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Некоторые вопросы матричного анализа методов интегрирова-

ния по времени. Препринт Института прикладной математики им. М.В. Кел-
дыша РАН, Москва, 2018.

Данный препринт содержит конспекты лекций, прочитанных в 2016 г. на
Римско-Московской школе по матричным методам и прикладной линейной
алгебре. Лекции посвящены некоторым задачам матричного анализа, возни-
кающих при разработке и анализе схем интегрирования по времени систем
обыкновенных дифференциальных уравнений и дифференциальных уравне-
ний в частных производных. Материал лекций включает некоторые аспекты
конечно-разностных пространственных аппроксимаций уравнений конвекции–
диффузии (в контексте метода прямых), устойчивости систем обыкновенных
дифференциальных уравнений, логарифмической матричной нормы и её при-
менения, явно-неявных схем, методов расщепления, методов Розенброка в со-
четании с приближёнными разложениями якобиана и схем с матричной экс-
понентой на основе подпространств Крылова. Препринт предназначен для
аспирантов и студентов, а также для научных работников для ознакомления
с указанной тематикой.

Ключевые слова: метод прямых, уравнение конвекции–диффузии, устой-
чивость дифференциальных уравнений и разностных схем, матричная экспо-
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This report contains lecture notes used for the 2016 edition of the Rome-
Moscow school of Matrix Methods and Applied Linear Algebra, held in Moscow
and Rome (respectively, in August and September 2016). The notes deal with
some matrix analysis problems which arise in construction and analysis of time
integration methods for solving large systems of ordinary and partial differential
equations (ODEs and PDEs). The material treated includes some aspects of
finite-difference approximation of convection–diffusion operators (used, follow-
ing the framework of the methods of lines, to reduce time-dependent convection–
diffusion problems to ODE systems), stability of the ODE systems, the logarith-
mic matrix norm, stability of the implicit–explicit θ-method, splitting methods,
Rosenbrock methods with approximate matrix factorizations and Krylov sub-
space exponential time integration.

Key words: method of lines, convection–diffusion equation, stability of dif-
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1 Some facts from matrix analysis

Here we list some definitions and results, mostly without proofs, which will be
used in our lectures. Marks ♦ and � denote the end of an exercise and a proof,
respectively.

By a vector x ∈ Cn we mean a column vector. Hence, the conventional inner
product in Cn can be defined as

(x, y) = y∗x, x, y ∈ Cn,

where y∗ denotes the conjugate of y. Let A ∈ Rn×n. The set of all the eigen-
values of A is called its spectrum. By ρ(A) we denote the spectral radius of A,
defined as

ρ(A) = max{|λ| | λ ∈ spectrum of A}.
We now define some the following vector norms, called the 2-norm, the 1-norm
and the max-norm, respectively,

‖x‖2 =

√√√√ n∑
k=1

|xk|2, ‖x‖1 =
n∑
k=1

|xk|, ‖x‖∞ = max
16k6n

|xk|. (1.1)

The associated matrix norms, ‖A‖ = maxx 6=0(‖Ax‖/‖x‖), are

‖A‖2 =
√
ρ(A∗A), ‖A‖1 = max

16j6n

n∑
i=1

|aij|, ‖A‖∞ = max
16i6n

n∑
j=1

|aij|.

(1.2)
Note that ‖A‖2 can not be computed by an explicit formula. In fact, computing
the 2-norm of a large matrix can be quite expensive. Thus, if we only need some
norm of a matrix, we should avoid computing the 2-norm1.

For any two matrix norms ‖ ·‖α and ‖ ·‖β the sharpest constant can be found
such that for any matrix A ∈ Cn×n holds ‖A‖α 6 Cα,β‖A‖β. These constants
are [21, Section 5.6]

C1,2 =
√
n, C1,∞ = n,

C2,1 =
√
n, C2,∞ =

√
n,

C∞,1 = n, C∞,2 =
√
n.

(1.3)

A square matrix P is called a permutation matrix if its columns can permuted
in such a way that the identity matrix is obtained.

A square matrix A is called reducible or decomposable if there exists a per-
mutation matrix P̂ such that

P̂AP̂ T =

[
A11 0
A21 A22

]
,

1Note that norm(A) in Matlab or Octave computes ‖A‖2. ‖A‖1 and ‖A‖∞ can be computed as norm(A,1) and norm(A,’inf’),
respectively.
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where the matrices A11 and A22 are square. Otherwise, A is called irreducible
or nondecomposable [28, 29]. Irreducible matrices are most easily characterized
by their directed graphs. A directed graph of a matrix A ∈ Rn×n is a graph of
n vertices, where there is a directed link (an arrow) from vertex i to vertices j
as soon as aij 6= 0. A matrix is irreducible if and only if its graph is (strongly)
connected, i.e., there exists a directed path between any two vertices i and j [51,
28].

Theorem 1.1 (Perron-Frobenius theorem) Let A = (aij) ∈ Rn×n be an ele-
mentwise nonnegative (aij > 0) irreducible matrix. Then
(1) A has a positive eigenvalue λ which equals the spectral radius of A: λ =
ρ(A);
(2) the eigenvector x = (xi) corresponding to λ can be chosen elementwise
strictly positive: xi > 0, i = 1, . . . , N ;
(3) λ is a simple eigenvalue.
If the matrix A is only elementwise nonnegative then ρ(A) is an eigenvalue of A
and the corresponding eigenvector can be chosen elementwise nonnegative [21,
Theorem 8.3.1].

A matrix A ∈ Rn×n is called weakly diagonally dominant if

|aii| >
n∑

j=1,j 6=i
|aij|, i = 1, . . . , n. (1.4)

If the strict inequalities hold here for all i, the matrix is called strictly diagonally
dominant. A matrix is called irreducibly diagonally dominant if it is irreducible,
weakly diagonally dominant and at least for one i the diagonal dominance
inequality holds strictly [28, 29].

Theorem 1.2 [51, 28] A strictly or irreducibly diagonally dominant matrix is
nonsingular and has nonzero diagonal entries.

Exercise 1.1 Prove Theorem 1.2 for a strictly diagonally dominant matrix. ♦

A matrixA is called anM -matrix [47] ifA = sI−B, withB being elementwise
nonnegative (B > 0) and s > ρ(B). If s = ρ(B) then A is singular and is called
a singular M -matrix [22, 33].

The following theorem can often be useful in establishing the property of
being an M -matrix.

Theorem 1.3 Let A ∈ Rn×n be weakly diagonally dominant and let

aii > 0, i = 1, . . . , n, aij 6 0, i 6= j.

Then the eigenvalues of A have nonnegative real part and A is a possibly singular
M-matrix.
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Proof [22, Section 2.5] Define

s = max
i
aii, B = sI − A.

Note that B is elementwise nonnegative and it can be checked that

‖B‖∞ 6 s. (1.5)

Thus, from ρ(B) 6 ‖B‖∞ follows ρ(B) 6 s and A is a (possibly singular) M -
matrix.
Furthermore, all the eigenvalues λ(A) of A belong to the set {z ∈ C | |z − s| 6
ρ(B)}. Hence, we have Reλ(A) > s − ρ(B). By the last part of Theorem 1.1,
ρ(B) is an eigenvalue of B and, thus, s − ρ(B) > 0 is an eigenvalue of A with
the smallest real part. Hence, if it is known that A is nonsingular, for instance,
by Theorem 1.2, then s > ρ(B). �

Exercise 1.2 In the proof of Theorem 1.3, check that (1.5) holds. ♦

A regular splitting of A ∈ Rn×n is a representation [47]

A = P −Q,
where P is nonsingular and P−1 and Q are elementwise nonnegative.

Theorem 1.4 [47, 33] If A is a possibly singular M-matrix and A = P − Q
is its regular splitting then ρ(P−1Q) 6 1. The last inequality becomes strict as
soon as A is nonsingular.

A matrix A = (aij) is called Hermitian if A equals its conjugate transpose
A∗ = (āji). If A = AT the matrix A is called symmetric. Real Hermitian
matrices are symmetric. The eigenvalues of a Hermitian matrix are real. Skew-
Hermitian matrices (i.e., matrices A for which holds A∗ = −A) have purely
imaginary eigenvalues. For every matrix A ∈ Rn×n, its symmetric and skew-
symmetric parts are defined respectively as 1

2(A + AT ) and 1
2(A − AT ). A real

square matrix is uniquely determined by its symmetric and skew-symmetric
parts. Spectrum Λ(A) of a real square matrix A is contained in a rectangular
domain in the complex plane,

Λ(A) ⊂ [a, b]× [−ic, ic] ⊂ C, a, b, c ∈ R,
where a and b are respectively minimum and maximum eigenvalues of 1

2(A+AT )

and c is the spectral radius of 1
2(A− AT ).

2 The problem we solve. Examples

In these lectures we discuss some matrix problems arising when the following
initial value problem (IVP) is solved numerically. For given A ∈ Rn×n, g(t) :
R→ Rn and y0 ∈ Rn, find a vector function y(t) : R→ Rn such that

y′(t) = −Ay(t) + g(t), y(0) = y0. (2.1)
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Such problems arise in many contexts, for instance, when we solve numerically
parabolic or hyperbolic partial differential equations (PDEs). A possible way
to solve a given time-dependent PDE is to first discretize it in space. If the
PDE linear, the spatial discretization yields (2.1), which is then solved by a
time integration method. This solution approach is called the method of lines
(MOL) [23, Sect. 6.1].

In Section 5.5, we also briefly discuss solution of a more general, nonlinear
autonomous ODE system y′(t) = −Ay − R(y) known as advection–diffusion–
reaction problem. Unless reported differently, we usually assume that A in (2.1)
is such that its symmetric part 1

2(A+ AT ) is positive definite.

