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Virial identities and energy—momentum relation for solitary waves
of nonlinear Dirac equations

Solitary waves of nonlinear Dirac, Maxwell-Dirac and Klein—-Gordon—Dirac
equations are considered. We deduce some virial identities and check that the
energy-momentum relation for solitary waves coincides with the Einstein energy-
momentum relation for point particles.
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1. Introduction

The paper concerns the old problem of mathematically describing elementary
particles in field theory. Einstein and Grommer [13] suggested that particles could
be described as singularities of solutions to the field equations. The generalization
of this result to interacting systems of particles was given by Einstein, Infeld and
Hoffmann [14]. Rosen [27] was the first who proposed a description of particles for
the coupled Klein—Gordon—-Maxwell equations, which are invariant with respect
to the Lorentz group. Namely, the particle at rest is described by a finite energy
solution that has “Schrodinger’s” form ¢(z)e™™" (“nonlinear eigenfunctions” or
“solitary waves”). The particle with the nonzero velocity v, |v| < 1, is obtained by
the corresponding Lorentz (or Poincaré) transformation. The existence of solitary
waves has been analyzed by many authors for diverse Lagrangian field theories
[15, 22, 26, 27, 31, 34], such that nonlinear Dirac fields, the Maxwell-Dirac (MD)
and Klein—-Gordon—-Dirac (KGD) equations. We describe briefly some results.

Nonlinear Dirac equations occur in the attempt to construct relativistic
models of extended particles by means of nonlinear Dirac fields. The review of
such models can be found in [25]. The stationary solutions of nonlinear Dirac
equation were extensively studied in the literature used variational methods [17]
and a dynamical systems approach [6, 23, 2|. For details, see the survey papers
[18, 16, 25| and the references therein.

The (MD) equations (see, e.g., [4, 30]) describing the interaction of an electron
with its own electromagnetic field have been widely studied by many authors.
The first results on the local existence and uniqueness of solutions was obtained
by Gross [19], Chadam [7], Chadam and Glassey [9]. The stationary (localized)
solutions of the classical (MD) system were studied numerically by Wakano [34]
and Lisi [22]|. Using variational methods, Esteban, Georgiev and Séré [15] have
proved the existence of stationary solutions with w € (—m,0). These results were
extended by Abenda [1| for w € (—m, m).

For the (KGD) equations, the local existence and uniqueness of solutions
were proved by Chadam and Glassey [8]. Numerical results on the stationary
states were obtained by Ranada and Vazquez in [26]. The rigorous proof of the
existence for the stationary solutions was given by Esteban et al. [15]. For some
Lorentz invariant complex scalar fields theories, the particle-like solutions was
studied by Rosen [28, 29].

Note that it would be of importance to develop a particle-like dynamics for
moving solitons. We make a step in this direction for relativistic-invariant nonlinear
Dirac, (MD) and (KGD) equations. Namely, we prove that the energy-momentum
relation coincides with that of a relativistic particle.

Now we outline the main result in the case of nonlinear Dirac equations. We
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consider the Dirac equations of the form

iy = —ia - Vb + mpBy — g(Pnh)Bep. (1.1)

We use natural units, in which we have rescaled length and time so that h = ¢ = 1.
Here unknown function ¢ = (t,z) : R x R3 — C* is four-component Dirac
spinor field, m > 0, ¥ = 0w, © = (1,29, 23), V = (01,0, 03), Op = 0/ (0xy),
k=123, a= (o, a3). ag, [ are the 4 X 4 complex Pauli-Dirac matrices (in
the standard 2 x 2 blocks representation)

ak:<fk ‘B’C) (k=123). 6:(6 _0]>,

where I denotes the 2 x 2 unit matrix, and o are Pauli matrices defined as

0 1 0 —i 10
= (1o) e=(07) =)

One verifies that oyo; + 010 = 2011, 0} = ox, k = 1,2,3. Then

B =8, aj =k, ag = =1, apaj+ajap =0 for j#k, B+ Bay =0,

(1.2)
Let us fix the following notations. Given two vectors of C*, ¥¢ := 1) - ¢ is the
inner product in C*, % denotes the complex conjugate. By definition, the “adjoint
spinor” is ¢ = *B.

The particular nonlinearity g(s) = As corresponds to the so-called Soler
model of extended fermions [31, 2]. In the general case of g(s), Eqn (1.1) is often
called the generalized Soler model (see [4, 17]). The review of models of extended
particles by means of nonlinear Dirac fields can be found in [25].

The stationary solutions of nonlinear Dirac equation are considered as particle-
like solutions. They are the solutions of a form v (t,z) = e “!p(x), where @ is
non-zero localized solution of the stationary nonlinear Dirac equation (2.1), see
Definition 2.1 below.

Denote by 1y (t, ) the moving solitary waves with velocity v € R?, |v| < 1,

Uy(t, x) = S(Ay)y (A;l(t,a:)) , zeR teR,

where Ay is a Lorentz transformation (see formula (3.5) below), S(Ay) is a matrix
defined in (3.6). Put G(s) = [; g(p) dp. The energy functional is given by

E(v) = /R (it Vot miy - GG d. (1.3)

Using equalities (1.2), it is easy to check that £(i(t,-)) = const.
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Our main objective is to check that the energy-momentum relation coincides
with one of relativistic point particle, namely,

E(Wy) = 7€), v =(1—|v[)™2 (1.4)

The paper is organized as follows. In Sections 2 and 3, we check (1.4) for
nonlinear Dirac equations (1.1). Section 4 concerns the Dirac equations in R, For
(MD) and (KGD) equations, the result is obtained in Sections 5 and 6, respectively.

2. Standing solitary waves for Dirac equations

Denote by H*(R?), s € R, the Sobolev space, i.e., the Hilbert space of
distributions ¢ € S’(R3) endowed with the norm ||||gs = ||A%p| 2, where
ANy = Ff__lm((l + 1€12)*72¢(€)), and ¢ := Fi denotes Fourier transform.

Let WH4(R3), ¢ > 2, denote the space of distributions ¢ € S’(R?) endowed
with the norm ||¢|lwie = [[V@llre + ||¢llze. In particular, WH*(R?) = H'(R?).
Definition 2.1. The stationary states or localized solutions of Eqn (1.1) are the
solutions of the form y(t,x) = e “lp,(2), w € R, such that ¢, € H'(R3;CY),
and ¢ = @, 1s a nonzero localized solution of the following stationary nonlinear
Dirac equation

ia - Vo +wp —mpBo+g(pp)Be =0, =eR’ (2.1)

The existence of solutions of Eqn (2.1) has been proved in [2, 3, 6, 17, 23]
under some restrictions on G for w € (0,m). In particular, in [17] the following
conditions were imposed.

G1l. G € C*(R;R)

G2. For any s € R, g(s)s > 0G(s) with some 6 > 1, (g(s) = G'(s))
G3. G(0)=G'(0) =0

G4. G(s) > 0 for any s € R, and G(Ay) > 0 for some Ay > 0.

Theorem 2.2. (see [17, Theorem 1]) Let conditions G1-G4 hold and w € (0,m).
Then there is an infinity of solutions of Eqn (2.1) in (| W4(R3;C*). Each of

2<g<0
them are critical points of the functional 1P,
w 1 N — _
Ip(e) = =5 /RS (w a- Vo —mp +wlpl® + G(W)) da.

These solutions p = @, are of the form (in the spherical coordinates (r,$,0) of
r €R3)

rcos ¢sinf,

Yu(T) = ") , Ty = rsingsind, (2.2)
iu(r) ( )

r3 = rcosf, r =zl

=

%
N—
N
O =
N~

S

-

I
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Thus they correspond to classical solutions of the O.D.E. system

2 = ofg(0? — ) — (m - )],
v = ul[g(v? — u?) — (m+w)].

Finally, the solutions decrease exponentially at infinity, together with their first

derivatives.

