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Яшунский А. Д.
Преобразования бернуллиевских распределенийбулевымифунк-

циями из замкнутых классов
Рассматривается задача оприближенномвыражениираспределений

бернуллиевских случайных величин путем применения произвольных
булевых функций из замкнутого класса к независимым одинаково рас-
пределенным случайным величинам, имеющим заданное распределе-
ние. Для всех замкнутых классов булевых функций и всевозможных на-
чальныхраспределенийописанымножества аппроксимируемыхраспре-
делений.
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ние, булева функция, замкнутый класс

Alexey Dmitrievich Yashunsky
Bernoulli distribution transformations by Boolean functions from

closed classes
We consider the problem of approximating distributions of Bernoulli

random variables by applying arbitrary Boolean functions from a closed
class to independent identically distributed random variables with a given
dsitribution. For every closed class of Boolean functions and any given initial
distribution we provide a description of the approximable distribution set.
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Introduction

The problems of discrete probability distribution transformations usually
consider some operations applied to random variables having values in some
finite setwith given distributions. The result is a new randomvariable,whose
distribution is easily computed. The goal of research is to describe the set of
distributions that are expressible in such a way.

Within this general setting the following details may vary: the set of
random variable values (usually the set 𝐸𝑘 = {0, 1, . . . , 𝑘 − 1}), the applied
operations, the set of initial distributions and, finally, one may consider
exact or approximate expression of the distributions.

The most-well studied problems are the ones that deal with transfor-
mations of Bernoulli distributions, i. e. random variables taking values in
the set {0, 1}. The main focus of research has been on exact expression of
distributions with rational components. The results obtained in this area
are outlined in R. M. Kolpakov’s review [1].

A wide-spread approach to defining the set of applied operations is the
following. A set of operations ℬ on random variables is considered; each
operation 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ ℬ has a corresponding operation 𝑓 , acting on
distributions, transforming the distributions of random variables𝑋1, . . . , 𝑋𝑛

into the distribution of the random variable 𝑓(𝑋1, . . . , 𝑋𝑛). Then the algebra
of distributions is considered with the set of operations being 𝑓, 𝑓 ∈ ℬ. This
approach in fact is equivalent to considering the transformations of random
variables by all functions that are expressible as a read-once formula over ℬ.

Early works of R.L.Skhirtladze in this area have demonstrated that even
very simple systems present wide possibilities for transforming distribu-
tions. In [2] the initial distribution (1/2, 1/2) is shown to generate any
distribution with binary rational components when transformed by series-
parallel networks (which are equivalent to read-once AND/OR formulas).
In [3] read-once formulas containing AND, OR, NOT operations are shown
to approximate arbitrary distributions for any given initial distribution.

Later the research focused either on read-once superpositions of func-
tions from “simple” sets ℬ, or the set ℬ would be considered to contain all
Boolean functions, hence superpositions become irrelevant.

The present work investigates a slightly different problem. We suppose
that for a given set of Boolean operations ℬ not only read-once, but arbitrary
formulas may be constructed and then applied to independent random
Bernoulli variables with given distributions to generate new distributions.
The set of initial distributions is supposed to contain just one distribution
(1 − 𝑝, 𝑝) and we study the approximation of distributions with arbitrary
precision.
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This approach naturally leads to considering the distributions of trans-
formations by Boolean functions from closed classes1, since all possible
superpositions of functions from a given set ℬ are exactly a closed class.

Earlier results on read-once superpositions allow the description of only
some of the classes’ properties. Yet, these results are essentially used
in the present work. In particular, many statements from the author’s
paper [4] on read-once transformations of Bernoulli distributions have been
reformulated in the present work in terms of functions from closed classes.

Note that the paper of F. I.Salimov [5] states some results in terms of
Boolean function closed classes, different from the class of all Boolean
functions, yet in fact these results are related to read-once superpositions
and their formulation in terms of closed classes is a weakening.