2.1 Example: unsteady convection–diffusion problem

Assume Ω ⊂ R2 is a domain with a smooth boundary ∂Ω and L[u] is a linear
differential operator acting on functions u(x, y, t) from some functional space,
with t > 0 and (x, y) ∈ Ω. Consider the following problem:

(a)
∂u

∂t
+ L[u] = g̃(x, y, t),

u = u(x, y, t), (x, y) ∈ Ω, t > 0,

(b) u(x, y, 0) = u0(x, y),

(c) conditions on u(x, y, t)
∣∣
(x,y)∈∂Ω

and its derivatives,

(2.2)

where the functions g̃(x, y, t), u0(x, y) are given and u(x, y, t) is unknown. This
problem is an initial-boundary-value problem because relations (2.2)(b), (2.2)(c)
provide respectively initial and boundary conditions on the unknown function
u(x, y, t).

Solving (2.2) numerically by the method of lines approach, we first discretize
the partial differential equation (PDE) given by (2.2)(a) in space and then arrive
to a system of ordinary differential equations (ODEs):

∂u

∂t
+ L[u] = g̃(x, y, t)

space discretization→ y′(t) = −Ay(t) + g(t), (2.3)

where the vector function y(t), y : R→ Rn approximates the unknown function
u(x, y, t) at n discrete points (xi, yk) ∈ Ω, the matrix A ∈ Rn×n approximates
the operator L[·], Aw ≈ L[u], and g(t) is a vector function, g : R→ Rn, whose
coordinate functions gi(t) contain the values g̃(xi, yk, t), plus possibly some con-
tributions from boundary conditions (2.2)(c). The boundary conditions are also
taken into account by the structure of the matrix A.

We now describe two simple finite difference space discretizations (2.3) of
a nonstationary convection–diffusion problem. This problem is given by (2.2)
with

L[u] = −(D1ux)x − (D2uy)y + v1ux + v2uy +Du, (2.4)
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where the given functions Di, vi and D satisfy

Di = Di(x, y) > 0, vi = vi(x, y), i = 1, 2,

D1 +D2 > 0, (v1)x + (v2)y ≡ 0, (2.5)

D = D(x, y) > 0, (x, y) ∈ Ω,

and the subindices ·x and ·y denote the derivatives with respect to x and y,
respectively. Di and vi are called diffusion and convection coefficients, respec-
tively. For simplicity, we assume that the domain Ω is convex and boundary
conditions (2.2)(c) are homogeneous:

u
∣∣
∂Ω

= 0, t > 0.

One of the finite-difference discretizations which we describe yields a matrix A
such that L[u] ≈ Ay and

A0y = Ldiff[u], A1y = Lconv[u],

Ldiff[u] ≡ −(D1ux)x − (D2uy)y +Du, Lconv[u] ≡ v1ux + v2uy,
(2.6)

where A0 and A1 are the symmetric and skew-symmetric parts of A, respectively.
In other words, the symmetric part of A approximates the diffusion terms, and
the skew-symmetric part the convection terms.

2.2 Finite difference relations. Central differences

We introduce a uniform Cartesian mesh covering Ω and consisting of n points
(xi, yk) ∈ Ω. The mesh has mesh sizes h1 > 0 in the x-direction and h2 > 0 in
the y-direction, i.e., xi+1 − xi = h1, yk+1 − yk = h2 for all possible i and k. At
each node (xi, yk) of the mesh, we approximate the terms in Ldiff[u] by finite
differences as follows

(D1ux)x ≈
(D1)i+1/2,k(ui+1,k − ui,k)− (D1)i−1/2,k(ui,k − ui−1,k)

h2
1

,

(D2uy)y ≈
(D2)i,k+1/2(ui,k+1 − ui,k)− (D2)i,k−1/2(ui,k − ui,k−1)

h2
2

,

Du ≈ Di,kui,k,

(2.7)

where the subindices (·)i,k refer to the point (xi, yk), the subindices (·)i±1,k,
(·)i,k±1, (·)i±1/2,k, (·)i,k±1/2 refer to the points shifted from (xi, yk) respectively
by ±h1, ±h2, ±h1/2 or ±h2/2 in the x or y direction.

Before giving the finite difference relations for the convection terms, we
rewrite them in the following form [24] (see relation (2.5)):

v1ux + v2uy =
1

2
(v1ux + v2uy) +

1

2
((v1u)x + (v2u)y). (2.8)
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The reason why we rewrite the convective terms in this way, will become clear
a little bit later, in Exercise 2.2. Then, the finite difference approximations for
these terms at the point (xi, yk) are given by

1

2
(v1ux + (v1u)x) ≈

(v1)i,k(ui+1,k − ui−1,k) + ((v1)i+1,kui+1,k − (v1)i−1,kui−1,k)

4h1
,

1

2
(v2uy + (v2u)y) ≈

(v2)i,k(ui,k+1 − ui,k−1) + ((v2)i,k+1ui,k+1 − (v2)i,k−1ui,k−1)

4h2
.

(2.9)
Combining relations (2.7) and (2.9), we can approximate the operator L[u] at
each mesh point (xi, yk) as follows:

L[u]

∣∣∣∣
(xi,yk)

≈ Wi,kui−1,k + Si,kui,k−1 + Ci,kui,k +Ni,kui,k+1 + Ei,kui+1,k, (2.10)

with

Wi,k = −
(D1)i−1/2,k

h2
1

− (v1)i,k + (v1)i−1,k

4h1
,

Si,k = −
(D2)i,k−1/2

h2
2

− (v2)i,k + (v2)i,k−1

4h2
,

Ci,k =
(D1)i−1/2,k + (D1)i+1/2,k

h2
1

+
(D2)i,k−1/2 + (D2)i,k+1/2

h2
2

+Di,k,

Ni,k = −
(D2)i,k+1/2

h2
2

+
(v2)i,k + (v2)i,k+1

4h2
,

Ei,k = −
(D1)i+1/2,k

h2
1

+
(v1)i,k + (v1)i+1,k

4h1
.

The notation in (2.10) corresponds to the positions of the nodes of the finite
difference stencil ui±1,k±1 with respect to the central node ui,k (ui+1,k lies to
the East from ui,k, hence we write Ei,kui+1,k; ui,k+1 lies to the North, hence we
denote Ni,kui,k+1, etc.)

2.3 Structure of the matrix

Written for every mesh point, the relations (2.10) can be combined into a
matrix-vector product. Assume Ω = [0, 1]× [0, 1] and the mesh is given by

xi = ih1, yk = kh2, with hj = 1/nj, j = 1, 2. (2.11)

Writing the relations (2.10) successfully for the points
(x1, y1), (x1, y2), . . . , (x1, yn2−1),
(x2, y1), (x2, y2), . . . , (x2, yn2−1),
. . .
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(xn1−1, y1), (xn1−1, y2), . . . , (xn1−1, yn2−1), we obtain:

(x1, y1) : W1,1u0,1 + S1,1u1,0 + C1,1u1,1 +N1,1u1,2 + E1,1u2,1,

(x1, y2) : W1,2u0,2 + S1,2u1,1 + C1,2u1,2 +N1,2u1,3 + E1,2u2,2,

(x1, y3) : W1,3u0,3 + S1,3u1,2 + C1,3u1,3 +N1,3u1,4 + E1,3u2,3,

. . .

(x1, yn2−1) : W1,n2−1u0,n2−1 + S1,n2−1u1,n2−2 + C1,n2−1u1,n2−1

+N1,n2−1u1,n2 + E1,n2−1u2,n2−1,

(x2, y1) : W2,1u1,1 + S2,1u2,0 + C2,1u2,1 +N2,1u2,2 + E2,1u3,1,

. . .

(xn1−1, yn2−1) : Wn1−1,n2−1un1−2,n2−1 + Sn1−1,n2−1un1−1,n2−2 + Cn1−1,n2−1un1−1,n2−1

+Nn1−1,n2−1un1−1,n2 + En1−1,n2−1un1,n2−1,

. . .

These relations, where ui,k = 0 for i = 0, i = n1, k = 0 and k = n2 due to the
homogeneous boundary conditions (2.2)(c), can be cast into the matrix-vector
product form:

C1,1 N1,1 . . . . . . E1,1

S1,2 C1,2 N1,2 . . . E1,2
. . . . . . . . .

S1,n2−1 C1,n2−1 0
W2,1 0 C2,1 N2,1

W2,2 S2,2 C2,2 N2,2
. . . . . . . . . . . .





u1,1

u1,2
...

u1,n2−1

u2,1

u2,2
...


= Aw, (2.12)

where we denote the matrix by A and the vector by w. The matrix A is
five-diagonal with the main diagonal containing the coefficients Ci,k, the sub-
and superdiagonals containing respectively Si,k and Ni,k and two additional
diagonals containing Wi,k and Ei,k.

Note that each node in the finite difference mesh corresponds to a row in A
and we could use any order of nodes, when forming A. Thus, the structure of
A depends on the chosen node ordering, see e.g. [35] for more detail.

Note that the coordinates of the vector w in (2.12) are in fact functions of the
time t, they are approximations of the unknown function u(x, y, t) at the mesh
points (xi, yk). Replacing in (2.2)(a) ∂u/∂t by a vector of the time derivatives of
the coordinates of w and L[u] by Aw, we obtain a system of ODEs (see (2.3)).

Exercise 2.1 How many zero entries appear in the first row of the matrix A
between N1,1 and E1,1? Assume n1 = 20, n2 = 10. Which entry does A have in
the position (9,10)? In the position (10,11)? Assume n2 = 5. Write down the
first five coordinates of the vector function g(t) in (2.3). ♦
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Exercise 2.2 Show that finite difference approximation (2.7), (2.9) possesses
the property given in (2.6): the diffusion terms yield the Hermitian part of A,
the convection terms the skew-Hermitian part. ♦

Let us now assume that the property D1 +D2 > 0 which holds for all (x, y) ∈
Ω (see (2.4)) extends to the mesh in such a way that

(D1)i+1/2,k + (D2)i,k+1/2 > 0 ∀(x, y) ∈ Ω.

