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For the numerical solution of nonstationary quasilinear hyperbolic equations, a 

family of symmetric semidiscrete bicompact schemes based on collocation 

polynomials is constructed in the one- and multidimensional cases. A dispersion 

analysis of semidiscrete bicompact schemes of fourth to eighth orders of accuracy in 

space is performed. Numerical examples are presented that demonstrate the ability of 

the bicompact schemes to adequately simulate wave propagation, including short 

waves, on highly nonuniform grids at long times. The properties of solutions of 

bicompact schemes in the problem of transfer of a stepwise initial profile are also 

considered. 
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1. Introduction 
The numerical simulation of acoustic, electromagnetic, and elastic wave 

propagation over long distances at long times requires schemes with low dissipation 

and dispersion. An example of schemes with such properties is provided by widely 

used symmetric compact schemes, which have a better spectral resolution than 

classical symmetric difference schemes of the same order of accuracy [1-3]. 

Recently, a family of semidiscrete symmetric compact schemes with a good spectral 

resolution has been proposed in [4] for the numerical solution of multiscale problems 

arising in computational aeroacoustics and direct numerical modeling of turbulence. 

In [4] the sixth- and eighth-order accurate schemes from this family were called 

optimal in terms of their accuracy-to-complexity ratio. However, these schemes can 

be used only on uniform or slightly nonuniform grids [1, 5], since their stencil 

consists of at least three integer nodes in each spatial direction. 

For the numerical solution of the 1D quasilinear transport equation, a 

semidiscrete bicompact scheme of fourth-order accuracy in space was constructed in 

[6] by using the method of lines on a spatial stencil consisting of one half-integer and 

two integer nodes located within a single grid cell. This scheme contains two 

difference equations, so its effective difference order, which is defined as the 

difference between the total number of stencil nodes and the number of equations in 

the scheme, is equal to unity and coincides with the order of the differential transport 

equation with respect to spatial variable. A consequence of this coincidence of the 

orders is that the differential and difference problems have the same number of 

boundary conditions. Moreover, in the case of a sign-definite transport velocity, the 

semidiscrete scheme can be solved by marching computations in space [6]. The order 

of accuracy of the bicompact scheme are preserved in the transition from uniform to 

highly nonuniform grids. To integrate the equations of the semidiscrete scheme with 

respect to time, A- and L-stable multistage diagonally implicit Runge-Kutta (RK) 

methods were proposed, which are computationally more efficient than fully implicit 

RK methods [7]. In [8-10] the scheme from [6] was extended to systems of equations 

and to the multidimensional case. However, the fourth order of approximation in 

space may be insufficient for the numerical solution of multiscale problems, which 

require schemes with a higher spectral resolution. Therefore, for the numerical 

solution of hyperbolic equations, a family of symmetric semidiscrete bicompact 

schemes of arbitrary even order of accuracy in space is constructed in [11]. The 

spatial stencils of implicit bicompact schemes consist of two integer and several 

fractional nodes located within a single grid cell; moreover, the grid function values 

in a cell are related by a collocation polynomial. 

In this work, a dispersion analysis of schemes of fourth to eighth orders of 

accuracy in space from the family of semidiscrete bicompact schemes [11] is 

presented. It is shown that the phase error of the sixth- and eighth-order accurate 

bicompact schemes does not exceed 0.2% and 0.03%, respectively, in the entire range 

of dimensionless wave numbers. A number of numerical examples are presented that 

demonstrate the ability of the bicompact schemes to adequately simulate wave 
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propagation on highly nonuniform grids at long times. The properties of solutions of 

the bicompact schemes in the problem of transfer of a stepwise initial profile are also 

considered. 

2. Bicompact schemes as compact collocation-type ones 
Using the scalar quasilinear transport equation 

 
( ) ( )

0, 0
u f u df u

t x du

 
  

 
 (1) 

as an example, we show (see [11]) that semidiscrete bicompact schemes, including 

the fourth-order accurate one from [6], can be constructed by applying collocation 

polynomials. For this purpose, we first consider the ordinary differential equation 

(ODE) 

 ( , )xu x u , (2) 

where the subscript x denotes differentiation with respect to x. On the x axis, we 

introduce a nonuniform grid of integer nodes jx  with steps , 1/2 1x j j jh x x   . Since the 

subsequent presentation is concerned with only one spatial cell 1[ , ]j jx x  , the second 

index on , 1/2x jh   is omitted. Assume that we are given nodal coefficients (hereafter, 

for brevity, nodes) of collocation, i.e., real numbers [0,1]c  , 1, s  , where 3s   is a 

positive integer. The collocation nodes are assumed to be symmetric with respect to 

the midpoints of the interval [0,1]  and 1 0, 1sc c  . An approximate solution of Eq. 