Remarks 2.3. (i) Denote by Lp the Lagrangian density for considered Dirac
fields,

Lp() = ("0 — m)y + G(Py)), (2.3)
where 7#9,, = 7°0;+-V with Dirac matrices v* (y" = 8, v* = Bay, k = 1,2,3). It
is easy to check that the Euler-Lagrange equations applied to (2.3) give Eqn (1.1).
In particular, for stationary solutions (¢, z) we have

Lp() = " (w +ia -V —mpB)o + G(pyp).

Note that I%(p) = —(1/2) [ Lp(1bo) dz. Here and below, for simplicity, we omit
the symbol R? in the notation of the integral [g. .. dx.

(ii) In [3], the existence of solutions of the form (2.2) have been proved for
singular self-interactions g(s) ~ s~* with some a € (0,1).

(iii) The stationary nonlinear Dirac equations of the form

ia- Vo +wp—mBp+VF(p) =0, xR’ (2.4)

has been studied by Esteban and Séré in [17]. If F(¢) = G(pp), then Eqn (2.4)
coincides with (2.1). For a more general class of nonlinearities F', which do
not satisfy condition F(¢) = G(@y), the ansatz (2.2) is no more valid. In this
case, the existence of solutions of (2.4) has been proved in [17, Theorems 2,3|
with nonlinearities as (1) F(p) = A(|@p|™ + b|gy°p|*2) with 1 < ki, ke < 3/2,
v’ = —iaasas, A\, b > 0; and

(2) F'(0) = F"(0) = 0,0 < F(p) < a(|p]™ + |p|™) with a > 0, 2 < k3 < Ky < 3.

The following virial identity (or so-called Pokhozhaev identity [24]) was
proved in [17, Proposition 3.1].

Lemma 2.4. Let o € HY(R? CY) be a solution to Eqn (2.1). Then p(x) satisfies

. . 3 _ . _
z/go a-Vodr = 5/ (mgpgo — W'Y — G(gogo)) dz. (2.5)
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Introduce the following notations

Iy = I(e) = —i/go*ock('?kgp dy, k=1.2,3,
(2.6)
Q = Qp) = /90*90 de, 'V =V(p)= / (m@so - G(s?w)) da.
Then the equality (2.5) is rewritten as
2
wQ =V + (L + I+ I3). (2.7)

3

Remark 2.5. Formally, the identity (2.5) can be proved used Derrick’s technique
[10, p.1253]. Indeed, introducing @) (x) = @(x/\) gives

0 = I3t = 5] [hlen) + Blea) + Iien) + V(o) ~ Q)]
- %d% . N0 (0) + NB(0) + NI(0) + NV () = NwQ(p)]

= L(p) + (o) + I(g) + 2V — Q).

This gives the identity (2.5). The similar Derrick’s technique has been used in [11]
for relativistic-invariant nonlinear wave equations. Using the similar reasonings

with px(z) = @(21/A, 22, 73), wa(x) = P(T1, 72/ A, 23), PA(T) = (71, T2, 23/ N),
it is easy to check that

1 1
]1 :]2213:§(11—|—13—|—13) :§(WQ—V) (28)

Corollary 2.6. Let ¢ be a solution of (2.1). Then the following relations hold.

I +1,+ 15 :wQ+/ (g(@go) —m)gbgpda:. (29)

L+1L+ 1= 3/ (g(s)s — G(s)) - dx > 0. (2.10)
5=y

SQE]1+]2+I3+V>O. (2.11)

Proof By (2.1), we have

/so*ia Vpdr = /90*( —wp +mPp — 9(9590)590) dx.
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This implies the identity (2.9). Then, by (2.7) and (2.9), we obtain

2
w@ = V+§(11 + L+ 1) = / (m—g(@w)>@<ﬂd9¢+h + I + .

Hence,

%(]1 + 1L+ 1) = / (g(s)s — G(s)) o dzx. (2.12)

Therefore, (2.10) follows from (2.12) and condition G2, since

g(s)s — G(s) > g(s)s —0G(s) > 0 for all se€R.

By (1.3) and (2.9), the energy & := E(¢o(t,-)) associated with particle-like
solutions 1) is expressed by

dx > 0,
5=

Eo=E(p) =L+ L+L+V = w/ |g0(x)|2dq:+/ (g(s)s—G(s))

by condition G2. n

Denote by (-, ) the inner scalar product in L?.

Lemma 2.7. Let ¢ be a solution of Eqn (2.1), o € H'(R3 C*). Then
w(®, app) = —i(¢", Orp), k=1,2,3. (2.13)
Proof Multiply (2.1) on the left by oy and obtain
1019 + ia1andap + i azdsp + warp — may B + g(@p)ar Be = 0.
Hence

i(", 01p) + i(¢*, 0102059) + (", a103050) + W™, a1p) (2.14)
—m(p*, a18¢) + (%, g(@p)a fp) = 0. '

On the other hand, taking the adjoint of Eqn (2.1) and multiplying on the right
by a4, one obtains

—i01p" — 10hp vy — 103" azay + we ar — me*Par + g(@e)e* Bag = 0.

Hence,

—i(0e", ) — i(Dap asen, ) — Dy ason, ) Fwlp'an ) g 4y
—m(g*far, @) + (¢ B, g(pp)p) = 0. '

By (1.2), summing Eqns (2.14) and (2.15) gives (2.13) for k = 1. For k # 1 the
proof is similar. |
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2.1. A particular ansatz for the solutions of Dirac equations. As in
[22], we choose to orient the angular momentum along the x3-axis and consider
four families of solutions of Eqn (2.1) which in spherical coordinates (7, ¢, 0) (i.e.
Ty =7rcos¢sing, xo = rsingsinf, x3 = rcosf) are of a form

(o) ) [0 (i)

P ) (el ) )T () )

(1) ) [
(

' (z) = iu+(7“)(smeei¢) . @) . r( )

—cosf
If !, ..., % are substituted into Eqn (2.1), then this equation reduces to the
following O.D.E. system for radial functions u4 and v4:

2
{ui+%ﬁ=ww@u90n¢ML
2 2

vh = utlg(vi —ui) — (m £ w)].
The existence of the solutions ux and vy follows from results |6, 23, 2, 17].

The total angular momentum operator is M = L + S, where L = z x (—iV)
is the orbital angular momentum, S = /2 is the spin angular momentum,

> = ( g S_ ) Here M = <M17M27M3), L= (L]_,LQ,L?)), €r = ($17$‘2’x3). In
particular, in the spherical coordinates, the third component of L is Ly = —i0j.

[t is easy to check the following properties of p*(x), a = 1,2,3,4.

(i) p® are eigenfunctions of the third component of M with eigenvalue mg =
+1/2. More exactly, M3p® = 1/2¢" for a = 1,2, M3p® = —1/2¢" for a =
34. Since Mp' = (1/2)(¢,ip%, '), Myp® = (1/2)(=¢", —ip", ¢*), My’ =
(1/2) (", —ipt, —¢?), Myt = (1/2)(—¢?,ip?, —¢*), then MZp® = 1/4¢" for all
k=123 and M?p® = 3/4¢"* = j(j + 1/2)¢" for all a. Hence, the quantum
number j = 1/2 for all p*.

(i) For the “spin—orbit” operator K = g% - M — 1/25 = (X - L+ 1) (see [12,
p.19]), we have K2 = M? + 1/4. Then the eigenvalues of K are k = £(j + 1/2).
Hence, for all a, ¢ are eigenfunctions of K with eigenvalues x = +1, where the
quantum number x = 1 for a = 1,3 and Kk = —1 for a = 2,4.

a

(iii) For any solution ¢ from the four families {¢?, ..., ¢*}, the following equalities



hold. At first, *(x)asp(x) = 0. Secondly,
/go*(x)Vgo(a:) dx =0, (2.16)

/gp*(m)ozk Oip(x)dxr =0 for any k # L. (2.17)

—iwt

(iv) For stationary states ¥ (t, x) = e “"¢(x) with ¢ from these particular families

“+00

of solutions we have Q(y) = 47r/ (11:2t + ui) r?dr,
0

r2dr,
s=v3—ul

Eo = E(y) = 4w /O+OO (v} +ud) rPdr +4n /0+OO (g(s)s - G(S))

where vy = v4(7), ux = uy(r). Moreover, the current J(z) := §(t, z)a(t, x)
equals
J(x) = dkemzurvs(— sin ¢, cos ¢,0),

where the quantum numbers m3 = +1/2, kx = £1 are introduced above.

