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Пичужкина А.В., Ролдугин Д.С. 

Использование моделей геомагнитного поля в задачах ориентации 

искусственных спутников Земли 

Рассматриваются четыре модели геомагнитного поля: IGRF, наклонный и 

прямой диполи, осредненная модель. Для каждой модели приводятся 

выражения вектора индукции в разных системах координат, проводится 

сравнение моделей. Исследуются преимущества этих моделей при проведении 

аналитических исследований. Приводятся примеры моделирования углового 

движения спутника с магнитной системой ориентации в рамках различных 

моделей поля. Представлены соображения по использованию моделей в разных 

случаях. 

Ключевые слова: магнитная система ориентации, геомагнитное поле 

Alyona Pichuzhkina, Dmitry Roldugin 

Geomagnetic field models for satellite angular motion 

Four geomagnetic field models are discussed. These models are IGRF, inclined 

and right dipoles and averaged one. Geomagnetic induction vector is provided in 

different reference frames for these models. The vector motion is compared for 

different models. Models are used for analytical and numerical analysis. Preferred 

models for different cases are outlined. 
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Introduction 

Magnetic attitude control systems, both active and passive, are widely used for 

CubeSats and other small satellites. The first satellite to be equipped with magnetic 

control was Transit 1B [1], launched April 13, 1960. The first satellite with active 

magnetic control was Tiros II [2], launched November 23, 1960. Magnetic field was 

first used for attitude determination aboard third Soviet satellite [3], launched May 

15, 1958. Novel small satellites and especially CubeSats actively utilize the same 

principles. Here we outline some basic and modern works concerning magnetic 

attitude control.  

Angular velocity damping is the main task for most magnetic control systems. 

The first concept was to use hysteresis rods [1,4–6]. This simple approach is still 

popular [7–11]. Spherical magnetic damper with viscous fluid [12] has no use now. 

Active magnetic control systems are preferred aboard modern satellites. 

Magnetorquers have low cost, mass, power consumption and can be easily used even 

on CubeSats. “-Bdot” is the most common magnetic control algorithm. Published in 

[13] and first mentioned in [14], this algorithm was proposed by GSFC engineer 

Seymor Kant. Its investigation and in-flight performance analysis still attract interest 

[15–20]. 

Magnetic control can provide specific attitude regimes utilizing spin 

stabilization or auxiliary actuators. These are necessary to overcome underactuation 

issue: there is no control authority along the geomagnetic induction vector. Spin 

stabilization turns the satellite into a gyroscope. Spin axis attitude became fully 

controllable. Common schemes of one axis attitude control of spin stabilized 

satellites were proposed in [21,22]. Remarkable examples of analysis or 

implementation can be found in [2,13,23–29]. Spin stabilization allows promising 

optimal reorientation problems statements [30–32]. 

Auxiliary actuators, mainly gravity-gradient boom [33] or flywheel with 

constant speed [34–37] provide passive control authority necessary for stabilization 

in orbital reference frame. Fully magnetic control system may be used to provide any 

necessary attitude [38–43]. This relatively new and largely uncharted area is of 

special interest for small satellites. 

Geomagnetic field model is necessary for attitude control and/or system design, 

on-board control computation and attitude determination process if magnetometer is 

used. Even passive magnetic system requires a model since attitude determination is 

still necessary for payload data interpretation. This paper focuses on models relevant 

for these applications. Four important models are introduced with exact expressions 

in different reference frames. Examples are discussed for analytical and numerical 
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analysis. Final recommendations are provided regarding different models 

implementation for specific purposes. 

1. Geomagnetic field models 

Reference frames 

Four geomagnetic field models are considered: IGRF, inclined and direct 

dipoles and averaged (simplified dipole) model. Induction vector is expressed in a 

number of reference frames relevant for the satellite angular motion. 

OaY1Y2Y3 is an inertial frame. Оa is Earth’s center, OaY3 axis is directed along 

Earth’s rotation axis, OaY1 lies in the equatorial plane and is directed to the ascending 

node of the circular orbit, OaY2 is directed so that the reference frame is right handed 

(the same holds for the following frames). 

OaJ1J2J3 is J2000 inertial frame. OaJ3 axis is directed along Earth’s rotation axis, 

OaJ1 is directed to the vernal equinox for the epoch 2000.0. Frames OaJ1J2J3 and 

OaY1Y2Y3 are tied by a rotation by the mean Greenwich time gt  about OaJ3 axis. 

Earth’s axis precession is not taken into account. 