(2) with initial condition ( )j ju x u  on the interval [ , ]j j xx x h  is sought in the form 

of a collocation polynomial ( )sp x  of degree s satisfying the conditions 

 ( ) ( , ( )), 1, , ( )s j x j x s j x s j jp x c h x c h p x c h s p x u          ,  

where ( )s sp x dp dx  . We introduce the following notation: 

 ( ), ( , ), , 1,j s j j j j j j xu p x x u x x c h s
              (3) 

where j j c   . The derivative of ( )sp x  can be uniquely expressed using a 

Lagrange interpolating polynomial: 

 
1 1, ,

( ) ( ), ( ) , [0,1]
s

s j x j

s

c
p x h l l

c c


 

   
 


    

 



    


   (4) 
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Integrating the left equality in (4) with respect to   on the intervals 1[ , ]c c   

( 1, 1s   ) and taking into account notation (3), we obtain 1s   linearly independent 

relations between ju


 and j
 : 

 
1

1

, 1, 1
s

j j x ju u h a s
  



 




     (5) 

where 

 

1

( ) , 1, 1, 1,

c

c

a l d s s




     


     (6) 

System (5) is a one-step collocation difference scheme for integrating ODE (2) 

and is equivalent to an implicit RK method [7]. The stencil of this scheme consists of 

two integer nodes and 2s   fractional nodes. Equations (5) can also be treated as a 

system of equations for determining 1s   grid functions, namely, the basic function 

 ju  defined at integer nodes and the auxiliary functions  ju


( 2, 1s   ) defined at 

fractional nodes. The effective difference order of system (5), which is defined as the 

difference between the total number of stencil nodes and the total number of 

equations, is equal to unity. As a result, Eqs. (5) can be solved by the marching 

method with respect to x. 

In what follows, we need the stability function [7] of the one-step scheme (5) for 

ODE (2) with a linear right-hand side ( , ) ,x u u const    , i.e., for the linear 

Dahlquist equation [7]. In this case, scheme (5) becomes 

 
1

1

, , 1, 1
s

j j j xu u z a u z h s
  



 




     . (7) 

where   is generally a complex constant. The stability function ( )R z  of scheme (7) 

relates the grid function values at neighboring integer nodes: 

 1 ( )j ju R z u   (8) 

where 
11 ,

sj j j ju u u u   , since 1 0, 1sc c  . 

For the ODE 

 ( ) ( , )xf u x u  (9) 

a collocation difference scheme similar to scheme (5) for Eq. (2) has the form 
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1

1

, ( ), 1, 1
s

j j x j j jf f h a f f u s
    



 




      (10) 

To obtain a semidiscrete scheme (i.e., difference in x and continuous in t) for 

transport equation (1), we set u t     on the right-hand side of Eq. (9). Making 

the substitution u t     in (10) yields the system of evolution ODEs 

 
1

1

( ) 0, 1, 1
s

x j j jh a u t f f s
  








        (11) 

which is a semidiscrete difference scheme for Eq. (1). Note that other equivalent 

forms of this scheme can be obtained by setting up independent linear combinations 

of Eqs. (11). 

 If s = 3 and the collocation nodes are evenly spaced ( 1 2 30, 1 2, 1c c c   ), 

scheme (11) consists of two equations with the coefficient matrix  aA  given by 

 4

5 1 1

24 3 24

1 1 5

24 3 24

 
 

   
 
  

A A  (12) 

Adding up these equations and subtracting them from one another, we obtain an 

equivalent scheme 

 

1

1/2 1

1 1/2

1

4 0,
6

( 2 ) 0.
4

x
j j

j j j

x
j j j

j j

h u u u
f f

t t t

h u u
f f f

t t



 

 



        
          

         

     
        

      

 (13) 

Scheme (13) coincides with the semidiscrete bicompact one from [6], which is 

fourth-order accurate in x [8-10]. The subscript on A in (12) shows the order of 

accuracy of the scheme in x. Note that the collocation nodes of this scheme are the 

nodes of the Lobatto quadrature formula [7], which are the roots of the polynomial 

  
2

1 1

2
( 1)

s
s s

s

d
x x

dx


 


   

The stability function of scheme (7) with the coefficient matrix 4A  has the form 

 
2

4 2

6 12
( ) ( )

6 12

z z
R z R z

z z

 
 

 
 (14) 
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and is the (2,2)-Padé approximant of the exponential 
ze . Let z x iy  , where x and y 

are real values and i is the imaginary unit. Then, from formula (14), we conclude that 

scheme (7) with the coefficient matrix (12) is (i) A-stable [7], i.e., ( ) 1R z   for 

Re 0z  ; and (ii) monotone [12, p. 41], i.e., A-stable and ( ) 0R x   for 0x  . 

If s = 5 and the collocation nodes are evenly spaced 

1 2 3 4 5( 0, 1 4, 1 2, 3 4, 1)c c c c c     , then scheme (11) consists of four equations 

with the coefficient matrix given by 

 6

251 646 264 106 19

19 346 456 74 111

11 74 456 346 192880

19 106 264 646 251

  
 
 
  
  
 
  

A A  (15) 

The stability function of scheme (7) with the coefficient matrix 6A  has the form 

 
4 3 2

4 3 26

3 50 420 1920 3840

3 50 420 1920 3
( ) )

4
(

8 0

z z z z
R z R z

z z z z

  




  



 (16) 

and satisfies  

 ( ) 1R z   при Re 0z  ; ( ) 0R x   при 0x  . (17) 

The fulfillment of conditions (17) means that scheme (7) with the coefficient matrix 

6A  is A-stable and monotone. 

In the case of s = 5 and evenly spaced collocation nodes 

1 2 3 4 5( 0, 0.5 3 28, 0.5, 0.5 3 28, 1)c c c c c       , which are nodes of the 

Lobatto quadrature formula, scheme (11) also consists of four equations with the 

coefficient matrix given by 
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1

141120

8568 216 21 19208 504 21 25088 6144 21 19208 3864 21 1512 216 21

2835 216 21 5649 21 6144 21 1281 21 2835 216 21

2835 216 21 1281 21 6144 21 5649 21 2835 216 21

1512 216 21 19208 3864 21 25088 6144 21 19208 504 21 8568

  

     

   


   

    

A A

216 21

 
 
 
 
 
 

 

 
(18) 

The stability function of scheme (7) with the coefficient matrix 8A  has the form 

 
4 3 2

4 3 28

20 1
( )

80 840
(

1680

20 180 840 16 0
)

8

z z z z
R z R z

z z z z

 




 

 



 (19) 



8 

and is the (4,4)-Padé approximant of the exponential 
ze . This function satisfies 

inequalities (17); therefore, scheme (7) with the coefficient matrix 8A  is A-stable and 

monotone. 