3. Moving solitary waves for nonlinear Dirac equations

As shown, e.g., in [4, 12, 32|, the Dirac equation (1.1) with g = 0 is Lorentz
invariant. Namely, let A = (A,,)} ,—¢ be a Lorentz transformation and (¢, )
be a solution of (1.1) with ¢ = 0. Then there exists a matrix S(A) such that
Yt ") = S(A)Y(t, z) satisfies the same equation in the terms of the new variables
(t',2") = A(t, z). It requires the following conditions on S = S(A):

4
ay =Y BSBNwe,ST' with ag=1, (3.1)

v=0

3
or S7"S = ST A" v =0,1,2,3, where 7° := 3, v := Bay, k = 1,2,3 (see,
u=0
e.g., |4]). Here and below by I we denote the unit 4 x 4 (or 2 x 2) matrix. The
nonlinear equation (1.1) is Lorentz invariant, if condition (3.1) holds and

S*BS = 8. (3.2)

The conditions (3.1) and (3.2) can be rewritten in the form (cf formulas (23) and
(27) from [12])

4
S*BS =B, S8 =) Aya, with ag=1. (3.3)
v=0



The existence of the matrix S satisfying conditions (3.3) follows from Pauli’s
Fundamental Theorem.
Let Ay : R* — R* be a Lorentz transformation (boost) with velocity v € R3,

v < 1: Ay(t,z) = (’y(t +v-x),y(zl 4+ vt) + a:L>, where 2!l + 2t = z, zl||v,
et L v,y =(1—v?)~Y2 Hence (see, e.g., [32, formula (2.14)]),

VT
Ay = ( . +7Y—|2IVVT > , where v = (05)7 1, (3:4)

lLe.,

Av(t, o) = (w Yvez),at (v — m% + fyvt>, (t,z) €ERL (3.5)

Note that det A, = 1 and A;! = A_,. The matrix S, = S(A,) can be chosen as

_ T ) Cexp (2O
Sy = 5 (I—l—a v7+1>—exp(2 ‘V|)7 (3.6)

where ch(£/2) = /(v +1)/2 or th(§) = |v|. It is easy to verify that

So=1, S:=8Sy, S.y=57', S2=nqla-v+]I),

—1
S:8S, = B, Sta;Sy = a; + ol + Uﬂl\T aov., j=123 37

and conditions (3.3) hold. In particular,
(I —a-v)Sy =S,
—1
oz-S\,(Vngrv7 Vgp-v)—fySVV@-v:S;la-Vgo.

[v|?

(3.8)

Let w € (0,m), and 9y(t,z) = e"“!p(x), be a standing solitary wave. By
Yy (t, z) we denote a (moving) solitary wave with velocity v € R?, |v| < 1:

77DV(t7 .I) - SV¢O(A;1(t7 513))
In other words,

T -V

bolt,z) = eiw’y(tV‘Sﬂ)Svgp(x +(vy—=1)v VE 7vt>. (3.9)




Remark 3.1. (i) Let p(x) be a non-zero solution of Eqn (2.1). Then solitary
waves Py (t, x) satisfies Eqn (1.1). This follows from (3.8) and (3.9). Indeed,
substituting 1y (t,z) in Eqn (1.1) and using (3.7) and (3.8) we obtain

(ﬁ%+¢a-V—wnﬁ+guhwnﬁ)¢xux>=e4M“““>wvu>—a-vﬂ%w@>
+i(a-5 (V90+v Vo) - )—75 Veo(y) - v ) —mBSve(y)
+g(@90)55v90} = e Vgt [w +ia -V —mf +g(s090)6}90(y) =0,

withy =z +v(y — Dz - v/|v|* — yvt.

(ii) Let ¥'(t',x") = S(A)Y(t, x), where A is a Lorentz transformation. Denote
by J(t,x) the 4-current, J'(t,x) = Y*(t,x)a,(t,x) (with og = 1) and let
JH(t,x) =Y (t, x) ) (t, x). Then J'(t',2") = AJ(t,x), where (t',2") = A(t, z).

In particular, if A is a boost, i.e., A = Ay with v € R, and ¢ = 1y with ¢ from
(3.9), then

nit) = A=A (200 ) (310

where Jy = (J&)a_y, Jif = dioutby, y = x4+ v(y = D - v/|[v]* — yvt.

For simplicity, put v = (0,0,v) € R3. In this case, we denote by A, the
Lorentz transformation (boost) Ay:

Ay () = (v(t +vxs), x1, x2, v (23 +01)),  |v] < 1; (3.11)
the solitary waves ¢, (t, z) := ¥y (t, 7)|v=(0,0,0) are

Yo(t,w) = Supo(A, 1 (t,2)) = e PN S (w2, 5 (w3 — vt)); (3.12)

the matrix S, (S, := Sy if v = (0,0,v)) is defined as

v+ 1 vy v+ 1 I %o ) )
S’U — - I+& — - v ’y—’_ 9 /U E ]R . 3.13
V 2 ( v+ 1) V7o \ ey T (3.13)

Using the explicit formulas (3.13), we obtain the following properties of S, (cf
(3.7), (3.8)).

SO:I> S;:Svy S—v:‘gy_la S;;ﬁsv:67

SrasS, = y(vl + az), SiS, =7vywas+ 1), SiarS, = ag, k=12, (3.14)

In particular, vS}(as —vl)S, = asz, 7S5 (I — azv)S, = I.



Given v = (v, v9,v3) € R3, we impose the following conditions on ¢(x).

C1 /@*chdx-v = 0.

C2 Z vkvj/go*cvkﬁjcpdx = 0.
k.j: k)

Theorem 3.2. Let v € R with |v| < 1, ¢y (t,x) be a solitary wave of the form
(3.9), and ¢ satisfy conditions C1 and C2. Then

Ev i=E(Wy) = ~&. (3.15)

Proof We first consider the particular case v = (0,0,v) € R3 when v,(t, z)

is defined in (3.12). Substitute the function ), into (1.3) and apply equalities

(3.14):
2
Ev = / ( — i) " SiaS,0rp — i Sy S,y (iwve + dsp) + mp* Sy BS

k=1
- G(w)) dz

2
= / (7290*(1} + az)(wop — idsp) — i Y @ O + mpip — G(@w)) dr,
k=1

where ¢ = (21,22, 7(x3 — vt)). Changing variables x = (21, x2,23) — y =
(21, 9, y(x3 — vt)), we obtain

o 1 1
Ev = wyv(¢”, (v + az)p) —iyv(yp”, Osp) + vI3 + ;(11 + 1) + ;V-

In particular,
EOEE(%):[1—1—]2+13+V:313—|—V, (316)

since I} = I, = I3. Applying equalities (2.7) and (2.13), one obtains
w(e", (v+ az)p) = vw@ + wle", azgp) = v(V + 2I3) — i(¢", d3p).
Therefore,
Ev = U’)/(UV + 2vl3 —i(p*, 83@)) —iyv(p*, 03p) + vIs + %]3 + %V
= & — 2yi(p", O3p).
Hence identity (3.15) holds iff (¢*, 93¢) = 0 what follows from condition C1.



In the general case of v = (v, v, v3) € R3) we substitute 1 from (3.9) in
(1.3), apply equalities (3.7), change variables x — y := 2 +v(y—1)z-v/|v|> —yvt,
use formulas (2.7) and (2.13) and obtain & = & + 1y, where, by definition,

= —2iy(¢", V) v —iy > (9" xdie)vgu;. (3.17)
Jk:j#k
Since, by conditions C1 and C2, 1, = 0, then identity (3.15) follows. |

Let v € R? and 4, be of the form (3.9). Write P, := P(1y), where P(3))
stands for the momentum operator,

P(y) = —i/¢*(t,x)vw(t,x) dx.