It is not difficult to check that the graph of 1
2(A+AT ) is connected and that

1
2(A+AT ) is weakly diagonal dominant. In some rows, the diagonal dominance
inequality holds strictly. Therefore, we conclude that the symmetric part of A
is irreducibly diagonally dominant. Furthermore, based on the Theorems 1.2
and 1.3, it is easy to see that 1

2(A+ AT ) is symmetric positive definite.

2.4 Upwind finite differences approximation

As an alternative to the central difference approximation (2.9) for the convection
terms, we can also use the so-called upwind finite differences. As we will see
in a moment, in this case it is not necessary to rewrite the convective terms
v1ux+v2uy as done in (2.8). For the upwind finite differences we get the familiar
five point stencil approximation (2.10) with different coefficients

Wi,k = −
(D1)i−1/2,k

h2
1

− (v1)i,k + |v1|i,k
2h1

,

Si,k = −
(D2)i,k−1/2

h2
2

− (v2)i,k + |v2|i,k
2h2

,

Ci,k =
(D1)i−1/2,k + (D1)i+1/2,k

h2
1

+
(D2)i,k−1/2 + (D2)i,k+1/2

h2
2

+Di,k+

|v1|i,k
h1

+
|v2|i,k
h2

Ni,k = −
(D2)i,k+1/2

h2
2

+
(v2)i,k − |v2|i,k

2h2
,

Ei,k = −
(D1)i+1/2,k

h2
1

+
(v1)i,k − |v1|i,k

2h1
.

(2.13)

As we see, now the convective terms do contribute to Ci,k on the main diagonal
of A. Hence, the contributions of the convective terms do not form a skew-
symmetric matrix anymore (cf. Exercise 2.2).

Exercise 2.3 Show that the upwind finite difference approximation (2.10),
(2.13) results in a matrix A which is an M -matrix. ♦
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2.5 Two other examples

In fact, many other problems and applications involve solving an IVP of the
form (2.1). We briefly discuss here another two examples where (2.1) has to
be solved. Both examples are taken from [40]. The first example is a typical
problem from the control theory, namely, find the state vector function y(t)
such that

y′(t) = −Ay(t) +Bu(t), y(0) = y0, (2.14)

where A ∈ Rn×n is the state companion matrix, u(t) : R → Rm is the control
function and B ∈ Rn×m.

The second example is a large group of problems where the concept of con-
tinuous time Markov chains is employed. As noted in [40], this “successful and
widely used way of modeling the behavior of many physical systems consists
in enumerating the (mutually exclusive) states in which the system may be at
a given time and then, describing the interaction between these states.” Un-
der certain assumptions the physical process under consideration can then be
described by the Chapman-Kolmogorov IVP:

y′(t) = −Ay(t), y(0) = y0.

Its solution y(t) = e−tAy0 is the so-called transient probability distribution of
the Markov chain and the coefficient matrix A ∈ Rn×n is called infinitesimal
generator of order n, with n being the number of states in the Markov chain.
Because of certain probability assumptions A is a singular M -matrix with zero
column sums, i.e.,

aij 6 0 for i 6= j and ajj = −
∑
i6=j

aij > 0.

Exercise 2.4 Based on the results of Section 1, show that A in the last example
is indeed a singular M matrix. ♦

3 Well-posedness of the problem. Stability estimates

The material presented in this section follows closely [23, Sect. 2.3].

3.1 Matrix exponential. Variation of constants formula

To analyze the IVP (2.1) and numerical methods for its solution, we need the
concept of the matrix exponential, defined, for a given matrix A ∈ Rn×n, by the
power series

eA =
∞∑
k=0

1

k!
Ak, A0 = I. (3.1)

This definition is one of many possible definitions of the matrix exponential,
see e.g. [18].
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Theorem 3.1 Solution of homogeneous, i.e. with g(t) ≡ 0, IVP (2.1) is given
by

y(t) = e−tAy0. (3.2)

Proof Writing down the power series (3.1) for e−tA, we note that the terms in
the series are bounded in norm by 1

k!t
k‖A‖k. Hence, the series converges and

‖e−tA‖ 6 et‖A‖. (3.3)

The rest of the proof is left as an exercise. �

Exercise 3.1 Finish the proof of Theorem 3.1. ♦

Theorem 3.2 Solution of IVP (2.1) is given by

y(t) = e−tAy0 +

∫ t

0
e(s−t)Ag(s) ds. (3.4)

The last relation is called the variation of constants formula.

Proof Multiplying the ODE system y′(t) +Ay(t) = g(t) by the matrix etA, we
get

etAy′(t) + etAAy(t) = etAg(t) ⇔ d

dt

(
etAy(t)

)
= etAg(t).

The relation (3.4) can now be obtained by integrating the last equality:∫ t

0

d

ds

(
esAy(s)

)
ds =

∫ t

0
esAg(s) ds,

etAy(t)− e0Ay(0)︸ ︷︷ ︸
y0

=

∫ t

0
esAg(s) ds.

�

3.2 Stability estimates

The variation of constants formula (3.4) allows to obtain the so-called stabil-
ity estimates for IVP (2.1), whose meaning is as follows. Consider, together
with (2.1), a perturbed problem

ỹ′(t) = −Aỹ(t) + g(t) + δ(t), ỹ(0) = ỹ0, (3.5)

where δ(t) and ỹ0 are given. Let ε(t) = ỹ(t) − y(t). We are interested in
establishing stability estimates, i.e., estimates which show dependence of ‖ε(t)‖
on ‖ε(0)‖ and ‖δ(t)‖. Since ε(t) satisfies

ε′(t) = −Aε(t) + δ(t), ε(0) = ỹ0 − y0,
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we obtain, using the variation of constants formula,

ε(t) = e−tAε(0) +

∫ t

0
e(s−t)Aδ(s) ds,

‖ε(t)‖ 6 ‖e−tA‖ ‖ε(0)‖+

∫ t

0
‖e(s−t)A‖ ds max

s∈[0,t]
‖δ(s)‖,

where we used the fact that for a continuous vector function f : [a, b] → Rn

holds ‖
∫ b
a f(x)dx‖ 6

∫ b
a ‖f(x)‖dx. If we assume that there exist constants K

and ω such that
‖e−tA‖ 6 Ke−tω, t > 0, (3.6)

then

‖ε(t)‖ 6 Ke−tω‖ε(0)‖+K
1− e−tω

ω
max
s∈[0,t]

‖δ(s)‖. (3.7)

Exercise 3.2 Check that (3.7) is correct. Note that the factor (1 − e−tω)/ω
is undefined for ω = 0. However, we can formally assign a certain value to
(e−tω − 1)/ω for ω = 0. Which value should it be? ♦

For the stability estimate (3.7) to be useful, the exponential estimate (3.6)
should be sufficiently sharp. Such estimates can be obtained in various ways.

Exercise 3.3 Note that (3.3) also fits the form of (3.6). However, this estimate
is not very useful. Explain why. Hint: consider the scalar case n = 1 and
matrices A = 1, A = −1. ♦

Assume that A is diagonalizable as A = V DV −1 (where D is a diagonal
matrix with the eigenvalues λk of A being its entries). Then

‖e−tA‖ = ‖V e−tDV −1‖ 6 ‖V ‖‖e−tD‖‖V −1‖ = κ(V ) max
k
|e−tλk| = κ(V )e−tmink Reλk.

Here κ(V ) = ‖V ‖‖V −1‖ is the condition number of the eigenvector matrix V .
We see that (3.6) holds with K = κ(V ) and ω = mink Reλk. If A is normal
then κ(V ) = 1 in the 2-norm. However, if A is far from normal, so that a large
κ(V ) makes the estimate above useless, or if the information on spectrum is
unavailble then we need a different sort technique which we now consider.

3.3 Logarithmic matrix norm

To obtain more sensible exponential estimates of the form (3.6), we introduce
the so-called logarithmic norm of a matrix A ∈ Rn×n, defined as [23, Sect. 2.3]

µ(A) = lim
τ→0+

‖I + τA‖ − 1

τ
, (3.8)

where ‖ · ‖ is a matrix norm induced by some vector norm.
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Exercise 3.4 Check that for τ > 0

−‖A‖ 6 ‖I + τA‖ − 1

τ
6 ‖A‖.

♦

The fraction under the limit in (3.8) can be shown to be non-decreasing in
τ > 0. Indeed, for 0 < σ < 1 we have

‖I + στA‖ = ‖I + στA+ σI − σI‖ 6 σ‖I + τA‖+ 1− σ,
‖I + στA‖ − 1

στ
6
σ‖I + τA‖ − σ

στ
6
‖I + τA‖ − 1

τ
.

Hence, the limit in (3.8) exists and the convergence is monotone.

Exercise 3.5 Is the logarithmic norm a norm? ♦

The definition (3.8) of the logarithmic matrix norm shows that this special norm
can be interpreted as a one-sided derivative of the mapping ‖ · ‖ : Rn×n → R,
evaluated in point I ∈ Rn×n in the direction given by A ∈ Rn×n [10, Section 1.5].
The name “logarithmic” becomes clear if we note that for any A ∈ Rn×n

µ(A) = lim
τ→0+

ln ‖eτA‖

τ
.

Indeed, for sufficiently small τ > 0, we have [10, Section 1.5]

ln ‖eτA‖ = ln
(
‖I + τA‖+O(τ 2)

)
= ln

(
1 +

[
‖I + τA‖ − 1 +O(τ 2)

])
= ‖I + τA‖ − 1 +O(τ 2).

The importance of the logarithmic norm becomes clear from the following re-
sult [23].