Based on collocation polynomials, the method for constructing schemes (11), 

(15) and (11), (18) implies that their order of accuracy in space is equal to six and 

eight, respectively [7]. In Section 4, this conclusion will be confirmed by numerical 

computations. 

With the help of collocation polynomials, it is easy to construct bicompact 

schemes in several dimensions. For simplicity, we show this in the two-dimensional 

case. First, consider the stationary quasilinear transport equation 

 ( ) ( ) ( , , )x yf u g u x y u   (20) 

The semidiscrete scheme (10) for Eq. (9) is rewritten as 

 
1 1

, 1, , 1
s s

j x jb f h a s
  

 

 
 

     (21) 

where the elements of the matrix  bB  are given by the formulas 

 

1,

1, 1 , 1, 1, 1,

0, , 1

b s s

 

   

  

 


     
  

 (22) 

For the equation 

 ( ) ( , )yg u y u  (23) 

we use a difference scheme similar to (21), namely, 

 
1 1

, 1, , 1
s s

k y kb g h a s
  

 

 
 

    , (24) 

where k k c    and k is used to index the integer grid nodes on the y axis. For Eq. 

(20), applying the same x-discretization as in deriving scheme (21) for Eq. (9) and, 

then, the same y-discretization as in deriving scheme (24) for Eq. (23), we obtain a 

two-dimensional bicompact scheme with equations 

 1 1 1 1 1 1

,

, 1, 1

s s s s s s

y j k x j k x y j kh a b f h a b g h h a a

s

                

     



 

     

     

 

   

  
 (25) 
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where ( ), ( ), ( , , ),j k j k j k j k j k j k j k k k yf f u g g u x y u y y c h
                     , and j ku

 
 

is the grid function value at the node ( , ) ( , )j kx y x y
 

 . To derive a bicompact scheme 

for the nonstationary homogeneous transport equation  

 ( ) ( ) 0t x yu f u g u    (26) 

we formally substitute ( , , ) tx y u u    into Eqs. (25) to obtain 

 1 1 1 1 1 1

( ) 0,

, 1, 1

s s s s s s

x y t j k y j k x j kh h a a u h a b f h a b g

s

                

     

 

     

     

  

   

  
 (27) 

If high-order accurate multistage diagonally implicit RK methods are used to 

integrate ODE system (27), the system of difference equations arising at every stage 

of these methods can be efficiently solved using iterated approximate factorization 

[13]. 

3. Dispersion properties of semidiscrete bicompact schemes 
The dispersion properties of the fourth- and sixth-order accurate bicompact 

schemes (13) and (11), (15) were examined in [11,14]. In [15] an optimized 

semidiscrete symmetric bicompact scheme of the sixth-order accurate was found; it 

has a group velocity that deviates least from the exact group velocity. In this paper, 

the analysis of dispersion properties of the eight-order bicompact scheme (11), (18) is 

presented for the first time. However, to compare the properties of bicompact 

schemes with different orders of accuracy, we also present the results of the 

dispersion analysis for the fourth- and sixth-order schemes from [11,14]. 

The dispersion and dissipation of a scheme is usually estimated using the 

Cauchy problem for Eq. (1) with a linear function  

 ( ) , 0f u cu c const    (28) 

periodic initial data ( ,0) exp( )u x ikx , and the exact solution 

 ( )( , ) ik x ctu x t e   (29) 

where k is the physical (exact) wave number and c is the phase velocity. 

According to formula (11), the bicompact scheme from Section 2 for Eq. (1) 

with function (28) has the form 

 
1

1

( ) ( ) 0, 1, 1
s

x j j jh a u t c u u s
  








        (30) 
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The basic semidiscrete function ( )mu t  in (30) (which is defined at integer nodes) 

is sought in the form of a traveling wave 

 
* *( )

( ) , , 1m mik x c t ikx ik ct

mu t e e e m j j
     , (31) 

where 
*c  is the numerical phase velocity, 

* *k kc c  is the effective (numerical) 

wave number [16], and ( )ju t


 are auxiliary semidiscrete functions defined at 

fractional nodes as 

 
*

1 1( ) , , 2, 1jikx ik ct

ju t e e const s

    

     . (32) 

Substituting functions (31) and (32) into the system of linear ODES (30), we 

derive s1 algebraic equations for determining s1 unknowns:   ( 1, 2s   ) and the 

dimensionless effective wave number 
* *

xk h  . It follows from (31) and (32) that 

 
*( ) , 1,j ju t ik cu s

 
     ,  

Therefore, Eq. (30) yields the following relation between these functions: 

 
1

*

1

, 1, 1
s

j j x ju u ik h a u s
  








    . (33) 

Comparing Eqs. (7) with (33) and taking into account (8), we obtain the following 

relation between functions (31) at integer nodes: 

 
*

1 ( )j ju R i u   (34) 

where ( )R z  is the stability function of the one-step scheme (7). Substituting (31) into 

formula (34) yields the relation between *  and the dimensionless wave number 

xkh  : 

 *( ) iR i e   . (35) 

Note that formulas (14), (16), and (19) imply that 

 
*( ) 1, 4,6,8mR i m   ,  

Therefore, a solution of Eq. (35) exists if ( )R z  is the stability function ( )mR z , 

4,6,8m  . Consider the solutions of Eq. (35) for these stability functions. 

