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A.B. Bobvines, U.D. Ilomanenxo
JlImHHOBOJTHOBBIE aCUMIOTOTHKHY /iy ypaBHeHuss BiracoBa—Ilyaccona—J/langay

Pabora mocsiiieHa HEKOTOPBIM MaTeMaTHIeCKUM IpobJieMaM JUHAMUKH CTOJKHOBHTEIbHOM
1a3Mbl. CJI0KHOCTD 3aK/IIOYAETCS B TOM, 9TO B CJIydae ILJIa3Mbl Mbl UMeEM 10 KpaiiHeil mepe
TPU pas3/IMYHbIX MaciiTaba: pajuyc /lebas rp, amuay cBobojHOro mpobera [ U MaKpPOCKOITH-
YecKyto JMHY L. DTO CIpaBeInBO JayKe Jyist IpocTeiinieil Mogesnn (3JeKTpOHHAs I1a3Ma, ¢
HefTpagn3yomuM GOHOM GECKOHETHO TsIXKEJIbIX HOHOB), paccMaTpuBaeMoil B JaHHOH pabore.
Mpbr n3ydaem Ha (popMaJbHOM yPOBHE MaTEeMaTHUIECKOW CTPOTOCTH PelleHus ypaBHenus: Bira-
coBa—Ilyaccona—/lanmay, nMmeroniue TUIMIHYIO JJIUHY TOPdA/Ka [ >> 7p, U BBIACHAEM HEKO-
TOpbIe MaTeMaTHYeCKe BOIPOCKI, OTHOCAIIINECH K COOTBETCTBYIONIEMY Iipeseny. B dacTroCTH,
MBI M3y4YaeM CyIIeCTBOBAHUE IIpejesa i SJEKTPUIECKOTo I0JIsi U MTOKa3bIBaeM, 9TO, BOOO-
IIe TOBOPsi, OH HE CYIINECTBYET M3-3a OBICTPO OCHUJIIUPYIONINX YJIEHOB. BCé ke mpee/bHbIe
ypPaBHEHUSA, KOTOPbIE MCIOJB3YIOTCSI BO MHOTHX ITYOJIUKAIUAX (DU3UKOB, MOT'YT HPUBOJUTH B
HEKOTOPBIX CJIydasgX K MPABUJILHBIM pe3yJjibTaTaM i (PYHKIUU paciipejiesienns. Mbl Takxke
uccjiejlyeM KOPPEKTHOCTh TUX ypaBHEHU U (POPMYTUPYEM COOTBETCTBYIONINN KPUTEPUIA s
Pa3IMYIHBIX KJIACCOB €JIaDO HEOHOPOIHBIX HaYaJbHBIX JaHHbIX. [[okazaHo, 4To cuTyalus c
KOPPEKTHOCTHIO B HAIlEM CJIydae KadeCTBEHHO CXOJIHA C ITOJI00HOI MTpob/IeMOoil JIjid ypaBHEHUS
Bnacosa—/lupaka—Bennu, koTopoe ObLIO N3yYeHO JieTaJIbHO B HEJIABHUX ITyOIUKaIuaX Bapioca

u Jp.

Karoueswie caosa: ypasaenne Binacosa—Ilyaccona—/langay, KyJIOHOBCKIE CTOJTKHOBEHUS, KBa-
SUHEATPAJIbHBINA IIPeesI

A.V. Bobylev, 1.F. Potapenko

Long wave asymptotics for the Vlasov—Poisson—Landau equation

The work is devoted to some mathematical problems of dynamics of collisional plasma. The
difficulty is that in plasma case we have at least three different length scales: Debye radius
rp, mean free pass [ and macroscopic length L. This is true even for the simplest model
(plasma of electrons with a neutralizing background of infinitely heavy ions), considered in the
paper. We study at the formal level of mathematical rigour solutions of the VLPE, having the
typical length of the order [ >> rp, and try to clarify some mathematical questions related to
corresponding limit. In particular, we study the existence of the limit for electric field and show
that, generally speaking, it does not exist because of rapidly oscillating terms. Still the limiting
equations, which are used in many publications by physicists, can lead in some cases to correct
results for the distribution function. We also study the well-posedness of these equations and
formulate the corresponding criterion for different classes of weakly inhomogeneous initial data.
It is shown that the situation with well-posedness in our case is qualitively similar to the same
problem for Vlasov—Dirac—Benney equation, which was studied in detail in recent publications
of Bardos et al.