OaZ1Z2Z3 is an inertial reference frame. It is got from OaY1Y2Y3 by turning by the 

angle   about OaY1 axis. This angle is defined with the averaged geomagnetic field 

model. 

OaS1S2S3 inertial frame is bound the satellite’s orbit. Axis OaS3 is normal to the 

equatorial plane. OaS1 is directed to the ascending node. Transition between frames 

OaY1Y2Y3 and OaS1S2S3 is represented by the angle i  (orbit inclination) rotation about 

OaY1 axis. Transition between frames OaS1S2S3 and OaZ1Z2Z3 requires angle i  

rotation around OaS1. Inertial reference frames are depicted in Fig. 1. 

 
Fig. 1. Inertial reference frames 
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OX1X2X3 is the orbital reference frame centered in the satellite’s center of mass. 

OX2 axis lies in the orbital plane. It is perpendicular to the radius-vector of the 

satellite. OX2 is directed along the orbital angular velocity direction of a circular 

orbit. Axis OX1 is directed along the radius vector. Axes sequence allows convenient 

reference frames transitions.  

Ox1x2x3 is the bound reference frame, it’s axes coincide with the principal axes 

of inertia of the satellite. 

OL1L2L3 frame is bound to the satellite’s angular momentum vector. OL3 axis is 

directed along this vector. OL2 axis lies in the plane of two first axes of inertial frame. 

Any inertial frame may be used depending on convenience and mission requirements 

of satellite motion representation (Fig. 7). 

Vectors are supplemented with lower indices of corresponding reference frame 

where necessary. For example geomagnetic induction vector may be written as 
YB  in 

OaY1Y2Y3 frame. Direction cosines matrices are 

cos sin 0

sin cos 0 ,

0 0 1

g g

JY g g

t t

t t

 
 

 
 
 
 

A

1 0 0

0 cos sin ,

0 sin cos

YZ

 
 

  
 
    

A

1 0 0

0 cos sin ,

0 sin cos

YS i i

i i

 
 


 
  

A

     

 

cos sin 0

sin cos 0 ,

0 0 1

SX

u u

u u

 
 

 
 
 
 

A  

cos sin cos sin sin

sin cos cos cos sin

0 sin cos

YX SX YS

u u i u i

u u i u i

i i

 
 

  
 
  

A A A   

where u  is the argument of latitude. Transition rule is j ij ix A x . 

International geomagnetic reference field / World magnetic model 

IGRF (International geomagnetic reference field) and WMM (World magnetic 

model) are the most accurate models. Field decomposition is used in both models. It 

was proposed by C.F. Gauss in 1838. The decomposition is 

      
1

0 0 0 01 0
cos sin cos ,

i
k m m m m

n n ni n

R
V R g t m h t m P V

r
   



 

 
     

 
  B  

where 0  is the longitude of the point where the induction vector is calculated, 

090   , 0  is the latitude of the point, r  is the distance to the point from Earth’s 

center, R  is the average Earth radius. m

ng  and m

nh  are Schmitt coefficients given in a 

table [44], 7

0 4 10     kg∙m∙A-2∙s-2 is the magnetic vacuum permeability, m

nP  is a 

quasinormalised Legendre polynomial. Coefficients are derived empirically for both 

models. They are valid for five years. Coefficients are updated by International Union 

of Geodesy and Geophysics for IGRF model and by USA National Oceanic and 
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Atmospheric Administration for WMM. Models are designed for altitudes of no more 

than 600 km (relative to WGS84) though they may be used for higher orbits. These 

accurate models are often used onboard and in numerical simulation. IGRF is more 

widespread for satellite motion applications. 

Inclined dipole 

Inclined dipole model represents the major part of Gauss model. Three first 

terms are taken into account [45]. These terms describe the dipole tilted by a small 

angle to the opposite direction of Earth’s rotation axis. Exact inclination angle varies 

as Earth’s magnetic poles drift. This value is approximately 11.7° now. Dipole 

constitutes more than 90% of the field given by Gauss decomposition. Inclined dipole 

model takes into account two main sources of geomagnetic field variation: satellite 

motion along the orbit and Earth’s rotation. Irregular effects (regions above highly 

magnetized areas) are not accounted for. Dipole geomagnetic induction vector is  

  2

5
3e r

r


 B k kr r          

where k  is a unit dipole direction, r  is the satellite’s radius vector. Inclined dipole 

provides rather compact representation in OaY1Y2Y3 frame, 

2 1

2 13

1

sin sin 3 cos

cos sin 3 cos sin

cos 3 sin sin

e
Y

u

i u
r

i u

  


  

 

 
 

  
 
  

B .      (1.1) 

Here 6 3 2 17.812 10e km kg s А        is Earth’s magnetic constant, r  is the radius-

vector length. Angles 
2 1,   provide dipole attitude with respect to OaY1Y2Y3 frame. 

