Dokl. Math. 2016. V. 94, No. 2. P. 517–522.

8. Bragin M.D., Rogov B.V. Minimal dissipation hybrid bicompact schemes for

hyperbolic equations // Comput. Math. Math. Phys. 2016. V. 56, No. 6. P. 947–961.

9. Bragin M.D., Rogov B.V. Iterative approximate factorization of difference

operators of high-order accurate bicompact schemes for multidimensional

nonhomogeneous quasilinear hyperbolic systems // Comput. Math. Math. Phys. 2018.

V. 58, No. 3. P. 295–306.

10. Rogov B.V., Bragin M.D. On the convergence of the method of iterative

approximate factorization of difference operators of high-order accurate bicompact

scheme for nonstationary three-dimensional hyperbolic equations // Keldysh Institute

Preprints. 2018. No. 132. 16 p. doi:10.20948/prepr-2018-132-e. URL:

http://library.keldysh.ru/preprint.asp?id=2018-132&lg=e.

11. Skvortsov L.M. Diagonally implicit Runge–Kutta FSAL methods for stiff

and differential-algebraic systems // Matem. Mod. 2002. V. 14, No. 2. P. 3–17

(Russian).

12. Skvortsov L.M. Diagonally implicit Runge-Kutta methods for stiff problems

// Comput. Math. Math. Phys. 2006. V. 46, No. 12. P. 2110–2123.

13. Watkins D.S. Fundamentals of matrix computations. New York: Wiley

Interscience, 2002.

Contents

1. Introduction ... 3

2. Bicompact Schemes .. 4

3. The iterative approximate factorization method ... 8

 3.1. Two-dimensional scheme .. 9

 3.2. Three-dimensional scheme .. 12

4. Parallel implementation of numerical algorithms ... 16

 4.1. Parallel space marching algorithm ... 17

 4.2. Parallel factorization algorithm .. 19

5. Conclusions ... 22

Appendix: Coefficients of diagonally implicit Runge–Kutta methods 23

References ... 23