For the fourth-order accurate semidiscrete bicompact scheme (30) with the 

coefficient matrix 4A , Eq. (35) with 4( ) ( )R z R z  can be transformed into  
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 * 2 *( ) 6cot( 2) 12 0     . (36) 

From (36), we obtain an explicit dependence of   on 
* : 

 
*

* 2

6
2arctan

12 ( )

 
  

 





. (37) 

Dependence (37) for [ , ]     is depicted by three curves in Fig. 1. These 

curves do not intersect; moreover, only one of them (curve 1) passes through the 

point (0,0) in the 
*( , )   plane and corresponds to the physical solution. 

Since function (37) is odd, the subsequent consideration is restricted to the case 

[0, ]  . Dependence (37) is easy to invert on curve 1 to obtain  

 
* 23 cot ( 2) 4 3 cot( 2) , [0, ]    

 
     . (38) 

 

 

Fig. 1. The dimensionless exact wave number as a function of the dimensionless 

effective wave number for the semidiscrete bicompact scheme of the 4th order of 

accuracy. 
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For the fourth-order bicompact scheme, the group velocity gc  of a wave packet 

is given by 

 
*

2 2

3 1
1

2sin ( 2) 1 4 tan ( 2) 3

gc d

c d

 
   
  



  
  

which is positive for all dimensionless wave numbers. Therefore, when applied to the 

computation of wave propagation on a highly nonuniform grid, this scheme does not 

lead [14] to wave reflection from the grid or the formation of spurious waves [17-19]. 

As was noted above, the effective difference order of the system of differential-

difference equations (30) is equal to unity and coincides with the order of differential 

equation (1) in х. To use scheme (30), we need to specify only one boundary 

condition on the left, which coincides with the boundary condition for Eq. (1) with 

function (28) (i.e., no additional boundary condition on the right is required). 

Therefore, only one branch of the solution to Eq. (37) participates in the formation of 

the numerical solution. This branch is determined by a single boundary condition and 

is described by curve 1 in Fig. 1. If the effective difference order of scheme (30) were 

higher than unity and, accordingly, the number of difference boundary conditions 

were more than one, such a scheme would be capable of maintaining spurious 

numerical waves [3, p. 539]. 

Figure 2 displays the dimensionless effective wave number *  as a function of 

the dimensionless exact wave number   for several symmetric compact schemes. 

The thick straight line depicts the ideal dependence *  . In Fig. 3 the 

dimensionless numerical group velocity 
*

gc c d d   is plotted as a function of   

for the same schemes as in Fig. 2. Inspection of Fig. 3 shows that the dimensionless 

numerical group velocity is positive in the case of the fourth-order bicompact scheme 

and nonnegative in the case of the fourth-order compact scheme CCS-T4 [4] for all 

wavelengths. The traditional tridiagonal compact schemes of fourth, sixth, and eighth 

orders of accuracy from [20] yield negative group velocities in the short wavelength 

range. Note that, according to the group velocity control theory for shock-capturing 

schemes [21, 22], the bicompact scheme is of the fast type, while CCS-T4 [4] and 

traditional compact schemes are of the slow type. 

The phase error of a scheme is usually characterized by the quantity 
* *1 1c c     . Figure 2 shows that this error for CCS-T4 [4] is more than twice 

as large as that for the bicompact scheme. The maximum phase errors for the 

bicompact scheme and CCS-T4 [4] are 10.3% and 23.6%, respectively. They are 

observed at the shortest wavelength resolvable by the grid, which corresponds to 
  . Note that the fourth-order bicompact scheme and CCS-T4 [4] both contain 

two difference equations. At the same time, the stencil of the former consists of two 

integer nodes and one half-integer node, while the stencil of the latter is composed of 

three integer and three half-integer nodes. 
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For the sixth-order accurate semidiscrete bicompact scheme (30) with the 

coefficient matrix 6A , Eq. (35) with 6( ) ( )R z R z  can be transformed into 

 * 4 * 3 * 2 *3( ) 50cot( 2)( ) 420( ) 1920cot( 2) 3840 0          . (39) 

From Eq. (39),   can be explicitly expressed in terms of * : 

 

* * 2

* 4 * 2

1920 50( )
2arctan

3 ( ) 140( ) 1280

    
     

 


 
. (40) 

 

  

Fig. 2. The dimensionless effective wave 

number as a function of the dimensionless 

exact wave number for various symmetric 

semidiscrete schemes. Curves: 1 - 

bicompact scheme of the 4th order of 

accuracy; 2 - compact scheme CCS-T4 of 

the 4th order of accuracy [4]; 3 - 

tridiagonal standard compact scheme of 

the 4th order of accuracy [20]; 4 – 

tridiagonal standard compact scheme of 

the 6th order of accuracy [20]; 5 - 

tridiagonal compact scheme of the 8th 

order of accuracy [20]. The thick line 

shows an ideal relationship *  . 

Fig. 3. The dimensionless numerical 

group velocity as a function of the 

dimensionless exact wave number for 

various symmetric semidiscrete schemes. 