Key words: Vlasov—Poisson—Landau kinetic equation, Coulomb collisions, quasi neutral limit

Pabora Bwiosinena npu mojiepxkke Poccuiickoro dona dpyHIaMEHTAJIBHBIX HCCIEI0Ba-
uwit, ['pant N 17-51-52007 MHT a.



1 Introduction

The work is devoted to some mathematical problems of dynamics of collisional
plasma. These problems are related to the general question of different length
and time scales in plasma physics. In particular, the smallest important length
scale for plasma is defined by the Debye radius rp. What happens if the typical
length for the one-particle distribution function is much bigger than rp? For
example, it can be of order of the mean free path [ >> rp. This is what we call
below the long wave asymptotics for the Vlasov—Poisson—Landau kinetic equation
(VPLE). Ideologically it is very close to the quasi neutral limit for Vlasov—Poisson
equation [1],[2] when the Debye radius vanishes.

Our work is partly motivated by series of papers by physicists published in
last two decades. In particular, see [3] — [8] where the authors consider a simplified
model of electrons with a neutralizing background of infinitely heavy ions. Then
they implicitly make a formal transition to certain limit and solve numerically
the limiting equations. These equations have some advantages, since the limiting
electrical field is given by explicit formula, not via solution of Poisson equation.

Can this limit be rigorously justified? This is an important question, which,
to our knowledge, was not studied before. The present work is just the first
step in clarification of this and similar questions. By using rather elementary
mathematical methods we show (at the formal level) in Section 5 and 6 that the
situation with limiting equation is not very simple. In particular, (1) the electric
field rapidly oscillates near the limit and (2) the limiting equations are not always
well-posed. The "collisionless" part of the limiting equations is, to some extent,
similar to Vlasov—Dirac—Benney equations (VDBE) studied recently by Bardos
and Besse [2],]9] (see also [10]). The well-posedness problem can be investigated
by methods of these papers. It is done in Section 6.

Another group of recent mathematical publications which should be mentioned
is related to the quasi neutral limit for the Vlasov—Poisson equation. We mean,
in particular, the paper by Han-Kwan and Rousset [11] and references therein.
The physical model from that paper is quite different from ours: collisionless
plasma of ions in the presence of massless electrons. In that case the limiting
equations coincide with Vlasov—Poisson—Benney equations (VPBE) from |2, 9.
The paper [11] contains very deep mathematical results based on some new ideas.
Similar methods can be probably used for our problem despite the fact that
physical models are quite different in these two cases.

The paper is organized as follows. The physical model and the statement of
the problem in dimensionless variables are explained in Section 2. The Vlasov—
Poisson—Landau system is presented in Section 3. The long wave asymptotics
and corresponding limiting equations are discussed in Section 4. The asymptotic
behavior of electric field is studied in Section 5. The well-posedness of limiting
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equations is discussed in Section 6. Main results are formulated in Proposition 2
and Proposition 3 (at the formal level) and briefly discussed in Conclusions.