Angle 
2 20Et     where 

E  is Earth’s rotation rate represents dipole rotation with 

respect to OaY1Y2Y3,  

1 2 1 2 1cos sin sin sin cos sin cos sin cos sinu u i u i        , 1 168.3  . Transition matrices are 

used to represent induction vector in other reference frames. Bulky resulting 

expressions are omitted here. They are of no use for analytical approaches. Moreover 

numerical analysis often utilizes more compact and general relations using direction 

cosines matrices. 

Direct dipole 

Geomagnetic field model is further simplified by the direct dipole. Dipole unit 

vector is represented in OaY1Y2Y3 frame as  0,0, 1 k . Induction vector (1.1) is  

2

3

2 2

1.5sin sin 2

1.5sin 2 sin

1 3sin sin

e
Y

i u

i u
r

i u


 

 
 

 
  

B .        (1.2) 



7 

 

Induction value changes along the orbit,  

2 2

0 3
1 3sin sine

inclB i u
r


  .        (1.3) 

Reference frame OX1X2X3 allows very compact field representation, 

3

2sin sin

cos sin

cos

e
X

u i

u i
r

i


 
 


 
 
 

B .          (1.4) 

Frame OaS1S2S3 yields  

2

3

1.5sin 2 sin

3sin sin sin .

cos

e
S

u i

u i i
r

i


 

 
  

 
 
 

B         (1.5) 

Averaged model 

Dipole geomagnetic induction vector unevenly rotates along the near-circular 

cone (H -cone). The last simplification may be considered as averaging of this cone 

and induction vector motion. The cone becomes a circular one ( -cone) and 

induction vector moves uniformly [46]. It also has constant length. The cone is 

tangent to OaY3 and its axis lies in the OaY2Y3 plane (Fig. 2). 

 
Fig. 2. Averaged geomagnetic model 

 

Cone half angle is given by 

 2 2

3sin2
tg

2 1 3sin 1 3sin

i

i i


  
.         

Vector rotates with double orbital angular velocity 
0 ,  

0 0 02 2t u       ,         (1.6) 

geomagnetic induction vector in frame OaZ1Z2Z3 is  
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0

sin sin

sin cos .

cos

Z B





  
 

 
 
  

B          (1.7) 

Phase 
0  is found from the dipole and averaged models comparison. Induction 

vector is  0 0, sin , cos
T

Z B  B  if 0   from (1.7). It is directed along OaY3 axis 

(Fig. 2). Direct dipole model provides the same induction vector direction when 0u   

according to (1.2). Relation (1.6) then yields 
0 0  . 

Averaged model provides rather compact expressions: 

OX1X2X3 

  
  

 

2 2

2

0

2

sin sin 2sin sin cos sin cos

sin cos 2cos sin sin 1 cos

2sin sin sin cos

X

i u u u u i

B i u u u i

u i i

    
 

     
 
    
 

B  

 

(1.8) 

 

OaZ1Z2Zi 0

sin sin 2

sin cos2

cos

Z

u

B u

  
 

 
 
  

B  
(1.9) 

OaY1Y2Y3 
2

0

2 2

sin sin 2

sin 2 sin

1 2sin sin

Y

u

B u

u

  
 

  
 
   

B  
 

OaS1S2S3  

 

2

0

2

sin sin2

2sin sin cos sin

2sin sin sin cos

S

u

B u i i

u i i

  
 

     
     

B  
 

 

Averaged model is sometimes called a simplified dipole model. This model 

should be compared with the dipole model to prove its validity and find its 

parameters. Averaged induction vector length 
0B  can be found from (1.3). Arithmetic 

mean between maximum and minimum dipole values is often used,  

   2

0 0 0 3

1
0 1 1 3sin

2 2 2

e
incl inclB B B i

r

   
      

  
.    (1.10)

Integral mean is more accurate,  

  2 2

0 0 3

0 0

1 3sin sine
inclB B u du i udu

r

 



    .     (1.11) 

Fig. 3 presents induction value for two approaches formalized by (1.10) and 

(1.11). These expressions provide close results. The difference is no more than 3% of 

the value. Simple expression (1.10) greatly facilitates analytical analysis. Numerical 
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simulation also benefits. Satellite motion along osculating orbit with changing 

inclination does not force numerical integration (1.11).  

 
Fig. 3. Induction value at 350 km altitude 

 

H - and  -cone comparison is ambiguous. Cones bases are different (Fig. 4). 