Theorem 3.3 Let A ∈ Rn×n and ω ∈ R. We have

µ(−A) 6 −ω ⇔ ‖e−tA‖ 6 e−tω ∀t > 0. (3.9)

Proof Note that the last relation can be rewritten in an equivalent form

µ(A) 6 ω ⇔ ‖etA‖ 6 etω ∀t > 0. (3.10)

We give a proof for this last relation. First, assume that µ(A) 6 ω. Then, for
sufficiently small τ > 0, by definition of µ(A),

‖I + τA‖ − 1

τ
− µ(A) = O(τ),

‖I + τA‖ − 1− τµ(A) = O(τ 2),

‖I + τA‖ = 1 + τµ(A) +O(τ 2),

‖I + τA‖ 6 1 + τω +O(τ 2),

‖(I + τA)k‖ 6 (1 + τω +O(τ 2))k,
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where t = kτ is fixed. Taking a limit τ → 0+ in the both parts of the last
inequality, we obtain

‖etA‖ 6 etω.
Here, for τ → 0+ and fixed t = kτ , (I + τA)k → etA because I + τA is the
transfer matrix of the explicit Euler method applied to y′(t) = Ay(t) (see (4.1)
with −A replaced by A).

Assume now that ‖etA‖ 6 etω for all t > 0. Then

‖I + τA‖ = ‖etA +O(τ 2)‖ 6 ‖etA‖+O(τ 2) 6 etω +O(τ 2) = 1 + τω +O(τ 2),

from which µ(A) 6 ω easily follows. �
The following result lists some more important properties of the logarithmic
matrix norm.

Theorem 3.4 Let A ∈ Rn×n and let µ(A) be defined by (3.8). We have

µ(sI + A) = s+ µ(A), ∀s ∈ R, (3.11)

µ(tA) = |t|µ(sign(t)A), ∀t ∈ R, (3.12)

µ(A+B) 6 µ(A) + µ(B), (3.13)

|µ(A)− µ(B)| 6 ‖A−B‖, (3.14)

µ(A) > −‖Ax‖
‖x‖

, ∀0 6= x ∈ Cn, (3.15)

where ‖ · ‖ is the norm which defines the logarithmic norm µ(·) and sign is the
sign function.

Proof To prove (3.11), we write, taking into account that 1 + τs > 0 for small
τ > 0,

µ(sI + A) = lim
τ→0+

‖I + τ(sI + A)‖ − 1

τ
= lim

τ→0+

(1 + τs)‖I + τ
1+τsA‖ − 1

τ

= lim
τ→0+

‖I + τ
1+τsA‖ −

1
1+τs

τ
1+τs

= lim
τ→0+

‖I + τ
1+τsA‖ −

1+τs−τs
1+τs

τ
1+τs

= µ(A) + s.

Proof of (3.12) is left as an exercise.
Next, the property (3.13) can be proven, using the estimate [26]

‖I + τ(A+B)‖ − 1 = ‖1
2

(I + 2τA) +
1

2
(I + 2τA)‖ − 1

6
1

2
(‖I + 2τA‖ − 1) +

1

2
(‖I + 2τB‖ − 1).

Furthermore, (3.14) can be shown based on the fact that −‖A‖ 6 µ(A) 6 ‖A‖
(see Exercise 3.4).
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Finally, to see that (3.15) holds, we write

‖x‖ = ‖(I + τA)x− τAx‖ 6 ‖(I + τA)x‖+ τ‖Ax‖,

−‖Ax‖ 6 ‖(I + τA)x‖ − ‖x‖
τ

6
‖I + τA‖ − 1

τ
‖x‖.

�

Exercise 3.6 Finish all the details in the proof of Theorem 3.4. ♦

Since the logarithmic norm is introduced for any matrix norm, in practice we
may want to use a norm best suitable for a particular situation.

Exercise 3.7 Check that for the most often used vector norms (1.1) and associ-
ated matrix norms (1.2), the corresponding logarithmic norms can be computed
as

µ2(A) = max
x 6=0

Re(Ax, x)

(x, x)
= max{λ | λ ∈ spectrum of

1

2
(A+ A∗)},

µ1(A) = max
j

(Re ajj +
∑
i6=j
|aij|),

µ∞(A) = max
i

(Re aii +
∑
j 6=i
|aij|).

(3.16)

♦

3.4 Examples

To see how the results of this section can be used, let us consider several exam-
ples taken from [23, Sect. 2.3]. Assume we solve (2.1) and it is known that the
matrix 1

2(A+AT ) (the symmetric part of A) is positive semidefinite. As we see

from (3.9) and (3.16), ‖e−tA‖2 6 1 if and only if 1
2(A+AT ) is positive semidef-

inite. Thus, the stability estimate (3.7) holds in the 2-norm. If 1
2(A + AT ) is

positive definite then we see that relation (3.6) holds with ω being the smallest
eigenvalue of 1

2(A+ AT ).
Furthermore, if it is known that the diagonal elements of A are positive and

A is row-wise (weakly) diagonally dominant then

µ∞(−A) = max
i

(−aii +
∑
j 6=i
|aij|) = −min

i
(aii −

∑
j 6=i
|aij|)︸ ︷︷ ︸

denote by δ

6 0

and the stability estimate (3.7) can be established in the max-norm with ω = δ.
Similarly, stability in the 1-norm can be obtained if A is column-wise (weakly)
diagonally dominant with positive diagonal elements.
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Figure 1: The time dependence of the norms ‖e−tA‖1 (dash-dotted line), ‖e−tA‖2 (dashed line) and ‖e−tA‖∞
(solid line). The upper bounds for the two last norms are plot in bold.

We now consider a more specific example, taken from [23, Sect. 2.3]. An IVP

y′(t) = −Ay(t), A =

[
k1 −k2

−k1 k2

]
, y(0) =

[
y0

1

y0
2

]
, (3.17)

models the two-way chemical reaction y1
k1−→ y2

k2−→ y1.

Exercise 3.8 Check, by diagonalization of A, that the exact solution of (3.17)
is

y1(t) = ak2 + be−(k1+k2)t,

y2(t) = ak1 − be−(k1+k2)t, a =
y0

1 + y0
2

k1 + k2
, b =

k1y
0
1 − k2y

0
2

k1 + k2
,

where y0
1 and y0

2 are the given initial values. ♦

Let us consider solution of (3.17) for the 0 6 t 6 T = 1, k1 = 1, y0
1 = 0.1 and

y0
2 = 0.9. If k2 � k1 = 1 we have ‖A‖ � 1 and the stability estimate (3.7)

with (3.3),(3.6) (i.e., ω = −‖A‖) suggests an instability (an ill-posedness) of
the problem. On the other hand, the logarithmic norms are

µ1(−A) = 0, µ2(−A) = −ω̂ = −k1 + k2

2
+

√
k2

1 + k2
2

2
> 0, µ∞(−A) = |k2−k1|.

This, due to (3.9), implies

‖e−tA‖1 6 1 ∀t > 0,

‖e−tA‖2 6 e
−tω̂ ∀t > 0,

‖e−tA‖∞ 6 et|k2−k1| ∀t > 0.
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As we see from Figure 1, the last two estimates are far from being sharp for
large t > 0. To get sharper estimates, we note that for any n × n matrix B
holds (see (1.3))

‖B‖2 6
√
n‖B‖1, ‖B‖∞ 6 n‖B‖1.

This yields the estimates

‖e−tA‖2 6
√

2 ∀t > 0,

‖e−tA‖∞ 6 2 ∀t > 0,

which show good stability properties of the problem.

4 Basic time integration schemes. Their stability

Let τ > 0 be a time step size and denote by yk a numerical solution of (2.1) at
t = kτ , yk ≈ y(kτ). Some standard numerical schemes for integrating (2.1) in
time read

yk+1 − yk

τ
= −Ayk + gk, (4.1)

yk+1 − yk

τ
= −Ayk+1 + gk+1, (4.2)

yk+1 − yk

τ
= −(1− θ)Ayk − θAyk+1 + (1− θ)gk + θgk+1, θ ∈ [0, 1], (4.3)

called respectively forward (or explicit) Euler scheme, backward (or implicit)
Euler scheme, and the implicit–explicit θ-method. For θ = 1

2 we get the implicit
trapezoidal rule scheme, whereas the choices θ = 0 and θ = 1 yield forward Euler
and backward Euler schemes, respectively. Note that the implicit trapezoidal
rule scheme is also known as the Crank–Nicolson scheme, proposed in 1947 by
Crank and Nicolson [9].

Many time integration schemes for (2.1) with g ≡ 0 can be written as

yk+1 = R(−τA)yk,

where R(z) is some rational function. For a particular method, this function
can be easily derived by applying the method to a scalar test equation (the
so-called Dahlquist test problem [23, Sect. I.2])

y′(t) = λy(t), y(0) = y0, λ ∈ C. (4.4)

R(z) is called the stability function of the method.

Exercise 4.1 Check that the stability function of the θ-method reads

R(z) =
1 + (1− θ)z

1− θz
.

♦
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The name “stability function” becomes clear if we consider the set

S = {z ∈ C | |R(z)| 6 1}.

Since, to have stability for the problem (4.4), it is sufficient to require τλ = z ∈
S, we call S the stability region of the method.

The following result, used later, is called the maximum modulus theorem.

Theorem 4.1 [23, Sect. I.2] Let ϕ be a nonconstant complex function which is
analytic on a set D ⊂ C and continuous on its closure. Then the maximum of
ϕ is attained on the boundary ∂D of D. In particular, if ϕ is rational without
poles in C− = {z ∈ C | Re z 6 0} then maxz∈C− |ϕ(z)| = maxy∈R |ϕ(iy)|.

A time integration method is called A-stable if its stability region contains
the left complex half-plane C− = {z ∈ C | Re z 6 0}. A-stability means that
the method applied to (4.4) with λ ∈ C− is unconditionally stable (i.e., stable
for all τ > 0).

The question is whether this stability considerations for the scalar test prob-
lem (4.4) can be extended to the problem (2.1) for a nonnormal matrix2 The
following theorem answers this question.

Theorem 4.2 [17, Sect. IV.11] (Theorem of John von Neumann) Let a rational
function R(z) be bounded in C− = {z ∈ C | Re z 6 0} and let A ∈ Cn×n be
such that

Re(y, Ay) > 0, ∀y ∈ Cn.