Curves: 1 - bicompact scheme of the 4th 

order of accuracy; 2 - compact scheme 

CCS-T4 of the 4th order of accuracy [4]; 

3 - tridiagonal standard compact scheme 

of the 4th order of accuracy [20]; 4 - 

tridiagonal standard compact scheme of 

the 6th order of accuracy [20]; 5 - 

tridiagonal compact scheme of the 8th 

order of accuracy [20]. 
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For the eighth-order accurate bicompact scheme (30) with the coefficient 

matrix 8A , Eq. (35) with 8( ) ( )R z R z  can be transformed into  

 * 4 * 3 * 2 *( ) 20cot( 2)( ) 180( ) 840cot( 2) 1680 0          . (41) 

From Eq. (41),   can be explicitly expressed in terms of *  as 

 

* * 2

* 4 * 2

20 42 ( )
2arctan

( ) 180( ) 1680

    
  
 

 


 
. (42) 

Dependences (40) and (42) for [ , ]     are depicted by five curves in Figs. 

4 and 5, respectively. These curves do not intersect; moreover, only one of them 

(curve 1) passes through the point (0,0) in the *( , )   plane and corresponds to the 

physical solution. 

 

 
 

Fig. 4. The dimensionless exact wave 

number as a function of the 

dimensionless effective wave number for 

the semidiscrete bicompact scheme of the 

6th order of accuracy. 

Fig. 5. The dimensionless exact wave 

number as a function of the 

dimensionless effective wave number for 

the semidiscrete bicompact scheme of the 

8th order of accuracy. 

 

Figure 6 shows * 1    as a function of   for the sixth-order accurate 

semidiscrete bicompact scheme and the semidiscrete compact scheme CCS-T6 [4] of 

the same order, which is the best out of the linear schemes for the transport equation 

found in the literature in the sense that it has a small phase error * 1    for all 

[0, ]  . It can be seen that the maximum phase error of the bicompact scheme is 
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1/16 as large as that of CCS-T6 [4] for   , which corresponds to the shortest 

wavelength resolvable by the grid. Figure 7 presents the plot of gc c  against   for 

the same schemes as in Fig. 6. Note that, according to the group velocity control 

theory for shock-capturing schemes [21, 22], the sixth-order accurate bicompact 

scheme and CCS-T6 [4] are of the slow type. 

 

 
 

Fig. 6. Phase error of semidiscrete 

compact schemes. The solid curve 

shows the dependence of the error on 

the dimensionless wave number for the 

bicompact scheme of the 6th order of 

accuracy, the dashed curve for the 

compact scheme CCS-T6 of the 6th 

order of accuracy [4]. 

Fig. 7. Dimensionless numerical group 

velocity of semidiscrete compact schemes. 

The solid curve shows the dependence of 

the velocity on the dimensionless wave 

number for the bicompact scheme of the 

6th order of accuracy, the dashed curve for 

the compact scheme CCS-T6 of the 6th 

order of accuracy [4]. 

 

Figure 8 shows * 1    as a function of   for the eighth-order accurate 

semidiscrete bicompact scheme and the semidiscrete compact scheme CCS-T8 [4] of 

the same order, which is the best out of the linear schemes for the transport equation 

found in the literature in the sense that it has a small phase error for all [0, ]  . The 

maximum phase error of the bicompact scheme is 1/27 times as large as that of CCS-

T8 [4] for   . Figure 9 presents gc c  as a function of   for the same schemes as 

in Fig. 8. Note that, according to the group velocity control theory for shock capture 

[21, 22], the eighth-order accurate bicompact scheme is of the fast type, while CCS-

T8 [4] is of the slow type. 
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Fig. 8. Phase error of semidiscrete 

compact schemes. The solid curve shows 

the dependence of the error on the 

dimensionless wave number for the 

bicompact scheme of the 8th order of 

accuracy, the dashed curve for the 

compact scheme CCS-T8 of the 8th order 

of accuracy [4]. 

Fig. 9. Dimensionless numerical group 

velocity of semidiscrete compact 

schemes. The solid curve shows the 

dependence of the velocity on the 

dimensionless wave number for the 

bicompact scheme of the 8th order of 

accuracy, the dashed curve for the 

compact scheme CCS-T8 of the 8th order 

of accuracy [4]. 

Note that the dispersion analysis of the semidiscrete bicompact schemes was 

restricted to a single grid cell, since their stencils are contained within a single cell. 

As a result, small dispersion error of the bicompact schemes is preserved in the 

transition from uniform to highly nonuniform grids. In contrast to the bicompact 

schemes, the stencils of CCS-T4 and CCS-T6 [4] consist of three integer and three 

half-integer nodes, while the stencil of CCS-T8 [4] is composed of four integer and 

four half-integer nodes. Thus, the stencils of the schemes from [4] extend over 

several grid cells, so their spectral properties determined on uniform grids can be 

approximately transferred only to slightly nonuniform grids [1, 5]. In the case of a 

highly nonuniform grid, this transfer is not valid. 

4. Numerical results 
The following test Cauchy problem was used in [23] to evaluate the ability of 

schemes to correctly reproduce short-wave harmonics on long time intervals when 

applied to transport equations. The task is to numerically solve the transport equation 

 0t xu u   (43) 

with the initial condition 
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  
2

( ,0) 2 cos exp ln 2
10

x
u x x

  
       

   
 (44) 

and the parameter  = 1.7 up to the times 400t   and 800t   on a uniform grid with 

step 1h  . For this step size, the parameter  coincides with . It was proposed in 

[23] that the exact and numerical solutions be compared at 400t   and 800t  . 

In this study, problem (43), (44) was solved on the interval [ 50,50]x   with 

periodic boundary conditions. For time integration, we used the fourth-order accurate 

singly diagonally implicit RK method with five implicit stages SDIRK54 [24], which 

is L-stable and stiffly accurate. Its Butcher tableau [7] is given by 

 

1 4 1 4

0 1 4 1 4

1 2 1 8 1 8 1 4

1 3 2 3 4 3 2 1 4

1 0 1 6 2 3 1 12 1 4

0 1 6 2 3 1 12 1 4









.  