 -cone is a right one since geomagnetic induction vector has constant length. H -

cone has tilted base according to changing induction value (1.3). Cones sides are 

close. Let   be the angle between the dipole geomagnetic induction vector B  and 

OaZ3 axis. Relation    is valid for every u  (   if 0u  , 2u  ). This means 

that  -cone lies inside the H -cone. The cones have two diametrically opposite 

common lines. Difference    does not exceed 1 11' . Fig. 5 presents maximum 

deviation between two cones depending on the orbit inclination. 

  

Fig. 4. H - and  -cones 
Fig. 5. Maximum deviation between two 

cones 

 

Induction vectors should be compared for different values of orbit inclination 

and argument of latitude. Induction vectors coincide when 0u  , 2u   (they have 
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different lengths). Dipole induction vector gets ahead of the averaged one during the 

first quarter of the orbit. Second quarter provides opposite situation. Two vectors 

coincide after half of the orbital revolution. Let   be the maximum angular distance 

between these vectors. Expressions (1.4) and (1.8) are used to provide geomagnetic 

induction vector direction in different models but in the same reference frame. 

Induction vectors scalar product is 
2 2

2 2

1 sin sin
cos

1 3sin sin

i u

i u


 


.        (1.12) 

Its derivative is 

 

 

2 2 2

3 2
2 2

sin sin cos 3sin sin 1cos

1 3sin sin

u i i i ud

di i u





.       

It equals zero when sin 0i  , cos 0i  , 2 2sin 1 (3sin )u i . Since 2sin 1u   extreme 

point implies that 1 3 sin i . Equality sin 1 3i   corresponds to the inclination 

35i  . Any greater inclination leads (1.12) to a stationary value. 

 
Fig. 6. Induction vectors maximum angular deviation   

 

Fig. 6 provides an insight into geomagnetic induction vectors difference in two 

models. They may deviate by up to 19 degrees from each other. Direct dipole and 

averaged geomagnetic models have close cones, but rather different induction vector 

motion. Averaged geomagnetic model cannot accommodate uneven induction vector 

rotation (as direct dipole does) and Earth rotation (as inclined dipole does). However 

this model provides generally adequate and compact field representation. 
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2. Analytical analysis examples 

2.1. Transient motion  

Transient motion represents the attitude acquiring phase, when angles and/or 

angular velocity are far from the necessary ones. It may refer to the angular velocity 

damping with high initial values for example. Osculating variables , , , , ,L       are 

used. Axisymmetrical satellite with inertia tensor  , ,diag A A CJ  is considered. It 

moves along the circular orbit. Angular motion is described with equations [47]  

3L

dL
M

dt
 , 1

1
L

d
M

dt L


 , 2

1

sin
L

d
M

dt L




 , 

 

 

2 1

1 2

1
cos sin ,

1 1 1
cos cos sin ,

sin

L L

L L

d
M M

dt L

d
L M M

dt C A L


 


  



 

 
    

 

    (2.1) 

 1 2

1 1
cos ctg ctg sin ctgL L

d L
M M

dt A L L


         

where 
1 2 3, ,L L LM M M  are the torque components, L  is the angular momentum 

magnitude, angles ,   represent angular momentum attitude with respect to any 

inertial frame. Fig. 7 utilizes OaZ1Z2Z3 as an example. 

 
Fig. 7. Angular momentum attitude 

 

Angular rate is characterized using only one variable L . Small control torque is 

assumed. This means that angular momentum change over one satellite or orbital 

revolution is small compared with the angular momentum itself. This is formalized 

with a small parameter  . Equations of motion (2.1) have the form 
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     0, , , , ,
d d

t t
dt dt

   
x y

X x y y x Y x y       (2.2)
 

where  , ,
T

u y  are fast variables,  , , ,
T

L   x  are slow ones. Regular 

precession provides simple generating solution for equations (2.2). Averaging is 

independently performed over all fast variable and time. Accuracy of the averaged 

solution is of the order of   for time interval of the order of 1/  . 

Consider damping control torque [14] 

 k  M ω B B , 

2 2

3 1 3 1 3 1 2 2 1 2

2 2

1 1 2 2 1 2 3 3 2 3

2 2

2 2 3 3 2 3 1 1 1 3

L L L L L L L L L L

L L L L L L L L L L L

L L L L L L L L L L

B B B B B B

B B B B B B

B B B B B B

   

   

   

   
 

    
    

M .     (2.3) 

Following results are based on [19]. Averaging involves expressions 
, ,iL u

M
 

, 

, ,
cosiL u

M
 

  and 
, ,

siniL u
M

 
 . This necessitates calculation of  

2

0

1
,

2
ij i jB B B du




 

 

 , 1,2,3i j         (2.4) 

where 
iB  are dimensionless geomagnetic induction vector components.  