The results of the present work allow to describe for any finite system
of Boolean functions ℬ the set of distributions that may be approximated
by superpositions of functions from ℬ, applied to independent random
variables with Bernoulli distributions from a given finite set.

Definitions and basic properties

Let 𝑥1𝑥2 denote the conjunction (logical AND) of variables 𝑥1 and 𝑥2,
𝑥1 ∨ 𝑥2 denote the disjunction (logical OR) of variables 𝑥1 and 𝑥2, 𝑥 denote
the negation (logical NOT) of variable 𝑥.

Consider a Boolean function 𝑓(𝑥1, . . . , 𝑥𝑛) and let 𝑋1, . . . , 𝑋𝑛 be mutually
independent Bernoulli random variables, equal to 1 with probability 𝑝 and
equal to 0 with probability 1− 𝑝.

Let
ℎ𝑓(𝑝) = P(𝑓(𝑋1, . . . , 𝑋𝑛) = 1),

i. e. ℎ𝑓(𝑝) expresses the probability of obtaining the value 1when substituting
random variables𝑋1, . . . , 𝑋𝑛 for the variables of the function 𝑓 .

For a given function 𝑓 the expression for ℎ𝑓(𝑝) is easy to write out. Recall
that the weight of a tuple 𝛼 ∈ {0, 1}𝑛 is the number of 1’s in 𝛼. For a Boolean
function 𝑓(𝑥1, . . . , 𝑥𝑛) denote by𝐴𝑖 the number of tuples of weight 𝑖 on which
the function has value 1. Then

ℎ𝑓(𝑝) =
𝑛∑︁

𝑖=0

𝐴𝑖𝑝
𝑖(1− 𝑝)𝑛−𝑖.

Note that 0 6 𝐴𝑖 6
(︀
𝑛
𝑖

)︀
. We shall further refer to ℎ𝑓(𝑝) as the characteristic

polynomial of the function 𝑓(𝑥1, . . . , 𝑥𝑛).
1Closed classes are, except for some special cases, Boolean function clones that form Post’s lattice.
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The characteristic polynomials have a decomposition property similar
to Boolean functions. For 𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑥1𝑓0(𝑥2, . . . , 𝑥𝑛) ∨ 𝑥1𝑓1(𝑥2, . . . , 𝑥𝑛)
we have ℎ𝑓(𝑝) = (1 − 𝑝)ℎ𝑓0(𝑝) + 𝑝ℎ𝑓1(𝑝). This and the definition of the
characteristic polynomial easily implies

Property 1. If functions 𝑓 and 𝑔 differ only by insertion or deletion of dummy
variables or renaming of variables (without identification) then ℎ𝑓(𝑝) = ℎ𝑔(𝑝).

Recall that the function 𝑓 *(𝑥1, . . . , 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑛) is dual to the
function 𝑓(𝑥1, . . . , 𝑥𝑛). One can easily verify

Property 2. ℎ𝑓*(𝑝) = 1− ℎ𝑓(1− 𝑝).

For a set𝑋 ⊆ [0, 1] let 𝑐𝑙(𝑋) denote the closure of𝑋, i. e. the set𝑋 and all
its limit points. Let 𝒜 be a set of Boolean functions. Let

𝑊𝒜(𝑝) = 𝑐𝑙({ℎ𝑓(𝑝) : 𝑓 ∈ 𝒜}).

The set𝑊𝒜(𝑝) is further referred to as the the set of distributions, approximable
by functions2 from 𝒜 at the point 𝑝. Essentially, 𝑊𝒜(𝑝) contains all points
from the segment [0, 1] that may be with arbitrary precision approximated
by the set 𝒜 functions’ characteristic polynomials values at the point 𝑝. In
particular, if𝑊𝒜(𝑝) = [0, 1] then substituting independent random variables
with Bernoulli distributions (1− 𝑝, 𝑝) for variables of functions from 𝒜, one
may approximate any Bernoulli distribution with arbitrary precision.