The application of this method to the system of equations of a semidiscrete bicompact 

scheme yields an absolutely stable fully discrete difference scheme [7]. The Courant 

number was specified as CFL = 0.1 for the fourth- and sixth-order bicompact 

schemes and as CFL = 0.06 for the eighth-order bicompact scheme. It was checked 

that the time discretization error was much less than the spatial discretization error. 

Tables 1-3 present the numerical errors Err  in the 1L  and L  norms and the 

local orders of convergence p for the numerical solution at t = 800 for various h. It 

can be seen that the actual order of convergence is close to the order of accuracy of 

the scheme in space. 

 

Table 1 

Errors and orders of convergence of the fourth-order bicompact scheme 

for CFL=0.1 and 1.7   

 Integer nodes All nodes 

h  
1

Err  p  Err


 p  
1

Err  p  E


 p  

1 3.58e-1  1.01e+0  3.51e-1  1.01e+0  

1/2 1.61e-1 1.15 9.21e-1 0.14 1.61e-1 1.12 9.33e-1 0.11 

1/4 1.09e-2 3.88 6.29e-2 3.87 1.09e-2 3.88 6.34e-2 3.87 

1/8  6.88e-4 3.98 4.00e-3 3.97 6.89e-4 3.99 4.00e-3 3.98 
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Table 2 

Errors and orders of convergence of the sixth-order bicompact scheme 

for CFL=0.1 and 1.7   

 Integer nodes All nodes 

h  
1

Err  p  Err

 p  

1
Err  p  Err


 p  

1 1.64e-2  9.59e-2  1.66e-2  9.59e-2  

1/2 2.89e-4 5.83 1.65e-3 5.86 2.91e-4 5.83 1.68e-3 5.83 

1/4 4.70e-6 5.94 2.67e-5 5.95 4.71e-6 5.95 2.72e-5 5.95 

1/8 7.76e-8 5.92 4.40e-7 5.92 7.74e-8 5.93 4.41e-7 5.95 

 

 

Table 3 

Errors and orders of convergence of the eighth-order bicompact scheme 

for CFL=0.06 and 2.5   

 Integer nodes All nodes 

h  
1

Err  p  Err


 p  
1

Err  p  Err


 p  

1 1.70e-2  9.31e-2  1.71e-2  9.82e-2  

1/2 7.31e-5 7.86 4.05e-4 7.84 7.31e-5 7.87 4.22e-4 7.86 

1/4 2.57e-7 8.15 1.42e-6 8.15 2.53e-7 8.17 1.43e-6 8.20 

 

 

Figure 10 (circles) presents the numerical solution of problem (43), (44) with  

= 1.7 at the time 800t   as produced by the fourth-order bicompact scheme with two 

step sizes: (a) h = 1/2 and (b) h = 1/4. The solid curve depicts the exact solution. It 

can be seen that the exact and numerical solutions differ noticeably at h = 1/2. For a 

smaller step size (h = 1/4), the exact and numerical solutions are visually close to 

each other. 

Figures 11 and 12 show the numerical results for problem (43), (44) at 800t   

as produced by the sixth- and eighth-order bicompact schemes, respectively, with 

h = 1. The parameter  was specified as  = 1.7 for the sixth-order scheme and as 

 = 2.5 for the eighth-order scheme. The exact solution is depicted by solid curves. It 

can be seen that the wave packet is transferred over the grid at the correct velocity 

without distortions and the numerical solution is close to the exact one. 

Figure 13 presents the numerical solution of problem (43), (44) at 800t   for 

 = 2.5 as produced by the eighth-order accurate bicompact scheme on a nonuniform 

spatial grid. The first two mesh sizes were set to 0.5, while the subsequent ones 

alternated as 1.0, 0.5, 1.0, 0.5, . Figure 13 shows that the wave packet is transferred 

over this grid without distortions and the numerical solution is close to the exact one. 
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Fig. 10. The solution profiles in the wave packet transfer problem at time t = 800 for 
1.7  . The solid line is the exact solution. The numerical solution, calculated using 

the bicompact scheme of the 4th order, is shown by black circles in integer nodes, 

and by empty circles in auxiliary nodes. Variants of calculations: (a) h = 1/2, (b) 

h = 1/4. 

 

Fig. 11. The solution profiles in the wave packet transfer problem at time t = 800 for 
1.7  . The solid line is the exact solution. The numerical solution, calculated using 

the bicompact scheme of the 6th order on a grid with a step h = 1, is shown by black 

circles in integer nodes, and by empty circles in auxiliary nodes. 
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Fig. 12. The solution profiles in the wave packet transfer problem at time t = 800 at 

2.5  . The solid line is the exact solution. The numerical solution, calculated using 

the 8th order bicompact scheme on a grid with step h = 1, is shown by black circles in 

the integer nodes, and by empty circles in the auxiliary nodes. 

 

Consider two problems similar to the transport of pulse over a nonuniform grid 

(see [19]). 