Averaged equations simplicity is largely governed by (2.4). We use the most 

convenient inertial reference frame for each model. The goal is to find the simplest 

averaged equations of motion. Angular momentum magnitude may be compared in 

different reference frames since it is a scalar variable. 

Averaged geomagnetic field model has the most compact form (1.9) in the 

reference frame OaZ1Z2Z3. Expressions (2.4) are 

2

11 22

1
sin

2
B B p    , 2

33 cosB q   , 
12 23 13 0B B B    

and averaged equations of motion for slow variables , , ,l     are 

  2 2 22 1 3 sin cos sin
dl C

l p p
du A

   
 

       
 

, 

  2 23 1 sin cos cos sin ,

0,

d C
p

du A

d

du


    



 
   

 



     (2.5) 

    21
1 2 1 3 1 sin sin cos

2

d C
p p

du A


   
 

       
 

. 
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Equations (2.5) allow the full set of the first integrals [19]. These integrals are found 

in the exact form. Equations (2.5) are therefore directly solved in quadratures.  

Dipole model has the most compact form (1.5) in the inertial frame OaS1S2S3. 

Angles ,   represent angular momentum attitude with respect to this frame. 

Expressions (2.4) provide 

2

11

9
sin ,

8
B a i 

 

2

22

11 11
sin ,

9 8
B a i   12 13 0,B B   

23

1
sin cos ,

2
B d i i    2

33 cos .B с i   

Averaging leads to 

2 2 2 2

2 2

20 11
sin cos sin 2 cos sin cos

9 9

cos sin ,

dl
l a c a a d

du

C

A

      

 

  
        

  

 
  
 

2 2 2 2

2 2

11
sin cos sin cos sin cos2 cos sin ,

9

2
sin cos cos ctg cos sin ,

9

d C
a a c d

du A

d C
a d

du A


        


      

    
        

    

  
    

    

 2 2 2 220 11
1 cos sin cos sin 2 sin cos sin

9 9

sin cos .

d
a c a d

du


       

 

  
        

  



 

Small parameter   changes but retains its meaning – small change in angular 

momentum. Averaged equations include one more term due to the “non-diagonal” 

element 23B . Only some first integrals are available. Expressions for derivatives of 

/  and l /   may be grouped to find two integrals in quadratures. 

Inclined dipole model necessitates additional averaging over Earth’s rotation. 

Expressions ijB  can be found using geomagnetic induction vector expressed in 

OaY1Y2Y3 frame (1.1). This leads to 

2 2 2 2 2

11 1 1 1

11 9 1
sin cos sin cos sin ,

16 8 2
B i i  

 
   

 
  

2 2 2 2 2 2 2 2

22 1 1 1 1

1 15 27 1
sin cos sin cos cos sin cos sin ,

2 16 8 2
B i i i i   

 
    

 
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2 2 2 2 2 2 2 2 2 2

33 1 1 1 1 1

9 27 1
cos sin sin 3sin cos sin cos sin cos sin ,

16 8 2
B i i i i i    

 
     

 

12 0,B   
13 0,B    

2 2 2 2 2 2

23 1 1 1 1

3 1 27 1
sin cos cos sin sin cos sin cos cos sin .

2 8 8 2
B i i i i i i   

   
       

   
 

These expressions are clearly overburdened. Transient motion analysis allows 

the deepest results with the averaged geomagnetic field model.  

2.2. Motion in the vicinity of necessary attitude 

Attitude accuracy in the vicinity of necessary position is represented with the 

Euler equations. Satellite motion is described with absolute angular velocity 

components 1 2 3, ,    and angles , ,   . These angles represent frame O
1 2 3x x x  

attitude with respect to 1 2 3OX X X . Direction cosines matrix D is 

cos cos sin sin cos

cos sin cos sin sin cos cos sin sin cos cos sin

sin cos cos sin sin cos sin sin sin sin cos cos

    

           

           

 
 

   
 
     

D . 