Then in the matrix norm corresponding to the scalar product we have

‖R(−τA)‖ 6 max
z∈C−
|R(z)|. (4.5)

Proof [17, Sect. IV.11] To simplify the notation, the proof is given for −τA re-
placed byA. Then for this newA we have to prove that ‖R(A)‖ 6 maxz∈C− |R(z)|.
It holds

Re(y, Ay) 6 0, ∀y ∈ Cn.

Assume that A is nonnormal (otherwise the proof is left as Exercise 4.2). In-
troduce, for α ∈ C,

A(α) =
α

2
(A+ A∗) +

1

2
(A− A∗).

Note that A(1) = A. It is not difficult to see that

(v,A(α)v) = ᾱRe(v,Av) + i Im(v,Av). (4.6)

This shows that
Re(y, A(α)y) 6 0, ∀y ∈ Cn,

2If A is close to normal or if some information on the (pseudo)spectrum of A is available, then estimates for ‖R(−τA)‖ as in
the end of Section 3.2 can be used.
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holds as long as Reα > 0. Hence, for Reα > 0 the eigenvalues of A(α) also
have nonpositive real part. Therefore, the rational function

ϕ(α) = ‖R(A(α))v‖2,

where v is fixed, has no poles in Reα > 0. From Theorem 4.1 it follows then

‖R(A)v‖2 = ϕ(1) 6 max
y∈R

ϕ(iy) = max
y∈R
‖R(A(iy))v‖2

6 max
y∈R
‖R(A(iy))‖2‖v‖2.

It can be checked that the matrix A(iy) is normal. Since the proof holds for
normal matrices (see Exercise 4.2), we have

‖R(A(iy))‖ 6 max
z∈C−
|R(z)| ∀y ∈ R,

which leads to

‖R(A)v‖2 6

(
max
z∈C−
|R(z)|

)2

‖v‖2.

�

Exercise 4.2 Prove Theorem 4.2 for a normal matrix A. ♦

Exercise 4.3 Check the relation (4.6) and normality of the matrix A(iy). ♦

To appreciate the strength of Theorem 4.2 and the elegance of its proof, let us
now try to prove a similar result for a specific time integration scheme, namely,
for the θ-method. It is not difficult to see that the θ-method applied to the
problem (2.1) with g ≡ 0 reads

yk+1 = R(−τA)yk, R(Z) = (I − θZ)−1(I + (1− θ)Z),

where the matrix Z = −τA is introduced.

Exercise 4.4 Check that for any square matrix Z we have

(I − θZ)−1(I + (1− θ)Z) = (I + (1− θ)Z)(I − θZ)−1.

♦

For any vector norm corresponding to the chosen inner product and the induced
operator norm induced by this vector norm, we then can write

‖yk+1‖2

‖yk‖2
=
‖R(Z)yk‖2

‖yk‖2
=
‖(I + (1− θ)Z)(I − θZ)−1yk‖2

‖yk‖2
=
‖(I + (1− θ)Z)u‖2

‖(I − θZ)u‖2
,

where u = (I − θZ)−1yk. The last relation can be rewritten as

‖yk+1‖2

‖yk‖2
=

1 + 2(1− θ) Re(v, Zv) + (1− θ)2‖Zv‖2

1− 2θRe(v, Zv) + θ2‖Zv‖2
= |R(ζ)|2, (4.7)

with v = u/‖u‖ and ζ = Re(v, Zv) + i
√
‖Zv‖2 − (Re(v, Zv))2.
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Exercise 4.5 Show that (4.7) with the given ζ is correct. ♦

We thus obtain
‖R(−τA)‖ = |R(ζ)|,

where ζ is just defined. We would now like to get a bound on ‖R(−τA)‖ by
localizing ζ. It is natural to assume (cf. (3.9)) that

µ2(−A) 6 −ω, (4.8)

where µ2(·) is defined with respect to the same inner product operator norm.

Exercise 4.6 Propose a condition in terms of ω, θ and τ which guarantees that
all the eigenvalues of the matrix I + θτA have a positive real part. Under this
condition the matrix I + θτA is nonsingular. ♦

Using (4.8), we have in the estimate above

Re ζ = Re(v, Zv) = τ Re(v,−Av) 6 τµ2(−A) 6 −τω,

so that

‖R(−τA)‖ 6 max
Re ζ6−τω

|R(ζ)| = max
{
|R(−τω)|, lim

z→∞
|R(z)|︸ ︷︷ ︸

1−1/θ

}
.

The last equality is due to the maximum modulus theorem. We proved the
following result.

Theorem 4.3 [23, Sect. I.2] Let ‖ · ‖ denote a vector or induced matrix norm
corresponding to a inner product and let A ∈ Cn×n be such that µ2(−A) 6 −ω
with ω satisfying the condition derived in Exercise 4.6. Furthermore let

R(z) =
1 + (1− θ)z

1− θz
be the stability function of the θ-method (4.3). We have

‖R(−τA)‖ 6 max
Re z6−τω

|R(z)| = max
{
|R(−τω)|, 1− 1

θ

}
.

Exercise 4.7 Show that the bound (4.8) on the logarithmic norm holds if and
only if

Re(v, Av) > ω‖v‖2, ∀v ∈ Cn.

♦

Note that the stability results for the θ-method in this section are proven for
an inner product vector norm (and the induced operator matrix norm). Ob-
taining stability results for the θ-method in other norms is often difficult unless
θ = 1 [23, Sect. I.2]. For the implicit Euler method (θ = 1) stability results
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are not only easier to obtain but also some stability results hold exclusively for
θ = 1. For instance, the requirement for the θ-method

‖R(−τA)‖∗ 6 1, with ∗ = 1 or ∗ =∞,

necessarily implies θ = 1 [17, Sect. IV.11].

5 Operator splitting

5.1 Introducing splitting methods

The material of this subsection closely follows the lines of [23, Sect. IV.1]. One
of the very useful concepts in numerical time integration methods is the so-
called operator splitting. To understand this concept, assume we solve (2.1)
with no source term (g ≡ 0) and3

A = A1 + A2.

If ODE systems y′ = −A1y(t) and y′ = −A1y(t) are easier to solve than y′ =
−Ay(t), then numerical solution of (2.1) after one time step, namely,

y1 ≈ y(τ) = e−τAy0, (5.1)

can be approximated by first solving the ODE system with A1 and then with
A2. More precisely, we successfully solve two IVPs

ỹ′ = −A1ỹ(t), for t ∈ [0, τ ] with ỹ(0) = y0,

ŷ′ = −A2ŷ(t), for t ∈ [0, τ ] with ŷ(0) = ỹ(τ),
(5.2)

where the output ỹ(τ) of the first subproblem is the input ŷ(0) of the second
subproblem. The splitting procedure in (5.2) is repeated at all subsequent
time steps k = 2, 3, . . . . It forms a simplest splitting method called sequential
splitting.

Assume now that y1 in (5.1) and subproblem solutions (5.2) are computed
exactly, which means

y1 = e−τAy0, y1
split = e−τA2e−τA1y0.

Comparing the exact solution y1 with the splitting solution y1
split we see

e−τA = I + τ(−A1 − A2) +
τ 2

2
(A1 + A2)

2 + . . . ,

e−τA2e−τA1 = I + τ(−A1 − A2) +
τ 2

2
(A2

1 + 2A2A1 + A2
2) + . . . .

Hence, the splitting introduces an additional error at every time step. The error
committed at one time step started at the exact solution is called local error.

3Here A1 should not be confused with the skew-symmetric part of A.
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As we see, in the sequential splitting method the local error is(
e−τA − e−τA2e−τA1

)
y0 =

τ 2

2
(A1A2 − A2A1) +O(τ 3).

Since the local error is O(τ 2), the global error, i.e., the error after all time steps
are done, is O(τ). Thus, we see that the sequential splitting (5.2) is first order
accurate. We call

[A1, A2] = A1A2 − A2A1

the commutator of A1 and A2.

Exercise 5.1 Prove that if A1 and A2 are diagonalizable and commute then

e−τA2e−τA1 = e−τA2−τA1 = e−τA. (5.3)

Thus, the sequential splitting is exact in this case. If A1 and A2 commute but
are not necessarily diagonalizable then (5.3) still holds, which can be seen from
the power expansion of the matrix exponential. ♦

For two noncommuting matrices it can sometimes be very useful to express
a product of their matrix exponentials as a single matrix exponential, i.e., to
find, for given A1,2, such a matrix Ã that

eτA2eτA1 = eτÃ.

The matrix Ã is then given by the Baker-Campbell-Hausdorff formula:

Ã =(A1 + A2) +
τ

2
[A2, A1] +

τ 2

12
([A2, [A2, A1]] + [A1, [A1, A2]])

+
τ 3

24
[A2, [A1, [A1, A2]]] +O(τ 4).

The higher order terms in this formula are quite cumbersome but can be com-
puted recursively [39].

5.2 Second order splittings

The accuracy in the sequential splitting (5.2) can be improved if we repeat the
splitting steps in the opposite order:
(1) a step for the subproblem with A1;
(2) a step for the subproblem with A2;
(3) a step for the subproblem with A2;
(4) a step for the subproblem with A1.
More precisely, assuming again that the splitting subproblems can be solved
exactly, we have at the first time step k = 1

y1
split = e−

τ
2A1e−

τ
2A2e−

τ
2A2e−

τ
2A1y0 = e−

τ
2A1e−τA2e−

τ
2A1y0. (5.4)
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It can be shown, after quite a few manipulations, that(
e−τA − e−

τ
2A1e−τA2e−

τ
2A1
)
y0 =

τ 3

24
([A1, [A1, A2]] + 2[A2, [A1, A2]]) y(τ/2)+O(τ 5),

which shows that this symmetric splitting is second order accurate. This split-
ting method was proposed in 1968 independently by Marchuk [27] and by
Strang [43]. We call (5.4) Marchuk–Strang splitting.