In the first problem, Eq. (43) was solved on the interval  0,4x  with the initial 

condition 

  
    

 

11
2

0.25 0.5 , 0,1 ,
,0

0, 0,1 .

x x
u x

x


  

 
 

 (45) 

and periodic boundary conditions. A piecewise uniform grid with 0.05h   on the 

interval  0,2  and 0.5h   on  2,4  was used in the computations. 
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Fig. 13. The solution profiles in the wave packet transfer problem at time t = 800 for 
2.5  . The solid line is the exact solution. The numerical solution, calculated using 

the bicompact scheme of the 8th order on a non-uniform grid with alternating steps 

h = 1/2 and h = 1, is shown by black circles in the integer nodes, and by empty circles 

in the auxiliary nodes. 

Figure 14 presents the numerical solutions of problem (43), (45) at (a) t = 1 and 

(b) t = 2 as obtained with the eighth-order semidiscrete bicompact scheme. Time 

integration was based on the fourth-order accurate SDIRK54 method [24] with step 
0.01  . The plots presented show that the pulse is transferred by the scheme 

without distortions and no spurious waves are observed near 2x  .  

The second problem was computed on the same spatial interval  0,4x  with 

the same piecewise uniform grid, but for the system of acoustic equations 

 
1

2

0 1
0, ,

1 0
t x

u

u

   
      

  
u Au u A  (46) 

with initial conditions 

 
   

   

2

2

sin cos
( ,0)

sin cos

x x
x

x x

 

 

 
 
  

u  (47) 

and periodic boundary conditions. 
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Fig. 14. Profiles of solutions in the problem of impulse transfer over a substantially 

non-uniform grid. The dotted line is the initial condition, the solid line is the exact 

solution at (a) t = 1, (b) t = 2. Markers show a numerical solution at the same time: 

black circles in integer nodes, and empty circles in auxiliary nodes. 

 

In Figs. 15a and 15b, markers show the numerical results for the second problem 

as produced by the same bicompact scheme as for the first problem with the same 

time step. Inspection of Fig. 15 shows that the bicompact scheme on a nonuniform 

grid reproduces the solution components 1u  and 2u  without distortions. 
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Fig. 15. The solution of the problem (46), (47) at t = 4: (a) the first component of the 

solution, (b) the second component of the solution. Solid lines show the exact 

solutions. Markers show a numerical solution: black circles in integer nodes, and 

empty circles in auxiliary nodes. 

 

Let us demonstrate the properties of the sixth- and eighth-order bicompact 

schemes as applied to the transport of a step function (see Example 1 in [21]). 

Specifically, the linear transport equation (43) is solved with initial conditions 

  

5
1, 0 ,

12
,0

5
0, 1,

12

x

u x

x


 

 
  


  

on a uniform grid with spatial step h = 1/200 up to the time step N = 500 for CFL = 

0.1. In this work, this problem was solved using the semidiscrete bicompact schemes 

of sixth and eighth orders of accuracy in space. The time integration of the problem 
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was based on the well-known three-stage singly diagonally implicit RK scheme 

SDIRK33, which is third-order accurate in time [25]. 

Figures 16a and 17a present the basic components of the numerical solution, 

i.e., the grid functions at integer nodes. It can be seen that they are nearly monotone 

functions. This behavior of these components agrees with the monotonicity 

conditions (17) satisfied for the stability function of the spatial integration scheme 

(7), which was used to construct the bicompact schemes. 

Figures 16b and 17b show the oscillations in the numerical solution associated 

with its auxiliary components determined at fractional nodes. These oscillations have 

small amplitudes and are localized near the discontinuity of the exact solution, which 

is depicted by solid lines. The results presented in Figs. 16b and 17b confirm the 

group velocity control theory for shock-capturing schemes [21, 22]. The sixth-order 

bicompact scheme with a group velocity lower than the exact one generates 

oscillations mainly behind the moving discontinuity. The eighth-order bicompact 

scheme with a group velocity higher than the exact one generates oscillations mainly 

ahead of the moving discontinuity. A hybrid scheme [26, 27] can be used to eliminate 

the oscillations from the numerical solution at every time level. However, the 

bicompact schemes involve an internal filter: the basic component of the numerical 

solution is nearly monotone. This component can be treated as a filtered solution. An 

important point to remember in computations based on symmetric bicompact 

schemes is that numerical dissipation has to be controlled by choosing a suitable time 

integration procedure. 

 

  

Fig. 16. The solution of the problem of the transfer of the step function, calculated 

using the bicompact scheme of the sixth order BiC6. (a) Dependence of the numerical 

solution u in integer nodes on the node number j. (b) Solution u as a function of x 

near the solution discontinuity: black circles show the values of the numerical 

solution in integer nodes, empty circles in auxiliary nodes. Solid line is the exact 

solution. 
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Fig. 17. The solution of the problem of the transfer of the step function, calculated 

using the bicompact scheme of the eighth order BiC8. (a) Dependence of the 

numerical solution u in integer nodes on the node number j. (b) Solution u as a 

function of x near the solution discontinuity: black circles show the values of the 

numerical solution in integer nodes, empty circles in auxiliary nodes. Solid line is the 

exact solution. 

5. Conclusion 
We have presented the dispersion analysis of schemes of fourth to eighth orders 

of accuracy from the proposed family of semidiscrete symmetric bicompact schemes 

designed for the numerical solution of the quasilinear transport equation. It was 

shown that the phase error of the sixth- and eighth-order bicompact schemes does not 

exceed 0.2% and 0.03%, respectively, in the entire range of dimensionless wave 

numbers. A comparison of the sixth- and eighth-order semidiscrete bicompact 

schemes with the compact ones from [4] showed that the maximum phase error of the 

latter is 16 and 27 times greater than that of the former, respectively. The presented 

numerical examples demonstrated the ability of the bicompact schemes to adequately 

simulate short wave propagation on highly nonuniform grids at long times. 