Dynamical equations of the satellite with inertia tensor  diag , ,A B CJ  are  

 

 

 

1
2 3 1

2
1 3 2

3
1 2 3

,

,

,

x

x

x

d
A C B M

dt

d
B A C M

dt

d
C B A M

dt


 







  

  

  

 

kinematic equations are 

2 3 0

2 3 0

1 2 3 0

1
( cos sin sin sin ),

cos

sin cos cos ,

sin
tg ( cos sin ) .

cos

d

dt

d

dt

d

dt


      




     

 
      



  

  

   

     (2.6) 

Planar motion 

Consider the satellite that moves on a polar orbit in a gravitational field. This 

motion satisfies 

0   , 
1 2 0   . 



15 

 

Planar motion also exists for some control strategies. Suppose that magnetic control 

dipole moment is  , 0, 0
T

mm . Constant magnet along a principal axis is a good 

example. Control torque for this case is  

 0 3 20, ,
T

ctrl x x xB mB mB   M m B . 

Averaged and dipole models provide 3 0xB  . Inclined dipole model does not 

allow planar motion since 
3 2 1cos sin 0xB    . The dipole does not lie in the orbital 

plane. This model cannot be used in the following analytical analysis. Planar motion 

is described by the equation 

    2

0 03 sin cos cos sin sinC A B mB u u              (2.7) 

where 0   for the averaged model and 1   for the dipole model. Constant magnet 

is used to assure satellite motion with the geomagnetic induction vector. Nominal 

attitude regime corresponds to the magnet coinciding with the induction vector. We 

concentrate on this regime possibility and analysis. Consider motion in the vicinity of 

necessary ideal attitude, 

0      

where 0  is the geomagnetic induction vector direction,   determines attitude 

accuracy. Averaged model yields  0 arcsin cosu  . Linearized equation (2.7) is 

 2 cos2 2 sin2u u                 (2.8) 

where 
 3 A B

С



 , 2 0

2

0

mB

C



 . Equation (2.8) is quasiharmonic. Autonomous 

oscillations are described as 

 2 21 cos2 0u       .       (2.9) 

This is a well-known Mathieu equation. Parameters   and   govern system stability. 

System (2.9) is stable if only control magnetic torque acts on the satellite ( 0  ). 

System may become unstable as parameter   (gravitational torque value) rises in 

comparison with   (control torque value). We aim to find unstable areas in  -  

space as described in [48]. Non-homogeneous part in (2.8) governs attitude accuracy. 

This quantitative attitude performance measure is not taken into account.  

Characteristic equation for (2.9) is 

 2 22 , 1 0A               (2.10) 

and its roots are 

 2 2, 1A A       .  
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Stability areas of equation (2.9) require 
2 1A   (two imaginary roots with unit 

modulus). Unstable areas are observed if 2 1A   (two real roots). Stable and unstable 

areas are divided by  values that satisfy either 

 2, 1A                (2.11) 

or 

 2, 1A      .           (2.12) 

Consider no gravitational torque influence. Characteristic exponents of (2.10) 

are i  if 2 0   . The roots are  

 1 ,0 ,ie      1 ,0 ie     

and therefore 

   1 2,0 1 2 cosA       . 

Parameter  2,A     is an analytical function of   and 2   [48]. We represent it 

as  

   2 2 2, cos ,A F                 (2.13) 

where  2,F     is an analytical function. 

Conditions (2.11) and (2.12) are satisfied if 2 0    and n   where n  is a 

positive integer. Small 2 0    leads to (2.11) solutions with respect to   in the 

vicinity of every even number. Equation (2.12) possesses solutions in the vicinity of 

odd numbers. Solutions are real and may be represented as convergent series 

 
2

2 2 2 2

1 1 ...n                 (2.14) 

Equation (2.9) possesses a  -periodical solution if (2.11) is satisfied. Relation 

(2.12) forces the solution to satisfy    f t f t    so it is 2 -periodical. Equation 

(2.9) solution is represented by a series 

       
2

2 2

0 1 2 ...u u u                   (2.15) 

Here 0  is a periodical solution in case 2 0   . Consider the first unstable 

area that corresponds to 1n  . Expressions (2.14) and (2.15) are substituted to (2.9) 

leading to 1 1 2   , 
2 7 32  . The first unstable area is    

2 2

2

2 2 2 2

7 7
1 ... 1 ...

2 32 2 32

   


   

   
          

   
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Dipole model ( 1  ) complicates equation (2.7). It has compact form near 

ascending and descending nodes of the orbit. In this case 

  2

0 arcsin cos 1 3sinu u    and 

2 2 23 2
cos2 sin2

2 2 2
u u

    
 

  
     

 
 

where 2

3 2

0

em

r C





 . The first unstable are is 

2 2
2 2 2 2

2

2 2 2 2

2 7 2 2 7 2
1 ... 1 ...