To prove the next result for P,, we impose conditions C1’ and C2’ which are
stronger than conditions C1 and C2.

C1’ /gp*Vgodx:O.

C2’ For v = (v, v9,v3) € R? and any j = 1,2,3, Z vk/gp*ozkajgp dx = 0.
k:k#j

Lemma 3.3. Let ¢ be a solution to Eqn (2.1) and conditions C1’ and C2’ hold.
Then

where & is defined in (3.16).
Proof By (3.7) and (3.9), we have

v—1

P, = —i/gp*y(a v+ 1) (iwvvgp +Veo+veVp - V) dr, with k:= W,
%

where ¢ = ¢(y) with y := z+vk(z-v) —yvt. Since dy = ydx, changing variables
T — Yy gives

P, = —i/gp*(a v+ 1) (iw*yvgo +Veo+ vV - v) dy.

Using (2.5) and (2.13), we obtain P, = yv&y — i&,, where, by definition,

& = v(7+/<c> /w*vw~vdy+/w*vwdy+vff > /90*0“@83’9”@“‘““9'
koj: k]

+(ka /w*akawdy,z:vk /go*ozkaggody,ka /go*akﬁggody>.(3.19)

k#£1 kA2 kA3



In particular, if v = (0,0,v) € R?,

& = (/90*(1)0&3 + 1)1 dy,/SO*(vozg + 1)y dy, y(v* + 1)/90*8390 dy)_

By conditions C1’ and C2’, & = 0. Hence, identity (3.18) holds. |

Remark 3.4. (i) Conditions C1’ and C2’ (and also C1 and C2) are fulfilled with
any v € R? for four families of solutions considered in Section 2.1, see formulas
(2.16) and (2.17).

(ii) Let 1y (¢, ) be of the form (3.9) and condition C1’ hold. Then, by (3.7), the
charge functional is

Qi) = / Gt e (t, 7) d = / o () (- v + Dply) dy
= (90*,90)+(90*,0490)-Vz/lw(y)\Qdy-

The last equality follows from (2.13) and condition C1’. Hence, Q(1y) = Q(v)
for any v € R3.

(iii) Let ¢ = ¢, be a solution of Eqn (2.1) from one of four families of solutions
considered in Remark 2.1. Then applying the total angular momentum operator
M; to v, we have

Mitp, = e~ 1705 S, Myip (1, w9, v (5 — vt)).

Hence, if ¢ € {©!, ©?} (see Remark 2.1), then Mz, = 1/21,. For ¢ € {3, p1},
M3¢v - _1/2'9%-

4. Solitary waves in 1 + 1 dimensions

We consider the nonlinear Dirac equation in R,

W = —ia) + mByY — Bg(p)y, xeRY teR. (4.1)

Here ' := 0,4, ¢¥(t,x) € C?, a = —03, 8 = 03. In the case when g(s) = s,
Eqn (4.1) is called the massive Gross—Neveu model (or the 1D Soler model).
The stationary states or localized solutions of (4.1) are the solutions of the form
Y(t,x) = e, w e (0,m), such that ¢, € HY(R!), and ¢ = ¢, is a nonzero
localized solution of the following stationary nonlinear Dirac equation

i +wp —mpPe + g(@p)Bp =0, xR (4.2)



The solitary wave solutions have been studied, e.g., in [20, 21]. Write

I = —i/Rl plap'dy, Q= [ ¢pdr, V= /Rl(m@so — G(pp)) dy.

RI

Note that
w@ =V. (4.3)

This equality can be proved similarly to (2.7).
For v € R, |v| < 1, introduce the "moving solitary waves”

_ —iwy(t—vz) _ — v+l T v R1
Uy(t,x) =e Spp(y(x —wt)), S, \/ 5 < +047+1 , xR

Note that o* = a, 8* = 3, o®> = 82 = I, a8 + Ba = 0. Hence S;3S, = S,
SxSy, =v(wa+ 1), SiaS, = v(vl + «). Consider

& = 5(%) - /Rl (—W:Oé% + m%% - G(&vwv)) dr.

Using the properties S, we obtain

& = / ( — 1" SyaS, (iwyvp + 7¢') + mep — G(@w)) ‘ d
R1 p=p(y(z—0t))
: « : 1
= —iy /R P (y) (vl + ) (iwvp(y) + ¢'(y))dy + SV
In the last integral we changed variable x — y = y(x — vt). Hence,
1
£y = WwQ + yow(p*, agp) — iv(p*,ve") + 41 + it

In particular,

& = / (—ip*ap +mpp — G(pyp))de =1+ V.
R1
We apply equalities (4.3) and w(¢*, ap) = —i(p*, ¢’) (cf (2.13)) and obtain

E, = vE — 2iyv(e*, ¢).

Assuming that ¢ satisfies the property (¢*, ¢’) = 0 (cf condition C1 or C1’), we
have &, = v&;. Moreover, under the same condition on ¢, one obtains

P, = —i/ V(L )Yl (t, 2)dr = Yo — yi(v? + 1)/ 0 (2)¢ (z) do = yv&.
R! R!
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5. Maxwell-Dirac equations

We use natural units, in which we have rescaled length and time so that
h =c=e=1. Then, in the Lorentz gauge, the (MD) system reads

=0 —ia-Vip—a- A +mpy, zeR teR, (5.1)

d— AP = 47p
A — AA =47] (5:2)
V-A+d=0. (5.3)

Here 9 describes the charged Dirac spinor, 1) = ¥ (t,x) € C* for (t,x) € R? x R,
A = A(t,z) = (A}, A%, A3) and ® = ®(t,x) are the classical electromagnetic
potentials, m > 0, p = p(t, x) is charge density, J = J(¢, x) is electric current. By
definition, p = ¥*, J = o), 5, a = (a1, s, a3) are Pauli-Dirac matrices.
We also introduce notation J = (p,J) for the 4-electromagnetic current (J* =

Yy'p), and A = (A*) = (P, A) for the 4-potential of the electromagnetic field.
The equation (5.3) is called the Lorentz gauge condition.
The magnetic and electric fields H = H(¢, z) and E = E(¢, x) are given by

H=rotA=VxA, E=-A-Vo (5.4)

Then, by condition (5.3), equations (5.2) become classical Maxwell’s equations of
electrodynamics

H = —10tE, E =rotH — 47nJ, V-E=4np, V-H=0.

As shown, e.g., in [4, 30|, this model is based on the Lagrangian density Lo =
Lp+ Ly + L;. Here Lp and L, are Lagrangian densities for the free Dirac and
electromagnetic fields, resp., L is extra term describing the interaction between
1 and the electromagnetic field,

- 1 1
Lp = P(iy"d, — Ly =——F"F,, = —(E*—H?
D 77&(7’7 o m),wa M 167 I 87'('( )7
L= —JMA/‘ = —p(I) +J- A,
where F),, stands for the electromagnetic field tensor, F,, = 0,4, — 0,A,,

0, = 0/0z*, p,v =0,1,2,3. Other words,

Lo= Lol A) = w*(fé@t—l—z’a-V—(I)—i—a-A—mﬁ)w

1 . ) ) (5.5)
+— (|A VO |rotA| ) .

8T
[t is easy to check that the Euler-Lagrange equations applied to (5.5) give Eqn (5.1)
and (0? — A)A* — 9*(9,A") = J*. Due to the Lorentz gauge (5.3), we obtain
Eqn (5.2).



Since dLq/(0P) = 0, the Hamiltonian density equals
HWpA) = G20+ 52 - A—Lo=i -+ & (A+V<I>) A-Lg
= zp*[ (= zv A)+ @ +mpl+ ; 1E Ve + o (E* + H?).
Hence the energy functional of the system (5.1)—(5.3) reads (cf [4])

Et) = E((t,- /7—[ t,-))dx
= /¢ —iV — A)Y + mpBy] da:—l——/E2+H2)d, (5.6)

where E and H are defined in (5.4). Here we use the fact that
[E -V®dx = —4r [ p®dx. Evidently, £(t) = 0.