 

Bibliographic list 
1. Colonius T., Lele S.K. Computational aeroacoustics: progress on nonlinear 

problems of sound generation // Prog. Aerosp. Sci. 2004. V. 40. P. 345–416. 

2. Ekaterinaris J.A. High-order accurate, low numerical diffusion methods for 

aerodynamics // Prog. Aerosp. Sci. 2005. V. 41. P. 192–300. 

3. Kurbatskii K.A., Mankbadi R.R. Review of computational aeroacoustics 

algorithms // Int. J. Comput. Fluid Dyn. 2004. V. 18. P. 533-546. 



26 

4. Liu X., Zhang S., Zhang H., Shu C.-W. A new class of central compact 

schemes with spectral-like resolution I: Linear schemes // J. Comput. Phys. 2013. 

V. 248. P. 235–256. 

5. Bogey C., Bailly C. A family of low dispersive and low dissipative explicit 

schemes for flow and noise computations // J. Comput. Phys. 2004. V. 194.  

P. 194–214. 

6. Rogov B.V., Mikhailovskaya M.N. Monotone high-order accurate compact 

scheme for quasilinear hyperbolic equations // Dokl. Math. 2011. V. 84. P. 747–752. 

7. Hairer E., Wanner G. Solving Ordinary Differential Equations II: Stiff and 

Differential-Algebraic Problems. Berlin: Springer-Verlag, 1996. 

8. Mikhailovskaya M.N., Rogov B.V. Monotone compact running schemes for 

systems of hyperbolic equations // Comput. Math. Math. Phys. 2012. V. 52, No. 4. 

P. 578–600. 

9. Rogov B.V. High-order accurate monotone compact running scheme for 

multidimensional hyperbolic equations // Comput. Math. Math. Phys. 2013. V. 53, 

No. 2. P. 205–214. 

10. Chikitkin A.V., Rogov B.V., Utyuzhnikov S.V. High-order accurate 

monotone compact running scheme for multidimensional hyperbolic equations // 

Appl. Numer. Math. 2015. V. 93. P. 150–163. 

11. Chikitkin A.V., Rogov B.V. A sixth-order bicompact scheme with spectral-

like resolution for hyperbolic equations // Dokl. Math. 2017. V. 96, No. 2.  

P. 480–485. 

12. Kalitkin N.N., Koryakin P.V. Numerical methods, Book 2: Methods of 

mathematical physics. Moscow: The publishing center "Academy", 2013 (in 

Russian). 

13. Bragin M.D., Rogov B.V. Iterative approximate factorization of difference 

operators of high-order accurate bicompact schemes for multidimensional 

nonhomogeneous quasilinear hyperbolic systems // Comput. Math. Math. Phys. 2018. 

V. 58, No. 3. P. 295–306. 

14. Rogov B.V., Bragin M.D. On spectral-like resolution properties of fourth-

order accurate symmetric bicompact schemes // Dokl. Math. 2017. V. 96, No. 1. 

P. 339–343. 

15. Chikitkin A.V., Rogov B.V. Optimized symmetric bicompact scheme of the 

sixth order of approximation with low dispersion for hyperbolic equations // Dokl. 

Math. 2018. V. 97, No. 1. P. 90–94. 

16. Zingg D.W. Comparison of high-accuracy finite-difference methods for 

linear wave propagation // SIAM J. Sci. Comput. 2000. V. 22, No. 2. P. 476–502. 

17. Vichnevetsky R. Wave propagation analysis of difference schemes for 

hyperbolic equations: a review // Int. J. Numer. Meth. Fluids. 1987. V. 7. P. 409-452. 

18. Vichnevetsky R. Wave propagation and reflection in irregular grids for 

hyperbolic equations // Appl. Numer. Math. 1987. V. 3. P. 133-166. 



27 

19. Visbal M.R., Gaitonde D.V. Very high-order spatially implicit schemes for 

computational acoustics on curvilinear meshes // J. Comput. Acoust. 2001. V. 9. 

P. 1259-1286. 

20. Lele S.K. Compact Finite Difference Schemes with Spectral-like Resolution 

// J. Comput. Phys. 1992. V. 103. P. 16-42. 

21. Fu D., Ma Y. A high order accurate difference scheme for complex flow // J. 

Comput. Phys. 1997. V. 134. P. 1–15. 

22. Li X., Fu D., Ma Y. Optimized group velocity control scheme and DNS of 

decaying compressible turbulence of relative high turbulent Mach number // Int. J. 

Numer. Meth. Fluids. 2005. V. 48. P. 835–852. 

23. Tam C.K.W. Benchmark problems  category 1. Problem 1aliasing // In: 

NASA/CP-2004-212954. 2004. P. 3. 

24. Skvortsov L.M. Diagonally implicit Runge–Kutta FSAL methods for stiff 

and differential-algebraic systems // Matem. Mod. 2002. V. 14, No. 2. P. 3–17 (in 

Russian). 

25. Alexander R. Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s // 

SIAM J. Numer. Anal. 1977. V. 14. P. 1006–1021. 

26. Bragin M.D., Rogov B.V. Minimal dissipation hybrid bicompact schemes 

for hyperbolic equations // Comput. Math. Math. Phys. 2016. V. 56, No. 6.  

P. 947–961. 

27. Bragin M.D., Rogov B.V. A new hybrid scheme for computing 

discontinuous solutions of hyperbolic equations // Keldysh Institute Preprints. 2016. 

No. 22. 20 p. URL: http://library.keldysh.ru/preprint.asp?id=2016-22&lg=e. 

 