Another second order splitting, proposed in 1963 by Strang [42], reads at the
first time step k = 1

y1
split =

1

2

(
e−τA1e−τA2 + e−τA2e−τA1

)
y0. (5.5)

Here, for simplicity of the presentation we again assumed that the time steps
for subproblems are carried out exactly. Note that the substeps e−τA1e−τA2y0

and e−τA2e−τA1y0 can be computed in parallel. For this reason splitting (5.5) is
called parallel or symmetrically weighted splitting.

5.3 Examples of splitting

In the previous section we used the matrix exponentials e−tAj , j = 1, 2, only to
describe different splitting methods in a compact form. In practice, each of the
splitting substeps can be carried out by any suitable time integration method.
Of course, the splitting can be applied (and, indeed, is widely applied) to any
system of ODEs

y′(t) = f(t, y(t)), f : R× Rn → Rn,

as soon as we have a splitting f(t, y) = f1(t, y) + f2(t, y). Simplicity of splitting
methods makes them very popular. In complex mathematical models, they
allow to treat different processes independently, in separate modules of the
software.

To emphasize the versatility of the operator splitting concept, we now name
just a few possible splitting methods applicable to the time dependent advection–
diffusion problem (2.3).

1. The θ-method. See Exercise 5.2.

2. Directional splitting methods where A1 contain all the contributions of the
partial derivatives with respect to x (and A2 = A− A1). Famous splitting
methods of this type are ADI (alternating direction implicit) (see e.g. [32])
and LOD (locally one-dimensional) schemes [50].

3. Splitting methods based on physical process, where, for instance, A1 corre-
sponds to diffusion and A2 to advection.

4. Special splitting schemes where for the splitting steps carried out by an
implicit scheme Aj are chosen such that the linear system with I + τAj is
easy to solve.
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Exercise 5.2 Show that the θ-method can seen as a sequential splitting method
where the part with A1 = (1− θ)A is carried out by the explicit Euler scheme
and the part with A2 = θA by the implicit Euler scheme. ♦

5.4 Splitting with M-matrices

Let A ∈ Rn×n be weakly diagonally dominant with nonnegative diagonal and
nonpositive off-diagonal entries. As Theorem 1.3 states, A is then an (possibly
singular) M -matrix. In some situations considered below, a splitting

A = M +N (5.6)

can be useful, where M and N have the same properties as A, i.e., they are
weakly diagonally dominant matrices with nonnegative diagonal entries and
nonpositive off-diagonal entries. Such splittings are sometimes called replica-
tive [3]. Consider the following implicit–explicit (IMEX) time integration scheme
for solving (2.1):

yk+1 − yk

τ
= −Myk+1 −Nyk + gk+1/2. (5.7)

The scheme can be rewritten as

yk+1 = (I + τM)−1(I − τN)yk + τ(I + τM)−1gk+1/2. (5.8)

We now give a stability result for this scheme.

Theorem 5.1 [3] Let matrices M and N be weakly diagonally dominant with
nonnegative diagonal entries and nonpositive off-diagonal entries. If N 6= 0
then the time integration scheme (5.8),(5.6) with

τ 6
1

maxi nii
(5.9)

is stable, i.e.,

‖(I + τM)−1(I − τN)‖∞ 6 ‖(I + τM)−1‖‖(I − τN)‖∞ 6 1, (5.10)

‖yk+1‖∞ 6 ‖yk‖∞ + τ‖gk+1/2‖∞, (5.11)

and monotone, i.e.,

gk+1/2 > 0, l 6 m ⇒ yk > 0,

where the inequalities understood elementwise. Furthermore if A = M + N is
nonsingular then

ρ((I + τM)−1(I − τN)) < 1.

If N = 0 then all the stability and monotonicity estimates of this theorem hold
for any τ > 0.
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Proof For brevity, in the proof we omit the subscript ·∞ for the norms. By
Theorem 1.3, M is a possibly singular M -matrix and we can write M = sI−B
where s = maximii > ‖B‖ > ρ(B) and B is elementwise nonnegative (see the
proof of Theorem 1.3). Then

‖(I + τM)y‖ = ‖(I + τsI − τB)y‖ > |‖(1 + τs)y‖ − ‖τBy‖| >
> ‖(1 + τs)y‖ − ‖τBy‖ = (1 + τs)‖y‖ − τ‖By‖ >
> ‖y‖+ τs‖y‖ − τ‖B‖‖y‖ = ‖y‖+ τ(s− ‖B‖)‖y‖,

‖(I + τM)−1‖ = max
x 6=0

‖(I + τM)−1x‖
‖x‖

= max
y 6=0

‖y‖
‖(I + τM)y‖

6

6 max
y 6=0

‖y‖
‖y‖+ τ(s− ‖B‖)‖y‖

6 1.

It is not difficult to check that ‖I − τN‖ 6 1 provided (5.9) holds. Thus (5.10)
holds and (5.11) follows. The monotonicity estimate results from the fact that
(I + τM)−1 and I − τN are elementwise nonnegative. Finally, the bound on
the spectral radius follows from the observation that P −Q, with P = I + τM
and Q = I − τN , is a regular splitting of the M -matrix τA (see Theorem 1.4).
�

Exercise 5.3 (a) Check that bound (5.9) implies ‖(I − τN)‖∞ 6 1.

(b) Check if g(t) ≡ 0 then from (5.8), (5.6), (5.9) follows

‖yk+1‖∞ 6
1− τ mini

∑
j nij

1 + τ(s− ‖B‖∞)
‖yk‖∞.

♦

5.5 Reducing the splitting error: Rosenbrock methods

In some applications the splitting errors can be rather harmful. This is often
the case if the eigenvalues of the matrices A1 and A2 significantly differ, as
for example in the stiff problems, where A1 and A2 may have eigenvalues of a
different order of magnitude [41, 48]. In this case a nice alternative to splitting
methods are the so-called Rosenbrock methods [49, 2]. Applied to a nonlinear
autonomous IVP

y′(t) = f(y), y(0) = y0, (5.12)

with f : Rn → Rn and y0 ∈ Rn given, a two stage Rosenbrock scheme called
ROS2 reads

yk+1 = yk +
3

2
k1 +

1

2
k2,

(I + γτÂ)k1 = τf(yk),

(I + γτÂ)k2 = τf(yk + k1)− 2k1,

(5.13)
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where −Â is supposed to be an approximation to the Jacobian f ′(yk), τ > 0
is the time step size and γ > 0 is a parameter defined below. The Rosenbrock
schemes in general and the scheme (5.13) in particular have a remarkable prop-

erty: their consistency order does not depend on how well −Â approximates
the Jacobian f ′(yk). By applying the ROS2 to the Dahlquist test problem, it

is not difficult to derive the ROS2 stability function. Then, for −Â = f ′(yk), it
can be shown that the ROS2 scheme is A-stable for γ > 1

4 . Furthermore, one

can show that the ROS2 scheme has a second order consistency for any Â [49],

[23, Sect. IV.5.2]. For Â approximating the Jacobian as −Â = f ′(yk) + O(τ)
this two stage scheme can be modified such that it has a third order consistency
for a specific value of γ [23, Sect. IV.5.2], [25]. We note that Rosenbrock meth-
ods allowing arbitrary approximations to the Jacobian matrices are also called
W -methods, see e.g. [17, Sect. IV.7].

As already noted, an important attractive property of Rosenbrock schemes
such as ROS2 is that they can be used as an alternative to the splitting methods.
Indeed, since the matrix Â can be chosen arbitrarily, we can take Â such that

I + γτÂ = (I + γτA1)(I + γτA2), with A1 + A2 = −f ′(yk). (5.14)

For small τ this implies an approximation

I + γτÂ = I + γτ(A1 + A2) + (γτ)2A1A2 = I − γτf ′(yk) +O(τ 2), (5.15)

and, hence, we refer to (5.14) as approximate matrix factorization (AMF). The
concept of AMF can be traced back to papers [14, 1] and to classic work on
alternating direction implicit (ADI) methods [32]. A combination of the ROS2
scheme with AMF (called ROS2-AMF) can then be employed instead of a split-
ting method with A1 and A2 [49, 45]. Here, in fact, the splitting is put from time
integration to the linear algebra level. This approach has been successfully ap-
plied in time integration of advection–diffusion–reaction problems [49, 16, 48, 2].

If A1 and A2 in (5.14) do not commute, a strict stability analysis of Rosen-
brock methods with AMF is a difficult task, with many open problems (see
e.g. [49, 30, 7]). For instance, consider an advection–diffusion–reaction prob-
lem (5.12) with

f(y) = −Aadvy − Adiffy −R(y), (5.16)

where Aadv and Adiff are respectively discretized advection and diffusion oper-
ators (cf. (2.6)) and R represents the reaction operator. A usual assumption
is that the chemical species under consideration only react among each other
if they belong to the same mesh position (the same mesh cell). Under this
assumption the Jacobian R′(y) is a block diagonal matrix, where the number
of blocks equals the number of the mesh points. When applying (5.13) with
AMF (5.14) to solve (5.12),(5.16), it is reasonable not to include the advec-

tion terms to the matrix Â because these terms are usually not large (one can
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call them “non-stiff”). Hence, they do not lead to a severe restriction on the

step size of explicit time integration schemes. Not including some terms into Â
effectively means that these terms are treated explicitly by the ROS2 scheme.
Explicit treatment of advection is also advocated because it often yields a better
accuracy than implicit treatment.

In opposite, diffusion and reaction terms are usually stiff and should be
treated implicitly. Hence, we adjust the AMF (5.14) as follows:

I + γτÂ = (I + γτA1)(I + γτA2), with

A1 = Adiff, A2 = R′(yk), A1 + A2 = −f ′(yk)− Aadv.
(5.17)

To study stability of the ROS2-AMF scheme (5.13),(5.17) for this problem, one
might consider a test problem similar to the Dahlquist test problem (4.4), i.e.,

y′(t) = λadvy + λdiffy + λreacty.

It is not difficult to see that the original problem (5.12),(5.16) can be reduced
to this last problem under a strict and unrealistic assumption that the reac-
tion terms are linear and all the three operators involved (advection, diffusion,
reaction) commute.