5.1. Standing solitary waves. Let w € (—m,m). Consider a stationary
solution (1, A) of system (5.1)—(5.3) such that ¥ (¢, 7) = e “!p(x) and A = (P, A)
does not depend on ¢. Such stationary solutions we denote by (1, Ag). Substituting
these solutions in system (5.1)—(5.2) we obtain
(~w+dyg—ia-V—a-Ag+mB)p=0, xR’ (5.7)
—Ady = 4dmwpy = dwprp,
~AAL = 4nJb =dnptane, k=123
By (5.8), Ay = ¢*aup * (1/|z]) (with ag = I), p = 0,1,2,3, i.e.,

Jo(y)

|z — 9|

(5.8)

Do) = [ LW gy Ag(a) =

dy7 with Po = ‘SO‘27 JO - SO*O%O
[z —y|

(5.9)

Note that the Lorentz condition (5.3) becomes
V-Ay=0, (5.10)

what follows from (5.7) and (5.9). Using (5.8) and (5.10), we rewrite the energy
associated with stationary states (1o, Ag) as

E = E(o, Ay) = /gp* la- (—iV — Ag) + mpB] pdx
1 2 2
+§/(|v<1>0\ + [rotAg| )da:

— /gp* [—z'og-V—i—mﬁ]godx—i-1/(,00(1)0—J0'A0) de.  (5.11)

2

The last integral in (5.11) is — / J(2)Af () dox = // | | da:dy
r—Y



Definition 5.1. The stationary states or standing waves (Yo(t, x), Ag(x)) : R x
R3 — C* x R?* are the solutions of the (MD) system of a form
ho(a,t) = e (),

1 JH(y)
AN . gpy
0@ = T = | w=yl

(5.12)

dy, pn=0,1,2,3.

Here w € (—m,m), (J*) = (¢ aups) = (po,do), and ¢ = ¢, is a solution of
(5.7).

The stationary solutions of the (MD) system were studied numerically by
Lisi [22]. Using variational methods, Esteban Georgiev and Séré [15] have proved

the existence of stationary solutions with w € (—m,0). To state this result we
introduce a functional

1
13(0) = 5 [ Lolun, o) ds

Y L ([ @) ()
— 5/9@ (za-V—mBer)godx—Z//ﬁdﬂfdy-

Note that if (¢, Ag) is a solution of the (MD) system of the form (5.12), then
(formally) ¢,, is a critical point of I¢5(¢).

Theorem 5.2. (see [15, Theorem 1]) For any w € (—m,0), there exists a non-zero
critical point ¢ = p,, € HY2(R3; C*) of the functional I5(p). Moreover, @, is a
smooth function of x exponentially decreasing at infinity with all its derivatives,
and ¥ (x,t) = e “lp (z), A¥(x,t) = J* x (1/|z|) are the solutions of the (MD)
system.

5.2. Virial identities. The following virial identity was proved in [17, Proposi-
tion 3.1].

Lemma 5.3. Let o € HY(R? CY) be a solution to Eqn (5.7). Then p(x) satisfies

i/gp*a -Vodr = g/ (m@gp — wpp + gJM(:L’)A“(a:)) dx, (5.13)

where J, A" = py®y — Jo - Ao, po = |¢]?, Jo = ¢ ap.
Let functionals Ix(¢), k = 1,2,3, and Q(p) be as in (2.6). Also, we put

1= 760) = [ (mle)o(a) = Jo(o) - Aolx) da
— (2m) 4 /\Po |2—\J0( )|2d/<: (5.14)

m/gpcpdx




Remark 5.4. Formally, the identity (5.13) can be proved used Derrick’s technique
10, p.1253]. Indeed, using notations (5.14), we rewrite () as

I5(p) = %(wQ(sO) —mo(p) = I(p) = L(e) - Ig(w)) - iT(sO)» (5.15)
and introduce py(z) = @(z/)). Then T(py) = NT(p), Ir(py) = N1.(p),
Qpr) = >\3Q(90)7 mo(py) = /\3m0(g0). Hence,

d g 1d
0 = ﬁ’)\zllQ(gpx\) = 55‘@ [WQ(@A) —mo(r) — Li(er) — L2(@r) — I3(en)
1 3 5)
~5T(e)] = 5 (wQ(0) = mol9)) = 1i(9) = La() — Is() = 2T ().
Hence,
3 5)
L+ 1+ I3 = 5(0)@—7&0) —ZT, (516)
and the identity (5.13) holds.
Corollary 5.5. (i) Eqn (5.7) implies the following equality,
wQ—mo—(11+Ig+]3) =T
(cf [1, p.238] or formula (3.10) in [15]). Hence, by (5.16),
1
wQ —my = §T' (5.17)
Moreover,
1
L+ L+ Iy =—5T. (5.18)

In particular, I§(p) = —5(I + Iy + Is) = {1, by (5.15), (5.17) and (5.18).

(11) Using (5.11) and (5.14), we rewrite & as
1
50211+IQ+13+m0+§T. (519)

By (5.18) and (5.19), we obtain & = my.
Lemma 5.6. The following identity holds,
1 3

= 5(("}@ - mO) — =T + er? j - 172737 (520)

I; 1

where
E2(1po(k) 2 — |Jo(k)|2
T = dn(2n) 210 (B)[* = [Jo (k)] )dk

X Kt (5.21)

- = (yajcpo(x)y? - |@jA0(x)|2) dz.




Proof Introduce py(z) = @(x1/A, 22, x3). Then I1(py) = Li(p), Ix(py) =
Mi(p), k=23, Qpn) = AQ(w), mo(pr) = Amo(yp), and

o0(k) 2 — |Jo(k))?
T 2m) 347\ o dk.
(2) = (2m) A A2 + k3 + k2

Hence,

d| 1 1
0=—| 150 = 5|wQ = mo — (I + L) — 5(T'+211)|.

Therefore, Iy + I3 = w@Q — my — (T + 2171)/2. Together with (5.16), the last
identity implies (5.20) with j = 1. Similarly, introducing @) (z) = @(x1, x2/A, z3)
or px(z) = p(x1,z9, x3/N), we can verify (5.20) with j = 2,3. u

Corollary 5.7. Since Ty +To + T35 =T, (5.20) implies identity (5.16). Moreover,
by (5.17), we have I; = =T/2+ 1T}, j =1,2,3.

Remark 5.8. (¢f Lemma 2.4) Let ¢ be a solution of Eqn (5.7). Then

i/gp*(x)Vgo(x) dx—|—w/gp*(x)ocap(x) dx = / (JO(:L’)QDO(x) —po(ar)Ao(x)) dx.

Since (Pg, Ay) is of the form (5.9), then

/Jo(x)cbo(x) dx = /po(x)Ao(a:) dx. (5.22)
Hence, if (¢, ®g, Ay) is a solution of the system (5.7)-(5.8), then (cf formula (2.5))
i/gp*(x)Vgo(x) dx = —w/gp*(x)ago(x) dx. (5.23)

5.3. A particular ansatz of stationary solutions. Abenda [1, Theorem A]
extended the results of Theorem 5.2 for w € (—m, m) and proved the existence of
the particular ansatz of solutions to Eqn (5.7)—(5.8) in the form

U (7"’ Z)ei(m3_1/2)¢
B uz(r, Z) i(ms+1/2)¢ . B 1
Yu(T) = itig(r, 2)elms-1/De | 0 with mg = :l:27 (5.24)
_iu4(7-’ Z)e (m3+1/2)
Oo(x) = Du(r, 2), Ag(xr) = Au(r, 2)(—sin ¢, cos ¢,0), (5.25)

where (r, 2, ¢) are the cylindric coordinates of z € R3. Moreover, uy, ua, u3, uy, P,
and A, are scalar real-valued smooth functions exponentially decreasing at infinity
with all its derivatives. The system of equations for wuq, us, us, us, Py, A, was

derived by Lisi [22].