2 Statement of the problem

We denote by f(x,v,t) a one-particle distribution function, where x € R3 v € R3,
t € R, stand for position, velocity and time variables respectively. We will also
use below the notation m > 0 for the particle mass. A general kinetic equation
(Boltzmann-type, Vlasov-type, etc.) can be written as

of of . of

oo spgy So o, )

where F'(f) and C(f) denote the self-consistent force field and the collision term
respectively. Here and below dots stand for scalar product in R?. We consider the
Cauchy problem for £ > 0 in the whole phase space (z,v) € R? x R? with initial
conditions

—-3/2 x v TO
fli=o = po 0, /fo(L 61/2>7 HOIE, (2)

where py and T denote respectively some typical values of initial density and
absolute temperature (expressed in units of energy). Note that the length Lg is
considered here as a free parameter. It is not assumed to be large from the very
beginning. Usually we also assume that

fo(@,9) —— M(|3]) = (2m) "2 exp(~|3[*/2). (3)

|Z]|— 00

Moreover the same constant Maxwellian at infinity for dimensionless problem
is assumed for all ¢ > 0. This assumption will be considered below as the boundary
conditions at infinity. To specify the dimensionless problem we denote

fla,0,t) = poy > [(7,0,0), F(f) =mFy F(f), C(f) = CoC(f), (4)

with appropriate constants Fy (force) and Cy,
F=a/Ly, 0=0/0% T=t/ty, to= Lo/0>. (5)

Omitting tildes, we obtain



fotv- fo+ AF(f)- fo=BC(f); =R’ veR

flico = fla0). flao.t) —— @m) P exp(—[ol*/2). 12 0. (6)

Hence, we finally have only two dimensionless parameters
A= A(L()) Po, T07 )7 B = B(L07 Po, T07 )7

where dots stand for other (microscopic, like particle mass m, charge e, diameter
d, etc) parameters. We can always choose such notations that A > 0 and B > 0.
In order to illustrate the existence of different length scales we first consider
the well-known example of the Boltzmann equation. Then
Ly 1
A=0, B= = T
where (g, Tp, ...) and Kn, denote respectively the mean free path and the Knudsen
number. For example, [ = (mpy d?)~! for hard spheres with diameter d. The long
wave asymptotics for the Boltzmann equation means simply the hydrodynamic
limit An — 0. This obviously means that the typical length Lj of our solution is
much greater than the mean free path.The behavior of sotutions to the Boltzmann
equation near that limit is well studied in literature. The plasma case described by
Vlasov—Poisson—Landau equation is more complicated because A > 0. Moreover
A >> B in that case, as we shall see in the next section.

3 Vlasov—Poisson-Landau Equation (VPLE)

We consider a simplified physical model of plasma: gas of electrons with neutralizing
background of infinitely heavy positive ions ( Z = 1 for simplicity) distributed in
space with constant density py. Then the dimensionless VPLE reads

ft+vfx_A90va:BC(f)a C(f):Q(fvf)—i_K(f)a <7>

Ap=1-p, pz/dvf(x,v,t)- (8)
R3
where Q(f, f) the nonlinear Landau collision integral [12] (for e-e collisions) can
be written as



QU 1) =0, / QT30 — w)(Dyy — By F(0) (),
s (9)

ul?8,5 — ugu
e L

The usual summation rule over repeating Greek indices is assumed here and below.
The linear collision term K (f) for e-i collisions reads

K(f) = 0u,Tap(v)0u, f(v) (10)

All quantities in above equation are assumed to be of order one, except for two
positive dimensionless parameters A and B. These parameters have the following

form: )
Ly Ly 1
A== B=—"—=— 11
(7”D> ’ l [(VTL7 ( )

where

4 2\ —1/2
rp = < Tpoc > — Debye radius

Ty
i 12
[ = 73 — mean free path (12)
2metp, A
T
A = log TDZ Y — Coulomb logarithm
e

denote respectively the Debye radius, the mean free path and the Coulomb logarithm.
We note that LPVE (7),(8) is based on the assumption of smallness of the
parameter (see e.g. [13], [14])

3/2
1 A 2 1/3
§=—5 = ° Fo << 1. (13)
PoTp Ty
Hence,
4 1
A=log— ~log—->>1
Og 6 Og 5 Y
[ 1

1 ~1
— =871 — = log — 1
- 8T A 8T (5 og 5) >> 1,



A Lol 8 L
— = g% Trl—o>>1ifL()Z7“D.
B rp  dlogs o

Therefore the collision term in VPLE (7) is much smaller than the Vlasov
force term for all practically interesting values of Ly. The case of moderately
large values of L is considered in more detail in the next section.