Alternatively, to study stability, we can consider a simpler, lower order scheme
called ROS1 (one stage Rosenbrock)

yk+1 = yk + k1, (I + τÂ)k1 = τf(yk), (5.18)

where τ > 0 is the time step size. One can easily check that that for f(y) = −Ay
the ROS1 scheme can be written as

B
yk+1 − yk

τ
+ Ayk = 0, B = I + τÂ. (5.19)

This formula is known in Russian numerical literature as a canonical form of
a two-level difference scheme, see e.g. [36, 37, 38]. If A is symmetric positive
definite, and ‖y‖A and ‖S‖A are vector and matrix norms associated with A,

‖y‖A =
√

(Ay, y), ‖S‖2
A = inf {M | (ASy, Sy) 6M(Ay, y) ∀y ∈ Rn} ,

the following stability result (due to Samarskii) can be established.

Theorem 5.2 [36, 37, 38] Let A ∈ Rn×n be a symmetric positive definite matrix
and let B ∈ Rn×n be a matrix such that B + BT is positive definite. The time
integration scheme (5.19) applied to the ODE system y′(t) = −Ay is stable in
the sense that

‖S‖A 6 1, S = B−1(I − τA),

if and only if

(Bx, x) >
τ

2
(Ax, x), ∀x ∈ Rn.
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It is instructive to consider several examples to illustrate this result. First of
all, for B = I the ROS1 turns into the Euler forward scheme. According to
Theorem 5.2, the scheme is stable if and only if

(x, x) >
τ

2
(Ax, x), ∀x ∈ Rn,

which can be checked to be equivalent to

τ 6
2

‖A‖2
.

Furthermore, ROS1 with B = I + τA yields the Euler backward scheme for
which the stability condition

((I + τA)x, x) >
τ

2
(Ax, x), ∀x ∈ Rn,

trivially holds for all τ > 0. Finally, the θ-method (4.3) corresponds to the
choice B = I + τθA and has the stability condition

((I + τθA)x, x) >
τ

2
(Ax, x), ∀x ∈ Rn.

This can be rewritten as

1 + (θ − 1

2
)τ

(Ax, x)

(x, x)
> 0, ∀x ∈ Rn,

which holds for all τ > 0 provided θ > 1
2 (this can be easily confirmed based on

results from Section 4). For θ < 1
2 we can recast the stability condition into the

form

τ >
2

(1− 2θ)‖A‖2
.

5.6 An enhanced matrix factorization AMF+

The ROS2-AMF method usually leads to a better accuracy for advection–
diffusion–problems than splitting schemes [48, 2]. However, in some cases the
error of ROS2-AMF can be significant. This is by no means a surprise if we
take a closer look at (5.15). Denoting the diffusion–reaction Jacobian A1 + A2

in (5.17) by A, we have

AMF error = I + γτÂ− (I + γτA) = (γτ)2A1A2.

We see that the error in the AMF is small asymptotically for τ → 0. In a global
air pollution model TM5 [44], for typically used step sizes τ the eigenvalues
of τA1 (diffusion terms) range in absolute value from 10−5 to 10, whereas the
eigenvalues of τA2 (reaction terms) range in absolute value from 10−5 to 106 [7].
Thus, even though AMF works in this case, we can not expect that it provides
a reasonable approximation to the true diffusion–reaction Jacobian.
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As shown in [7], the approximation of the AMF can be improved provided
that the diffusion matrix A1 is columnwise weakly diagonally dominant (i.e.,
the entries of AT

1 satisfy (1.4)) and permits an LU factorization of I + γτA1

without pivoting. Indeed, let I + γτA1 = LU be such an LU factorization and,
furthermore, let the diagonal entries in the lower triangular matrix L be all
ones (why is it possible?). Consider the following improved AMF which we call
AMF+:

I + γτÂ = L(U + γτA2), (5.20)

where A2 = R′(yk) is the reaction Jacobian. For AMF+ we have

AMF+ error = I + γτÂ− (I + γτA) = γτ(L− I)A2.

By applying the result of Exercise 5.4 (given below) to the LU factorization of
the matrix I + γτA1, we see that off-diagonal entries in L are O(τ). Hence,
the error of the AMF+ is O(τ 2). This result is again asymptotic and does not
guarantee that the AMF+ error is bounded for realistic values of τ . As we will
show now, L inherits columnwise diagonal dominance of I + γτA1 and, hence,

‖L− I‖1 6 1.

Thus, we have
‖AMF+ error‖1 6 γτ‖A2‖1.

This makes the difference between AMF and AMF+ visible: the error of AMF+
is O(τ 2) for small τ but is bounded by a constant times τ for any τ > 0.

Exercise 5.4 Assume that the matrix A ∈ Rn×n is such that the LU factoriza-
tion without partial pivoting of I + τA exists: I + τA = LU , where L and U
are respectively lower and upper triangular matrices. Furthermore, let lii = 1,
i = 1, . . . , n. Show that for all off-diagonal entries of L holds lij = O(τ). Hint:
use mathematical induction on the matrix size n. ♦

We now prove the following theorem.

Theorem 5.3 If A ∈ Rn×n is columnwise diagonally dominant and LU = A
is its LU factorization with lii = 1, i = 1, . . . , n, then L is also columnwise
diagonally dominant:

n∑
i=j+1

|lij| 6 |ljj| = 1.

Proof The proof is by induction on the matrix dimension n. It is not difficult
to check the result holds for n = 2. Assuming it holds for n − 1, we partition
A ∈ Rn×n as

A =

[
a11 aTU
aL An−1

]
, aL, aU ∈ Rn−1, An−1 ∈ R(n−1)×(n−1).
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Then we can partition the LU factors of A in a similar way:

L =

[
1 0
l Ln−1

]
, U =

[
a11 aTU
0 Un−1

]
.

The entries in the first column of L are li1 = ai1/a11, i = 2, . . . , n, and hence

n∑
i=2

|li1| =
1

|a11|

n∑
i=2

|ai1| 6
1

|a11|
|a11| = 1.

Thus, we have diagonal dominance for the first column in L. We have

Ln−1Un−1 = An−1 − laTU ,

and therefore, due to the induction assumption, Ln−1 will be columnwise diag-
onally dominant provided An−1 − laTU is columnwise diagonally dominant. A
check that, indeed, An−1 − laTU possesses this property is left as an exercise. �

Exercise 5.5 Finish the proof of Theorem 5.3. ♦

The assumption of this section that A1 is columnwise weakly diagonally dom-
inant is made because this property holds for the TM5 model [2]. Note that if
the matrix A1 is row-wise weakly diagonally dominant then we can adjust the
definition (5.20) as

I + γτÂ = (L+ γτA2)U,

where LU = I + γτA1 is the LU factorization with ukk = 1, k = 1, . . . , n. For
this modified AMF+ we have ‖U−I‖∞ 6 1 and ‖AMF+ error‖∞ 6 γτ‖A2‖∞.

6 Krylov subspace methods for matrix exponential actions

6.1 Krylov subspace and matrix polynomials

For zero source term g, the explicit solution of (2.1) is given by

y(t) = e−tAy0. (6.1)

An approximate action of the matrix exponential operator on the vector y0 can
be computed using the Krylov subspace framework [31, 12, 13, 8, 19] as follows.
Using the so-called modified Gram-Schmidt process it is easy to compute the
matrices Vk+1 ∈ Rn×(k+1) and upper-Hessenberg4 Hk+1,k ∈ R(k+1)×k such that
(see e.g. [35, 46])

Vk+1 =
[
v1 . . . vk+1

]
, V T

k+1Vk+1 = I ∈ R(k+1)×(k+1),

colspan(Vk+1) = span(y0, Ay0, . . . , Aky0)

and
AVk = Vk+1Hk+1,k = VkHk,k + hk+1,kvk+1e

T
k , (6.2)

4A matrix H = (hij) is called upper-Hessenberg if hij = 0 for i > j + 1.
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where vi is the ith column of Vk, v1 = y0/‖y0‖2, Hk,k is Hk+1,k with the last row
omitted and ek = (0, . . . , 0, 1)T ∈ Rk. The subspace spanned by the columns of
Vk is called the Krylov subspace and denoted by Kk(A, y0):

Kk(A, y0) = span(y0, Ay0, . . . , Ak−1y0).

Using the just constructed Vk and Hk,k we can compute an approximation
to (6.1) as

y(t) = e−tAy0 = βe−tAVke1 ≈ βVke
−tHk,ke1, (6.3)

where e1 = (1, 0, . . . , 0)T ∈ Rk and β = ‖y0‖2. Why can it be a good approxi-
mation? To understand this, we follow [34] and give a number of arguments.

First, the following result holds.

Lemma 6.1 [34] Let Vk ∈ Rn×k and upper-Hessenberg Hk,k ∈ Rk×k be the
matrices as defined above. Then for any polynomial pj of degree j 6 k − 1 we
have

pj(A)v1 = Vkpj(Hk)e1,

where the notation is as defined above.

Proof [34] Denote πk = VkV
T
k . Using induction, let us check that Ajv1 =

VkH
j
ke1, j = 0, 1, . . . , k− 1. For j = 0 we have v1 = Vke1 and, thus, the relation

holds for j = 0. Assuming that it holds for a certain j 6 k − 2, consider the
case j + 1. Note that Aj+1v1, A

jv1 ∈ Kk(A, y0). Then we obtain

Aj+1v1 = πkA
j+1v1 = πkAA

jv1 = πkAπkA
jv1 = VkHkV

T
k A

jv1 =

= VkHkV
T
k VkH

j
ke1 = VkH

j+1
k e1.

�
Second, a well known fact is that if ν is the degree of the minimal polynomial

of A then any power of A is a polynomial in A of degree not exceeding ν − 1.
Third, the following fundamental result holds (see [15] for a proof).

Theorem 6.1 [15] Let A ∈ Rn×n have the minimal polynomial of degree ν.
Then for any function f analytic in an open set containing the spectrum Λ(A)
of A holds

f(A) = pν−1(A),

where pν−1 interpolates f on Λ(A) in the Hermite sense with the eigenvalues
repeated according their multiplicities5.