Remark 5.9. The solutions (y,, ®o, Ag) of the form (5.24) and (5.25) have the
following properties. (i) p,, are eigenfunctions of the third component of the total
angular momentum M (see Section 2.1) with eigenvalues mg = +1/2.

(i) [ oL@ ula) do =0,
(1i1) /@Z(x)ozkﬁjgow(x) de =0 fork #j, k,j =1,2,3.

() Fori # j, /@CI)()(x)@j(I)O(x) dx =0 and /@Ao(x) - 0jAo(z)dxr = 0.

(v) The charge density is po = po(r, z) = ud + u3 + ui + u?, the current Jo(z) is
Jolr) = G5t )oro(t, 2) = 5 (@)au(z) = 2urtis — usus) (5in 6, — cos $,0).

Moreover, by (5.25),

Eo(z) = —(cos ¢ 0,P,,sin ¢ 0, P., 0,P.),
Hy(z) = (—cosp 0. Ay, —sin @ 0. Ay, 0, A, + A,/r).

5.4. Moving solitary waves. Consider travelling solutions (1y, Ay), where
A, = (Py, A,), with velocity v € R3, |v| < 1:

77DV(757 ZE‘) = Sv%(A;l(t» x))v

Av(t,z) = AvAo(y) with y=a+ V(7 —1) (5.26)

TeE TV —yvt.

Here the stationary solutions (¢, Ag) are introduced in Definition 5.1, Sy is defined
n (3.6), Ay is a Lorentz transformation defined in (3.4). It is easily to check that
(1y, Ay) is a solution of the (MD) system. Indeed, first, similarly to Remark 3.1
(i), we obtain

iy +ia - Vb, — mBihy = e VIS (4o - V —mp) p(y).

Here and below y stands for the expression y = x + v(y — )z - v/|v|* — vt (as
in (5.26)). On the other hand, Sy(®y(t,2) — - Ay(t,x))Sy = Po(y) — a - Ap(y),
hence

(@v(t,2) — - Av(t,2))e(t ) = e VDS Do (y) — - Ag(y))e(y).

and Eqn (5.1) follows. To verify Eqn (5.2), we put J# = ¢ya,1by. Then, by (5.26),
(5.8), and Remark 3.1 (ii), one obtains

(OF-A)Av(t, ) = Av (97 —D0) Ao(y) = Av(=Ay Ao(y)) = dmAv Joy) = dm Ju(t, o),

and Eqn (5.2) follows. Moreover, ®y (¢, 2) + V. - Ay(t,x) = V, - Ag(y) = 0, i.e.,
the Lorentz gauge condition (5.3) is fulfilled.



Remark 5.10. Denote Eg = —V®,, Hy = V x Ay, and E, = —A, — Vo,
H, =V x A,, veR>? Then

Ey(t,7) = vEo(y) — viv - Eo(y) — v x Ho(y)
Hy(t,z) = vHo(y) — vev-Ho(y) +7v x Eo(y)

1
‘ p— (5.27)

-: ’V’2 .

We impose conditions C1 and C2 on ¢, (see Section 3). Moreover, we
assume the additional condition CO on (®g, Ay).
CO For v = (v1, v2,v3) € R3, the following relation holds

R / (aiq)o(x)ajcpo(x) — 9 Ao(x) - ajAo(x)) dz = 0.
0,J1 1]

Remark 5.11. (i) By Fourier transform and formulas (5.8), condition CO can
be rewritten in the form

S~ awy [ (100 - 3o dk 0.

0, 1F]

(i1) Conditions CO-C2 are fulfilled, for instance, for the particular family of solu-
tions considered in Section 5.3 (see Remark 5.9 (ii)—(iv)). Obviously, conditions
CO and C2 are valid in the particular case when v = (0,0,v).

Put & = E(1y, Ay), v € R3, where £ is defined in (5.6), i.e.,

5V:/(wi(—ia-v+mﬁ)¢v—Jv-Av) d:c+8iw/(E3+H3)d:c.

Then the following result holds.

Theorem 5.12. Let (1, Ay) be a solitary wave of the (MD) system and conditions
C0-C2 hold. Then the "particle-like" energy relation holds, &, = v&.

Proof First we rewrite the term in &, corresponding to the Dirac field,

ep = /(Mi(—ia -V + mp)iy dx

—1
= /(—icp*Svoz-Sv(iywvgo—l—Vgo—i-v’y‘ B
\%

V- v) + mcp*SvﬁSvgo) dx

_ / (72w90*[oz VAV —ig” [y (a - vV - Vpta - Vol + mw)d“@’



where ¢ = p(y) with y from (5.26). Here we apply formulas (3.7) and (3.8). We
change variables * — y =  + v(y — 1)z - v/|v|* — yvt, do = dy/~. Using (5.23),
we obtain

1 1
ep = wy(p", [ v+ vip) —iy(p*, (a- v+ 1)v- Vo) + ;(11 + L+ 1I3) + ~mo

1
— wQyv + 7(11 + L+ I3) + ~mo+ VZ v L+ 1y, (5.28)
7=1

where 7y is defined in (3.17). Applying ’virial” identities (5.16) and (5.20), we
3

obtain ep = y(I1 + I + Is + mg) + 57v°T + 7 > v3Tj 4 1y. Moreover, by (5.18),
j=1

3
1
ep = Yymg — ZTJrfyZv?TjJrnv. (5.29)
j=1

Second, we rewrite the "magnetic" term in &, i.e., the term corresponding to the
interaction. Since

Ay (t, x)
Jy(t, )

Tv®o(y) + Ao(y) + vEAg(y) - v
Yyarhy = yvpo(y) + Jo(y) + veJo(y) - v

then, by (5.22), we have

v—1

v[?

/A (t,2) - Ju(t, w)de (5.30)
— / (Vv Po(y)po(y)+— Ao( ) - Jo(y) + (v - Ag(y)) (v - Jo(y))) dy — Ry,

where R, stands for the integral R, = 2 / po(y)v - Ao(y) dy.

Further, using (5.27), we rewrite the energy corresponding to the electromag-
netic field,

1 4ry vy
= E2 H2d:—/-H E,) d —/E2 H?
e - (Es + HY) o v - (Hy x Eo) y-|—87T (O+ 0+(5.31>
—|—(v><E0)2+(V><HO)Q—(V-EO)Q—(V-HO)Z)dy.

Since /HO x Egdy = 47r/,00A0 dy, the first term in the r.h.s. of (5.31) equals
Ry. Using the formula |a|?|b|*> = (a - b)? + (a x b)? for a,b € R?, the second term



in eys can be rewritten as

11 +v) JE e myay - L [ (v B v HP)

Using formulas Eg = =V &y, Hy = V x Aj and (5.8), we obtain

err = WTJFVZ) / (pOCI>0+J0-A0) dy—% / <(V-VCI)0)2—|—(V-(V><A0))2>dy—i—Rv.