4 Long wave asymptotics for VPLE

The smallest important length scale for VPLE is obviously the Debye radius rp.
Therefore the long wave asymptotics can be defined as a formal limit

Ly’ Ly 1
A= (T_D()) — 00, B= TO = % is bounded. (14)
Introducing a small parameter
c=A"12="0 g (15)
Ly

we study below this limit for a relatively simple problem. The same problem was
previously studied in several works of physicists [3] — [§]. Our goal is to try to
clarify some mathematical aspects of the problem.

We make one more simplification and assume that the initial data fy and the
solution f of the problem (7), (8) depend only on one spatial variable. For brevity
we keep the same notation z below, assuming that + € R, v € R3, ¢t € R,.. We
also introduce the dimensionless electric field

E=Ap, = gox($,t)/82.

and obtain from (7), (8)

1 1
fitvfi— B f = C(f), Ei=5(-p). c>0.  (16)
The typical initial condition reads
fli=o = [27To(@)] ™ exp|—o[*/2To(2)], To(|a]) o (17)

We denote



P = (P = (), where (£0) = [ dof@pe). (19
R3
Now we can consider a formal limit of VPLE for € = 0 under some assumptions

on "good behavior” of f¢(z,v,t) and E¢(x,t) for € — 0. The resulting equations
have the following form.

Proposition 1 Limiting functions f°(x,v,t) and E°(x,v,t) satisfy the equations

0 0 00 _ L 0
ft +Uxfx_E Vp Kn0<f )7 (19>
B® = (O ) = {12 Flo = fo 20
which tmply that
Pla,t) = (1) =1, )z, 1) = (f*,v.) = 0. (21)

Proof. » Formal proof of Proposition 1 is obvious. Eq. (16) for E leads to
equality p” = 1. This in turn is possible only if j© = 0 because of the continuity
equation and boundary conditions at infinity. Finally, the formula for E° follows
from equation j) = 0. <

The limiting equations (19)—(21) were studied by analytical and numerical
methods in many publications, in particular, in [3] — [8]. One can say that in this
case the Poisson equation for electric field is replaced by "explicit” formula (20) for
E° which follows from the quasi neutrality conditions. Of course, a similar formal
limit can be also defined for more complicated case of two-component plasma with
ions having finite mass and arbitrary electric charge. We consider in this paper
only a simplified model in order to avoid some less important details.

There are at least two mathematical questions which should be clarified.

1. Can Egs. (19),(20) be justified more rigorously? In particular, what can be
said about existence of limits fO(z,v,t) and E°(x,t) at £ = 07
2. Are Egs. (19),(20) well-posed for a wide class of initial data?

We shall see below that the answers to both questions are (at least partly)
negative, though this does not mean that these equations are wrong. We just
need to be careful while dealing with them. We consider both questions in the
next sections.
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5 Behavior of E°(x,v,t) for ¢ — 0

We begin with the first question and assume that there exists a "nice” solution of
the problem (16),(17) for small €. Then we multiply Eq. (16) for E*(z,t) by &2
and differentiate in t-variable. The continuity equation and boundary conditions
at infinity lead to equation

B =5, 5 ={f )
Then we differentiate the first equation once more and obtain after simple
transformations based on Eqgs. (16), (17)

2B + EF = S°(a,t) =

1 (22)
_ [ fE ,2 = € 2 e 10e
_ <f ,1}$>x + Kn <C(f )7 Uff> +e€ E EJ;’
Eg‘t:() — Eﬂt:() = 0. (23)