We now assume that all subdiagonal entries in Hk,k are nonzero, i.e., hj+1,j 6=
0, j = 1, . . . , k − 1 (otherwise, if, for some k, hk+1,k = 0 then the columns of
Vk span an invariant subspace of A). Hence, the geometric multiplicity of all

5We say that a polynomial p interpolates a function f in the Hermite sense at given x repeated l times if f (j)(x) = p(j)(x),
j = 0, . . . , l− 1.
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the eigenvalues of Hk,k is one and its minimal polynomial coincides with its
characteristic polynomial. Therefore,

eHk,k = pk−1(Hk,k), (6.4)

with pk−1 being the unique polynomial of degree k − 1 which interpolates the
exponential function on Λ(Hk,k) in the Hermite sense with the eigenvalues re-
peated according their multiplicities.

All this brings us to the following result.

Theorem 6.2 [34] For approximation (6.3) holds

βVke
−tHk,ke1 = pk−1(−tA)y0,

with pk−1 defined by (6.4).

Proof

βVke
−tHk,ke1 = βVkpk−1(−tHk,k)e1

(Lemma 6.1)
= βpk−1(−tA)v1 = pk−1(−tA)y0.

�
We note that the eigenvalues of Hk,k are called the Ritz values of A and

there is a lot of literature explaining why and how well the eigenvalues of A are
approximated by the Ritz values for increasing k (see e.g. [35, 46]).

6.2 An alternative derivation of the approximation

Following [8, 11, 5], we finish this section by giving another derivation of the ap-
proximation (6.3). Assume we solve (2.1) with zero source term g approximately
by projecting it in the Galerkin sense onto the Krylov subspace colspanVk. This
means that we look for an approximate solution yk(t) ≈ y(t) such that

yk(t) = Vku(t) and rk(t) ⊥ colspanVk, (6.5)

where rk(t) is the residual of yk(t) defined as [8, 11, 5]

rk(t) = −y′k(t)− Ayk(t).

Substituting yk(t) = Vku(t) into y′ = −Ay(t) and noticing that V T
k Vk is the

identity, we arrive at the projected IVP for the function u(t):

u′(t) = −VkAVk︸ ︷︷ ︸
Hk,k

u(t), u(0) = βe1, (6.6)

where all the notation is as defined in the beginning of the section. Note that
u(t) = βe−tHk,ke1. Moreover, using (6.2), we can obtain an expression for the
residual rk(t) which allows us to control the quality of the approximate solution
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yk(t). Indeed [8, 11],

rk(t) = −y′k(t)− Ayk(t) = −Vku′(t)− AVku(t) = (VkHk,k − AVk)u(t)

= (VkHk,k − Vk+1Hk+1,k)u(t) = −hk+1,kvk+1e
T
k u(t) = −hk+1,kvk+1e

T
k e
−tHk,ku(0) =

= −hk+1,kvk+1e
T
k e
−tHk,kβe1 = −hk+1,ke

T
k e
−tHk,kβe1︸ ︷︷ ︸

a scalar function of t

vk+1 ⊥ colspanVk.

This residual can be useful for different purposes, see e.g. [5, 6].
For the inhomogeneous problems (2.1), i.e., with nonzero source term g(t),

the Krylov subspace approximations to the matrix exponential can be employed
in the framework of the so-called exponential integrators, see e.g. [20]. For these
problems one can also use a projection on a single block Krylov subspace [4],
similarly to (6.5),(6.6).
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Vol. I&II. Birkhäuser Verlag, Basel, 1989.

[39] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chap-
man & Hall, 1994.

[40] R. B. Sidje. Expokit. A software package for computing matrix exponen-
tials. ACM Trans. Math. Softw., 24(1):130–156, 1998. www.maths.uq.edu.
au/expokit/.

[41] B. Sportisse. An analysis of operator splitting techniques in the stiff case.
J. Comput. Phys., 161(1):140–168, 2000.

[42] G. Strang. Accurate partial difference methods I: linear Cauchy problems.
Archive for Rational Mechanics and Analysis, 12:392–402, 1963.

http://dx.doi.org/10.1016/S0168-9274(01)00160-X
http://www-users.cs.umn.edu/~saad/books.html
http://www-users.cs.umn.edu/~saad/books.html
www.maths.uq.edu.au/expokit/
www.maths.uq.edu.au/expokit/


38

[43] G. Strang. On the construction and comparison of difference schemes.
SIAM J. Numer. Anal., 5(3):506–517, 1968.

[44] TM5: global chemistry transport model. Wageningen University, the
Netherlands, 2016. http://tm5.sourceforge.net/.

[45] P. J. van der Houwen and B. P. Sommeijer. Approximate factorization
for time-dependent partial differential equations. J. Comput. Appl. Math.,
128(1-2):447–466, 2001. Numerical analysis 2000, Vol. VII, Partial differ-
ential equations.

[46] H. A. van der Vorst. Iterative Krylov methods for large linear systems.
Cambridge University Press, 2003.

[47] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, 1962.

[48] J. G. Verwer, W. Hundsdorfer, and J. G. Blom. Numerical time integration
for air pollution models. Surveys for Mathematics in Industry, 10:107–174,
2002.

[49] J. G. Verwer, E. J. Spee, J. G. Blom, and W. Hundsdorfer. A second order
Rosenbrock method applied to photochemical dispersion problems. SIAM
J. Sci. Comput., 20:456–480, 1999.

[50] N. N. Yanenko. The method of fractional steps. The solution of problems
of mathematical physics in several variables. Springer-Verlag, New York,
1971.

[51] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press,
1971.

http://tm5.sourceforge.net/


39

Index

ADI, direction implicit methods, 27
advection–diffusion–reaction problems,

27
AMF+, improved AMF, 30
AMF, approximate matrix factoriza-

tion, 27
approximate matrix factorization (AMF),

27

commutator, 23
convection-diffusion problem, 6

decomposable matrix, see reducible
matrix

diagonally dominant matrix
columnwise, 30
irreducibly, 4
strictly, 4
weakly, 4

direction implicit (ADI) methods, 27

Euler scheme
backward or implicit, 18
forward or explicit, 18

exponential integrators, 34

global error, 23
graph of a matrix, 4

connected, 4, 10

IMEX scheme, 25
implicit trapezoidal rule, 18
implicit–explicit scheme, IMEX, 25
implicit-explicit (IMEX)

θ-method, 18, 29
initial value problem (IVP), 5
irreducible matrix, 4
IVP, initial value problem, 5

Krylov subspace, 32

local error, 22

logarithmic norm of a matrix, 13

Marchuk–Strang splitting, 24
matrix

diagonally dominant, 4
Hermitian, 5
skew-Hermitian, 5
skew-symmetric, 5
symmetric, 5

matrix exponential, 11, 31
matrix norm, 3
maximum modulus theorem, 19
method of lines (MOL), 6
MOL (methods of lines), 6
MOL, method of lines, 6

nondecomposable matrix, see irreducible
matrix

norm
logarithmic, 13
of a matrix, 3
of a vector, 3

operator splitting, 22

parallel splitting, 24
permutation matrix, 3
Perron-Frobenius theorem, 4

radius
spectral, 3

reducible matrix, 3
regular splitting, 5
residual

matrix exponential, 33
ODE, 33

Ritz values, 33
ROS2 Rosenbrock scheme, 26

sequential splitting, 22
skew-symmetric part of a matrix, 5,

7



40

spectral radius, 3
splitting

Marchuk–Strang, 24
operator, 22
parallel, 24
replicative, 25
sequential, 22
symmetrically weighted, 24

stability estimates, 12
stability function, 18
stability region, 19
symmetric part of a matrix, 5, 7
symmetrically weighted splitting, 24

theorem
maximum modulus, 19
Perron-Frobenius, 4

variation of constants formula, 12
vector norm, 3



41

Contents

1 Some facts from matrix analysis 3

2 The problem we solve. Examples 5
2.1 Example: unsteady convection–diffusion problem . . . . . . . . 6
2.2 Finite difference relations. Central differences . . . . . . . . . . 7
2.3 Structure of the matrix . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Upwind finite differences approximation . . . . . . . . . . . . . . 10
2.5 Two other examples . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Well-posedness of the problem. Stability estimates 11
3.1 Matrix exponential. Variation of constants formula . . . . . . . 11
3.2 Stability estimates . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Logarithmic matrix norm . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Basic time integration schemes. Their stability 18

5 Operator splitting 22
5.1 Introducing splitting methods . . . . . . . . . . . . . . . . . . . 22
5.2 Second order splittings . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Examples of splitting . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Splitting with M -matrices . . . . . . . . . . . . . . . . . . . . . 25
5.5 Reducing the splitting error: Rosenbrock methods . . . . . . . . 26
5.6 An enhanced matrix factorization AMF+ . . . . . . . . . . . . . 29

6 Krylov subspace methods for matrix exponential actions 31
6.1 Krylov subspace and matrix polynomials . . . . . . . . . . . . . 31
6.2 An alternative derivation of the approximation . . . . . . . . . . 33

7 Acknowledgements 34


	Some facts from matrix analysis
	The problem we solve. Examples
	Example: unsteady convection–diffusion problem
	Finite difference relations. Central differences
	Structure of the matrix
	Upwind finite differences approximation
	Two other examples

	Well-posedness of the problem. Stability estimates
	Matrix exponential. Variation of constants formula
	Stability estimates
	Logarithmic matrix norm
	Examples

	Basic time integration schemes. Their stability
	Operator splitting
	Introducing splitting methods
	Second order splittings
	Examples of splitting
	Splitting with M-matrices
	Reducing the splitting error: Rosenbrock methods
	An enhanced matrix factorization AMF+

	Krylov subspace methods for matrix exponential actions
	Krylov subspace and matrix polynomials
	An alternative derivation of the approximation

	Acknowledgements