(5.32)
Finally, substituting (5.29), (5.30) and (5.32) in & = ep + e + ey and using
notations (5.14) and (5.21), we have

3
1
Ev="my — 5/<ﬂo@o—Jo-A0>dy+ %va /(‘aj®0|2_‘8jA0|2)dy—|—
j=1

1 1+v?
+77v—/(7V2¢000+;A0'J0+7(V‘Ao)(V'JO)>dy—Rv+%X

, _ : 24 (v - 2
X/(Poq’o + Jo AO) dy i /((V V®)"+(v - (V x Ay)) )dy+RV (5.33)
3
o gl Z 2 2 2
_’ymo—i—nv—l—g(j:l vj/\c‘?jCI)o\ dy—/(v-VCI)o) dy>+
3

(47TV2A0 J0—47T(V Ao)(V Jo) ( '(VXA()))Q—Z U?’a]A()F)dy

J=1

7
47r

Using Fourier transform, relation Jo(k) = k2Ao(k)/(47) and formula |a|?[b|? =
la - b|> + |a x b|?, we rewrite the last integral in (5.33) in the form

%(QW)_S/(]kx (v x Ag)[? Z %;yAO\?) dk

By condition (5.10), the last expression is

Y e . v
Lo 3/((k-v)2—2v]2-k]2->\A0\2dk:E Uﬂg/@Ao 0, Ao(x)de

J=1 i,j: 1#£]

Hence, by (5.33), & = ymg + 1y + 7y, where, by definition,

S / (10(2)0,®0(x) — 0 A (x) - 9 An(x)) do-

w i#]



Finally, conditions C0-C2 yield n, = 7y, = 0. Therefore, & = ymy = v&y, by
Corollary 5.5 (ii). u
Denote by P = (P!, P%, P?) the momentum operator for the (MD) system,

Py, A) = —i/w*(t,x)vw(t,a:) dx

+ﬁ (Bt 0)V(t,2) — 37 ANt 2)VAH (1, 2) ) d

Put P, := P(iy, Ay), v € R®. We impose conditions C1’ and C2’ on ¢, (see
Section 3). Moreover, we impose a stronger condition CO’ on Ay than CO.
CO’ Let v = (v1, v9,v3) € R3. For any k = 1,2,3, the following relation holds

Z Uj/ 6 (I)o 8k(I)0( ) 8J-A0(x) : akAo(af)> dr = 0.
Jij#k

Note that conditions C0’—C2’ are fulfilled for the particular ansatz of solu-
tions ¢ = ¢, considered in Section 5.3, see Remark 5.9 (iv).

Lemma 5.13. Let conditions CO’~C2’ hold. Then P, = yv&.

Proof Using (5.26) and (3.7), we rewrite the term in P, corresp. to iy,

P(yy) = —Z/@D (t,2)Vihy(t, x) da

— i [ S Wla-v+ D (iwrvel) + Vely) + vnTiely) - v) dy

where x := (v — 1)/(|v]?). Using notations (2.6) and formula (5.23), we have

3
P(1hy) = vywQ + (Lvy, Iovg, Isvs) + VKZ vjz]j — &y,
=1

where & is defined in (3.19). Applying (5.20) and (5.16), we obtain

3
P(hy) = vy& + (Tivr, Tovg, T3v3) + vk Z viT; — iy (5.34)
j=1

By conditions C1’ and C2’, &, =0
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Further, the second term in P, corresponding to Ay is

P(Ay) = ﬁ (Bu(t.2)VO(1,2) — Ay(t,2) - VA1) d
—ﬁ (v TB0() TBo(y) + V(v - T (y)?
— Z ( -VAG(y)) VAL (y) + vi(v - VAg(y))2)> dy

3 3
= —(Thvy, Tove, Tvg) — VK 21 UJQTJ — &y,
]:

where &, stands for the following vector
= (Z Ujle, Z UjTQj, Z Ujng) + VK Z UZ"UjT%j.
J#1 J7#2 J#3 i.J: 1]
Here by T;; we denote the integral

1

iy = 4w

<3 Do (y)0;®o(y) — 0iAo(y) - 3J'A0(513)) dy.

By condition CO’, & = 0. Hence, formulas (5.34) and (5.35) yield

P, = P(Yy)+ P(Ay) =9vE. =

6. Klein—Gordon—Dirac equations

We consider the Klein-Gordon—Dirac (KGD) system arising in the Yukawa
model (see, for instance, [4, §49|) and describes the interaction between the Dirac
and scalar (or pseudoscalar) fields. This system is based on the Lagrangian density

LW, x) =LpW)+ Lra(x) + L1, x). (6.1)

Here Lp(¢) and Lxa(x) are the Lagrangian densities for the nonlinear Dirac field
Y and for the free Klein—Gordon field y, respectively, “extra” term L; describes
the Yukawa interaction between the fields. L£p(1)) is defined in (2.3),

1 _
Lra(x) = §<I>'<|2 —|Vx|* = M2x2), Li(1h, x) = Ty,

where x is a (real) scalar field, M > 0, n is a constant, and I" is some 4 x 4 matrix.
This model with G = 0 and I" = I has been studied by Chadam and Glassey |[§]
and Esteban et al. [15]. In another model presented by Ranada and Vazquez [26]



the self-coupling is G(¢1)) = A(y1))? (as in the Soler model) and I' = i7® with
0123 _ (01
v = =YYy I 0
For simplicity, we consider the case I' = I. Then applied the Lagrange-Euler
equations to (6.1) we come to the following system

(0F = A+ M)x = 1, (6.3)
where g(s) = G'(s), n = 13 (cf [8, p.5]). 1 n =1, we put = (11, 1), = o3,
a = —0y. Below we consider the case n = 3 only. The case n = 1 can be studied

by a similar way. By (6.1), the Hamiltonian density reads

ewo) = [ (¢(~ia- ¥ +mB)w - Gv)
+ 3PP + [V + M) = by ) da
If G = 0, the local existence and uniqueness of solutions to system (6.2)—
(6.3) were obtained by Chadam and Glassey [8]. The existence for the stationary
solutions was given by Esteban et al. [15, Th.2| also only in the case when G = 0.
In spite of this fact we verify below the identity (1.4) for (KGD) system assuming

that either the self-coupling G vanishes or G satisfies the conditions G1-G4 (see
Section 2).

6.1. Standing waves for (KGD) equations.

Definition 6.1. Let w € (—m,m). The standing waves of the (KGD) system are
the stationary solutions (g, xo) of the form

e~ M|zl

o \x\ * fo, with f,:=npp, (6.4)

¢0(t>37) - eiiw%p('r)? XO( )
where o € HY(R3; CY) satisfies the following equation

(w +ia -V —mf +nxof + g(@w)ﬁ)s@ = 0. (6.5)

Put I“(p /[, 10, x0) dz. Then, by (6.1) and (6.4),

I“(p) = 1/( (ta- V — m6+w)g0+G(g0gp)>d

1677 // |_M$ ! fo(y) dxdy.



Note that if (¢, xo) is a stationary solution of the (KGD) equations, then (formally)
© = @, is a critical point of I“(p).

A particular family of solutions. In the spherical coordinates (r, ¢, ) of
x € R3, the particular family of the stationary solutions (1, xo) is given by

(o)
_ ,—iwt _
¢0(t7x) =€ QOW(-YJ), pr(x) — ' cos 6 )
A\ e sing
| xscos@, if T'=1y5,
Xo(x) = { Ye, ifr=1,

where u, v, x» being radial functions. In the case I' = i9°, this ansatz has been
studied numerically in [26]. In the case when I' = I, the functions u, v are classical
solutions of the following system:

{u +27u: olg(v” =) = (m = w) + 1.

v = u[g(v? —u?) — (m+w) + nx..

2
The function y, is a solution of the equation —y” — ;ka + M?*x, = n(v? — u2) or

) =0 [ ) = 2yl dy
/

4|z — y|

6.2. A virial identity. Let I = I;:(p), V = V(p), Q = Q(¢) be as in (2.6),

e~ Mlz— y\
R=Re) = [ xola) | o = [ [ s ) ) dady, oo
Ri=Rily) = o / oMo~ y'f (@)f,(y) drdy

Note that by Parseval identity and formulas (6.4),

R(p) = (2m)~° ,Lf”( JEQ dk,

Ri(g) = 2M(2m)" / (k'f*"( Aﬂg) dk = 2M / xol@)|? d.