6 32 3 6 32 3

       


   

      
          

   
 

Expressions for the first unstable area may be compared for two geomagnetic 

field models. This area shrinks as values 2   (averaged model) or 

 2 2 22 3 2 3 1 3        (direct dipole model) lower. Parameter 

2 2

0 03 A B mB     depends heavily on the gravitational torque value. 

Axisymmetrical satellite provides good extreme case. Gravitational torque is zeroed 

and unstable area vanishes completely. Satellite motion is governed by the control 

torque only. Permanent magnet coincides with the geomagnetic induction vector and 

this position is stable. 

Direct dipole model involves more complicated expression 

 2 2 2

0 02 3 2 1 3A B mB       . It is close to zero if 2

0 0 1 6A B mB  . 

Unstable area vanishes if 2

0 0 1 6A B mB  . Satellite and orbit parameters that 

provide guaranteed stability are broadened. Satellite does not need to be 

axisymmetrical. Its inertia moments should satisfy a relation that ensures small 

enough gravitational torque. 

Averaged geomagnetic field model allows quantitatively correct result. Direct 

dipole model provides more accurate and general result. This comes at the cost of one 

excessive restriction. 

Spatial motion 

Satellite equipped with a flywheel is considered. This allows the satellite to 

acquire inherent constant angular momentum. The flywheel is designed for this 

angular momentum to prevail over the satellite’s one (wheel has high angular rate 

and/or mass). The satellite-wheel system behaves like a gyro in the inertial space. 

Dynamical equations of motion are 

gr ctrl     Jω ω Jω ω h M M        (2.16) 
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where  0, 0, 1
T

h  for the flywheel directed along the third principal axis of the 

satellite. Poincare method [48] is used for equations (2.16)-(2.6) analysis. These 

equations have general form  

   
d

du
 

x
f x g x  

where  1 2 3, , , , , ,
T

     x   f x  are gyroscopic and gravitational torques, g  is 

a control torque,   is a small parameter. Specific   expression depends on the 

control algorithm used. Solution is decomposed into a series 0 1 x x x  and 

equations are 

        20 1
0 0 1 0

d d
O

du du
      

x x
f x F x x g x      (2.17) 

where ij i jF f x   . Solution  0 0, 0, 1, 0, 0, 0
T

x  is used as a generating one. It 

represents precise conjunction of the orbital and bound reference frames. This 

equilibrium position is stable if proper inertia moments are chosen. Damping 

magnetic control is implemented to provide asymptotic stability for this equilibrium 

position. The control is [14] 

x
ctrl x

d
k

dt
  

B
M B .  

Solution (2.17) should be substituted to the equations of motion (2.16)-(2.6). 

First order approximation 1x  satisfies equations 

2

1
2 3

0

sin sin cos ,e
A

d k
u i i

du A r

 
 



 
    

 
  

2

2
1 3

0

3 2 cos sin cos ,e
B B

d k
u i i

du B r


   



 
    

 
   

2

23

3

0

3 2 sin ,e
C

d k
i

du C r

 
 



 
   

 
   

2 ,
d

du


    3,

d

du


  1 .

d

du


     

In-plane motion is detached. It is described by the equation 
2

2

3

0

3 2 sine
C

k
i

C r


  



 
   

 
.  
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Inertia moments of the satellite ensure 0C  . Homogeneous part solution is 

oscillation near equilibrium position. Attitude accuracy is determined by the partial 

solution 
2

2

3

0

2
sin .

3

e

C

k
i

C r




 

 
   

 
        (2.18) 

Averaged geomagnetic field model leads to overburdened equations of motion. 

They have quite compact form only for a polar orbit. Planar motion for this case is 

governed by the equation 

2

0

0

3 ,C

k
B

C
  


   

Partial solution is  
2

3

0

3
.

4

e

C

k

C r




 

 
   

 
  

Solution (2.18) applied for a polar orbit is 
2

3

0

2
.

3

e

C

k

C r




 

 
   

 
 

Both solutions differ slightly. Direct dipole model is intuitively more accurate 

and therefore preferable. Moreover it provides more general result valid for any orbit 

inclination. Averaged model allows compact result only for a polar orbit. The 

accuracy estimate is more pessimistic. This estimate may be preferable for the 

attitude system design process with the worst possible situation in mind. 

3. Numerical simulation 

Analytical analysis was based on a number of representative examples. These 

are now assessed numerically. Numerical simulation is an inherent part of the attitude 

system design. Attitude hardware parameters and algorithms are chosen based on the 

results of the simulation and general results provided by the analytical study. 

Angular velocity damping is the first example. Damping effectiveness is 

characterized by the time necessary to lower angular velocity to a certain amount. 