The problem (22),(23) can be formally "solved" by Laplace transform in ¢.
Then we obtain

t/e
Ef(x,t) = /dT(SiHT)SE(ZE,t —eT) =
e (24)
t
= S%(x,t) — S°(x,0) cos . S/dT(COS 7)S; (x,t — 7).
0
Now we can prove the following estimate.
Proposition 2 If
S5(2,8)| < Clx), 0<t<T, zeR, (25)

where C' does not depend on € for e — 0, then the following asymptotic formula

18 valid

Ef(z,t) = S°(x,t) — S°(«,0) COSE +e Az, 1), (26)

Az, 1) < |S5(2,0)] + Cla)t, 0<t<T. (27)
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Proof » It is sufficient to estimate the last integral in (24). Integrating by
parts we obtain

t/e
Az, t) =— /dr(sinT)'Sf(a:,t —eT) =
0
t/e
t
=—5;(z,0) sing — 5/d7‘(sin 7)Sp(x,t —eT)
0

The estimate (27) follows directly from this equality and assumption (25) of
Proposition 2. Hence the proof is completed. <«
Note that S°(x,t) = E°(x,t) in the notation of Eq. (20).

Thus, E°(z,t) rapidly oscillates for ¢ — 0 with frequency w. = 1/¢ near
its average E°(x,t) with amplitude |E°(x,0)| = O(1). For example, E%(z,0) =
—Ty () for the initial local Maxwellian with temperature Ty(x).

Probably the extra term in the kinetic equation (19) leads only to a small
perturbation of fO(z,v,t) because of fast oscilaltions. But it is important for
understanding of behavior of E¢(z,1).

Of course, the assumption (25) of Proposition 2 remains unproved. However,
it looks realistic for "nice" solution f°(x,v,t) of equation (19) with E¢(x,t)
(without the error term) from Proposition 2. On the other hand, the asymptotic
formula for E(xz,t) can be verified numerically. In the next section we consider
the second question related to well-posedness of Eqs. (19),(20).

6 Well-posedness of limiting kinetic equation

We consider the limiting (with € = 0) equations (19), (20) and represent them in
the form

i v pefu, = 5 [CU) +(C() m) o)

(2%)
p=p(f)=(f,v2); flico = fo(z,v), z € Rv € R

where upper zero indices are omitted. We will use in this section a bit weaker
assumptions on the initial conditions:
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fO(x7U) — FO(U)v <f07 1> =1, <anUm> =0, (29>

|z| =00

where F(v) is not necessary a Maxwellian. Note that this problem has a relatively
simple hydrodynamics:

p=1 j=(fvs) =0, T;4+Q,=0
30
for 7= (0. 08), Q= L7 lof) )

The main result of this section can be formulated as follows.

Proposition 3 The well-posedness of the Cauchy problem for indata
fo(z,v) = Fy(v) + vh(z,v), 0<vy<<1,

<F071> - 17 <F07vx> = 07 FO(U) > 07

satisfy the following criterion:  the problem is well posed if and only if the

equation for z € C

/dv ! Oy, Fo(v) =0 (31)

Z_Ux
R3

does not have complex roots.

Idea of proof. » We look for solutions in the form

f(z,v,t) = F(v,t) + vh(z,v,1).