(6.7)

where ﬁo denotes the Fourier transform of f,. Using (6.7), we rewrite I“(y) as

() = 3 (wQe) = Vo) — i) — o) — Bl + 3R(9))



Lemma 6.2. Let ¢ € HY(R3; C*%) be a solution to Eqn (6.5). Then

WO — §(11+12+13)+V—%(5R—M31). (6.8)
Moreover,
[(9) = 5(QUe) ~ V(g) + SR(g) ~ S Rilg) ~ Ple), =123, (69)

where P;(y) stands for the following functional

P, = Py(p) = (27) /%dk—/@ Yo(@) P dz. (6.10)

Remark 6.3. (i) The virial identity (6.8) was derived in [15] in the case when
G = 0. Formally, this identity can be proved used Derrick’s technique. Indeed,

f/\]\/[|x y|
introduce @y(z) = @(x/A). Then R(p)) = N° // () fo(y) dady,
Ii(@r) = NIk(0), Q(er) = XQ(p), V(er) = MV (¢

47T|:1:

0 = —IW(SOA)’A ,
- oo V(en) ~ (o) ~ Do) ~ Io(ex) + 5 R(22)|
dk[wQ(w) (px) = Iilpa) = La(pa) = L(pa) + 5 R0 ||,

= 2(wQe) ~V(9)) ~ 1) ~ Do) ~ Ie) + T(R(e) — M Ra(9))

and the identity (6.8) holds.
(ii) Introduce py(x) = w(x1/A, 22, x3). Then I1(wy) = L1(p), Ir(pn) = Mi(p) for

fo(k)|? dk
k=23, R(p)) = (27) %A / k%m‘fz(sg)i VL Qlpr) = AQ(p), V(pr) =

d
AV (p). By (6.10), we have aR(g@)\Azl = R+ 2P;. Hence

0= 2| o0 = 5 (Q(0) ~ Vo)~ B(e) — le) + 5R) + Pie)

Therefore,
hig) + I(e) =wQ(e) ~ V(9) + 5R(@) + Pile). (611

Therefore, identities (6.8) and (6.11) imply (6.9) with j = 1. Similarly, introducing
o) = p(x1, 9/ N, 3) Or Y\(T) = Y(T1, 79, x3/N) gives (6.9) with j = 2,3. Note
that (6.8) follows from (6.9), since P, + Po + P3 = R — M Ry /2.



Corollary 6.4. (c¢f Corollary 2.6, Corollary 5.5) Let ¢ be a solution of Eqn (6.5).
Then the following relations hold. (i) By (6.5), we have

I+ I+ I3 :wQ—i—/(g(@go) —m)ppdr + R. (6.12)
(11) Using identities (6.8) and (6.12), we obtain
w@ = %(I1-|—]2+13)—|—V—é(5R—MR1) = Il—|—]2—|—13—|—/(m—g(g5gp))gbg0 dr—R.
Hence,
L+t Iy=3 /(g(s)s () o da + %(R FMR) >0,  (6.13)

by (6.7) and condition G2.
(11i) The total energy associated to particle-like solutions (o, Xo) S

1
E = 5(¢0,X0) :]1+IQ+13+V_§R. (614)

Using (6.12), we have

fo=w [ le@Pdu+ [(g(s)s — Gls)lmpo o+ 3R >0,

by condition G2.
() Similarly to Lemma 2.7 it can be proved that identity (2.13) holds.

6.3. Moving waves for (KGD) equations. Consider travelling solutions
(Vy, Xv) with velocity v € R3, |v] < 1:

vil, T :Sv()A:,l y L)),
{w (1) = Sanldg e, (615

[v[?

xv(t,z) = xo(y) with y=x+v T -V — vt

[t is easy to check that (¢y, xv) is a solution of (6.2)—(6.3).
Denote by &, := E(1y, xv) the energy of the moving solitary waves (¢, xv),

g = / (Vi(—ia -+ mB)y — Glibvir) + %(val2 HIVf 4+ M) -
- nxvzﬂvwv) d.



Assume that conditions C1 and C2 hold (see Section 3). Moreover, we impose
the additional condition C3.
C3 For given v = (v, v9,v3) € R, |v| < 1,

Z vivj/ﬁix()(a:)ﬁjx()(x) dr = 0. (6.16)

0,2 17]

kikj| f, (k)|
The integral in (6.16) equals (27) 3 / % dk. Then condition C3 holds,

for instance, if gp(x) is an even function in x € R3. In particular, conditions
C1-C3 are fulfilled for the particular family of solutions considered in Section 6.1
(see also Section 2.1 and formulas (2.16) and (2.17)).

Lemma 6.5. Let conditions C1-C3 hold, v € R3 with |v| < 1. Then &, = v&.

Proof At first, consider the term in &, corresponding to the Dirac field (cf
formula (5.28)),

ep = / <¢f,(—z'oz -V +mpB)y — G(zﬁvwv)) dx
3
= WQW A (I + L+ Iy) + 2V 4y Y oi +
j=1

where 7 is defined in (3.17). Applying formula (6.9) and then the identity (6.8),
we obtain

3
1
ep=v1+L+I3+V) —§7V2R_VZU?Pj+nV- (6.17)
j=1

Second, we rewrite the term in &, corresponding to the Klein—Gordon field,

1

exe = / (Kot 2) 2 + [Vt @) 2 + M2 |xe(t, 7)) da

1
- 5 / (V%0 @) + 221V - Vxo) 2 + M2xo(v)[2) dy

3
1
= 5 Xo()(—A + M) xo(y) dy + 7> vf-/ 105x0(y)* dy + 1,
j=1
1 3
- R Y P (6.1%)
j=1



where, by definition, 7, := Z Vivj / 9ix0(y)0jx0(y) dy. Further, the term in

i,j: 1#]
&y corresponding to the interaction is

er = — / et )it ) (7)o = = / o®)ew)e(y) dy = —~R(p).
Applying (6.17)—(6.19), and (6.14), we obtain

1
<9v:eD+eKc+ez=7(I1+Iz+Is+V)—§WR+77V+77’V=750+77V+77§,-

Finally, by conditions C1-C3, 1y, = n,, = 0. Therefore, &, = v&. u

Remark 6.6. If v = (0,0,v) with |v| < 1, then ny = —2iyv(¢*, 3¢) and 1., = 0.
In this case, conditions C2 and C3 are fulfilled, and condition C1 is equivalent
to the condition (¢*, d3p) = 0.

Denote by P = (P!, P2, P?) the momentum operator, where P’ = fTOB dx,
and T (a, 8 = 0,1,2,3,4) denotes the energy-momentum tensor for the (KGD)
model. Using formula (13) from [26] for the tensor 7%, we have

P=P,y) = / (mp*(t,x)w(t,x) -|—>'<(t,:c)Vx(t,x)) dz.

Put P, := P(¢y, xv), v € R3. We impose conditions C1’ and C2’ on ¢, (see
Section 3). Moreover, we assume the additional condition C3’ on .

C3’ For v = (v1,v2,v3) € R? and k = 1,2,3, Z Uj/(?kx()(y)ajx@(y) dy = 0.
J ik
Note that conditions C1’—~C3’ are fulfilled for the particular ansatz of solu-
tions ¢ = @, considered in Section 6.1.

Lemma 6.7. Let conditions C1’-C3’ hold. Then P, = yv&,.
Proof Using (6.15) and (3.7), we rewrite the term in P, corresp. to vy,
P(i) = —i [ 360 Vin(t.o) da
— i [ Wla-v+ D (wrvely) + Vely) + veTiely) - v) dy

where k = (v — 1)/(]v]?). Applying (6.8) and (6.9), we obtain (cf (5.34))

3
P(¢y) = vy& — (Prvr, Pave, Pug) — vk ZUJ?PJ — i&y, (6.20)
j=1



where & is defined in (3.19). By conditions C1’ and C2’, &, = 0.
Further, the second term in P, corresponding to xy is

P(w) i= = [t Vltayde = [(9x00) ) (Vxaly)

3
+veVxo(y) - v) dy = (Pyvy, Pyvs, P3u3) + VK Z UJZPJ +&,(6.21)
j=1
where &, stands for the following vector
&y = ( > vj [ 9ixo0ixody, - v; [ Oixed2xody, Y v; [ Ojx093X0 dy)
i#1 j#2 i#3
+vie Y, vgvj [ Okxodixo dy.
k,j:k#j

By condition C3’, &, = 0. Hence, formulas (6.20) and (6.21) yield
P, = —/ (i@bé(t,x)Vz/Jv(t,a:)quv(t, :I:)va(t,x)>dx = P(¢y)+ P(xv) = 7v&.
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