This time differs depending on the geomagnetic model used.  

Simulation parameters are: 

 Inertia tensor  diag 5750, 2450, 4000J  kg∙m2  

 Orbit altitude 1000 km 

 Inclination 82.5°  
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 Damping control gain 115 10k    N∙m∙s/T2 (magnetorquers are capped at 250 

A∙m2 maximum dipole moment) 

 Initial attitude angles are 60, 130, 230 degrees (rotation sequence 1-3-2) 

 Initial angular rate (0.001, 0.002, 0.003) s-1.  

Gravitational and control torques are taken into account. Satellite motion is 

described in the orbital reference frame. Fig. 8 provides numerical simulation results. 

  
Fig. 8. Angular velocity damping Fig. 9. Flywheel reorientation 

 

Angular velocity damping times differ slightly. Main damping process takes 

about 0.5 hour for each model. Two dipole models provide especially close results. 

IGRF model provides the worst damping efficiency. Simplified geomagnetic field 

models may be used for transient motion analysis. Numerical analysis complexity 

greatly benefits from simple models. Simulation with IGRF model took 147.7 

seconds (128.5 seconds for model calculation). Inclined field required only 33.8 

seconds, direct dipole – 15 seconds, averaged model – 14.8 seconds. 

Fig. 9 provides another transient motion example. Satellite is equipped with a 

flywheel. Angle between the flywheel axis and orbital normal is depicted in Fig. 9. 

Flywheel angular momentum is 10 N∙m∙s, damping control parameter is ten times 

less, initial attitude angles are 60, 100 and 230 degrees. Transient motion result is 

close for different geomagnetic field models. 

Fig. 8 and 9 provide preliminary insight into attitude accuracy results with 

different models. Accuracy is affected by the model. Following simulation examples 

are obtained with two additional assumptions. Disturbing torque is taken into account 

(constant torque of the order of 1∙10-4 N∙m in bound frame and Gaussian disturbance 

of the order of 4∙10-4 N∙m). Attitude determination error is introduced (1° bias and 2° 

normal distribution for angles, 0.01 deg/s and 0.001 deg/s for angular velocity). Fig. 

10 provides simulation result. Maximum angle between bound and orbital frames 
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axes pairs is chosen as an attitude accuracy measure. Initial attitude angles are 6, 3, 2 

degrees, initial angular velocity is 0.0001 s-1 (transient motion is excluded from the 

simulation). Satellite is not equipped with a flywheel. 

  
Fig. 10. Attitude accuracy in gravitational 

field 

Fig. 11. Attitude accuracy with a 

flywheel 

 

Attitude accuracy varies depending on the geomagnetic field model. However 

simplified models may be used. Fig. 11 aims at the same result for the satellite 

equipped with a flywheel. Magnetic control should maintain “inclined” attitude in the 

orbital plane. Control proposed in [49] provides rotation by 40 degrees between 

orbital and bound reference frames. Simplified models provide quite accurate result. 

One specific case is the three-axis magnetic control discussed in [43]. Control 

performance is very sensitive to its parameters tuning. They are based on the 

geomagnetic field model. Simplified models may be used for semi-analytical control 

parameters selection. IGRF model should then be used in a numerical simulation for 

further control parameters tuning. 

4. Models comparison 

Recommendations for different geomagnetic field models implementation are 

summarized below. 

IGRF/WMM – highly accurate numerical simulation; control parameters tuning on 

the last stages of satellite and attitude system development; 

Inclined dipole – fast numerical simulation (instead or before IGRF) for transient 

motion and attitude accuracy; 

Direct dipole model – analytical analysis in orbital and inertial frames; numerical 

analysis; 

Averaged field – analytical analysis in inertial space, especially for transient motion. 
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IGRF/ 

WMM 

Inclined 

dipole 

Direct 

dipole 
Averaged 

Numerical 

simulation 

Accurate +  – – 

Preliminary, 

approximate 
– + ±  

Motion stage 
Transient + + + + 

Accuracy + ± ±  

Analytical 

analysis 

Orbital frame – – +  

Inertial space –  ± + 

Conclusion 

Four geomagnetic field models are considered: IGRF, inclined and direct 

dipoles, averaged field. Geomagnetic induction vector expressions are provided for 

different reference frames. Models are applied for analytical analysis and numerical 

simulation of a number of generic satellite attitude problems. Conclusions are drawn 

regarding models implementation for different cases according to three groups: 

motion nature, analysis method, reference frames used. Simplified models are shown 

to provide quite accurate results. 
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