Obviously F'(v,t) is the spatially homogeneous solution such that F|,—g = Fy(v).
Then for v — 0, h satisfies the linearized equation.
We pass to the Fourier-representation

hk) = Foose(h) = / dr h(x)e ™™k eR,

and obtain

he + ik (vxiz + (b, 0?) asz) — Lh, (32)
where the operator L does not depend on k.
Hence, if
0<t<<1l and |kl >>1,
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we can neglect the term Lh and reduce the problem to the Vlasov-type linearized
equation (Eq. (32) with L =0).
Then we look for solutions that behave like
Wk, v,t) = h(k,v,0)e " |k| — oo, (33)
and obtain the following k-independent equation:
(vy — 2) h + (h,02) 8, Fy(v) = 0. (34)
Multiplying this equation by v2/(v, — z) and integrating over v € R? we obtain

(h, %) De(z) =0, @G(z):1+/ W,

u—z
> (35)
G(u) = /dvydszo(u,vy,vz).
R2
Note that
da(z) =1+ / du(u + 2)G'(u) + 2*Vg(2),
o (36)
duG'(u
\Ifg(z) = / ( ) .
u—z
Since

/ duG'(u) = 0, / duuG' (u) = —1,

we finally obtain )
(h,v%) 2 Vq(2) = 0.

It is casy to see that z # 0 and (h, v2) # 0 for any non-trivial solution of (34).
Hence, we finally obtain the equation for z in the form (31). If there exists a
solution z (with Im z # 0) of this equation, then the corresponding function
h(k,v,t) (33) grows like exp(|k||Im z|¢) for all k£ > 0 or k < 0 (depending on
the sign of Im z). This means that such equation is ill-posed, and explains the

criterion of well-posedness from Proposition 3. <«

We do not try to prove that the absence of complex roots of Eq. (31) is
sufficient for well-posedness. Probably it can be done by methods developed
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in [9],]10] and related papers. We also did not try to prove in this paper that
the "small"(for large |k|) Landau operator L in Eq. (32) can be really neglected.
We plan to check it first by using the BGK model in the forcoming paper.

[t is interesting to compare our results for Eq. (34) with well-known results
for similar equation

(v, — 2) h = U([k]) (h, 1) 9, Fy(v) = 0,
which follows from the linearized Vlasov equation
U(|k|) = a® |k|™® for Coulomb potential

and )
U(|k|) = b* for VDBE,

with some constant a and b (see e.g. [2],[9]). Then the eqution for z reads
U~ (k) = To(2)

in the notation of Egs. (35),(36). In the Coulomb (VDBE) case the existence of
complex root z = z(|k|) also implies the existence of unstable mode (ill-posedness
for VDBE). Our condition (31) coincides with the limit k& = 0 for Coulomb case.

We finish the paper with two elementary examples of functions Fy(v) which
correspond to different cases. For brevity we use the notation of Eq. (35).
1. Well-posedness

Gl(u) = 5(u)

2. lll-posedness (two-stream distribution)

(1) = %[5@ —a)+0(uta), a0

Indeed the function (36) can be written as

To(z) = ]O duG(u)

(u—2)*

—0

Hence, Vg, (2) =22 does not have zeros, whereas g, (2) =

has two imaginary zeros z4 = *+17a.
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In the important Maxwellian case with

= ()" o ()

the integral (31) is studied in detail in literature, see e.g. the book [13]. It is known
that it does not have complex zeros. The same is probably true for any Fgy such
that the function G, (u) (see Eq. (35) ) has only one maximum on the real line
(Nyquist’s criterion), it can be proved by standard methods [13].

7 Conclusions

We studied in this work a class of such solutions of VPLE, for which the typical
length Lg is much bigger that the Debye radius rp.
Taking the formal limit

[
€= L_o — 0, Kn= L_o remains bounded,

we obtain the kinetic equation, which was studied numerically in several publications.

New facts found in this work at the formal level of mathematical rigour are
the following.

¢ 1. The limiting equation yields probably correct results for distribution
function, but not for electric field. The extra term proportional to cos(t/e) is
given in Proposition 2.

< 2. The limiting equation is well-posed for initial conditions closed to absolute
Maxwellian. However there are classes of indata for which the equation is ill-posed
(see a criterion in Proposition 3). It is not clear what happens with such indata.

We hope to clarify these and related questions in future work.
We are grateful to Claude Bardos for useful references and discussions.
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