Note that for any set 𝒜 we have𝑊𝒜(0),𝑊𝒜(1) ⊆ {0, 1}. Further we shall
consider𝑊𝒜(𝑝) for 𝑝 ∈ (0, 1).

For a set 𝒜 let 𝒜* = {𝑓 * : 𝑓 ∈ 𝒜} be the set of dual functions. The
property 2 implies

Property 3.𝑊𝒜*(𝑝) = {1− 𝑤 : 𝑤 ∈ 𝑊𝒜(1− 𝑝)}.

Besides, one may easily verify

Property 4. If 𝒜′ ⊂ 𝒜, then𝑊𝒜′(𝑝) ⊆ 𝑊𝒜(𝑝).

Finally, if the set 𝒜 is closed under read-once superposition then the
continuity of characteristic polynomials with respect to their variable 𝑝
implies

Property 5. If 𝒜 is closed and 𝑝′ ∈ 𝑊𝒜(𝑝), then𝑊𝒜(𝑝) ⊇ 𝑊𝒜(𝑝
′).

2Note that the paper [4] uses the symbol𝑊ℬ(𝑝) for distributions that are approximable by read-once super-
positions of functions from ℬ.
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Further, for the sake of simplicity, unless otherwise stated, we shall
consider the formula 𝑓(𝑓1, . . . , 𝑓𝑛), where 𝑓, 𝑓1, . . . , 𝑓𝑛 are symbols of Boolean
functions, to represent a read-once superposition of the above functions,
i. e. the function 𝑓(𝑓(𝑥̃(1)), . . . , 𝑓𝑛(𝑥̃

(𝑛))), where 𝑥̃(1), . . . , 𝑥̃(𝑛) are pairwise
disjoint sets of variables. Note that read-once superposition is, in a
sense, in agreement with characteristic polynomial composition, precisely
ℎ𝑓(𝑔,...,𝑔)(𝑝) = ℎ𝑓(ℎ𝑔(𝑝)).

Closed classes

A set of Boolean functions 𝐴 is called a closed class if it is closed under
superposition of functions and insertion/deletion of dummy variables (this
definition agrees with property 1). For the sake of exposition clarity we shall
now list all closed classes of Boolean functions. We shall be using notation
conventions3 from [6].

We introduce some of the necessary concepts, for all the other definitions
see [6].

A function 𝑓(𝑥1, . . . , 𝑥𝑛) preserves 𝑐 ∈ {0, 1} if 𝑓(𝑐, . . . , 𝑐) = 𝑐.
For tuples 𝛼, 𝛽 ∈ {0, 1}𝑛 we shall say that 𝛼 6 𝛽 if for every 𝑖 we have

𝛼𝑖 6 𝛽𝑖. A function 𝑓(𝑥1, . . . , 𝑥𝑛) is monotone if for every pair of tuples 𝛼, 𝛽,
such that 𝛼 6 𝛽, holds 𝑓(𝛼) 6 𝑓(𝛽).

A function 𝑓 is self-dual if 𝑓 = 𝑓 *.
A function 𝑓 possesses property ⟨1𝜇⟩ (property ⟨0𝜇⟩), 𝜇 = 2, 3, 4, . . ., if any 𝜇

tuples on which the function takes value 1 (respectively 0) share a common
unit (respectively zero) component. A function 𝑓 possesses property ⟨1∞⟩
(property ⟨0∞⟩) if for some variable 𝑥𝑖: 𝑓 6 𝑥𝑖 (respectively 𝑓 > 𝑥𝑖).

We shall denote by 𝑥1 ⊕ 𝑥2 the sum modulo 2 of the variables 𝑥1 and
𝑥2. A function 𝑓(𝑥1, . . . , 𝑥𝑛) is said to be affine if it may be represented as
𝑐0 ⊕ 𝑐1𝑥1 ⊕ 𝑐2𝑥2 ⊕ . . .⊕ 𝑐𝑛𝑥𝑛 for some constants 𝑐0, 𝑐1, . . . , 𝑐𝑛 ∈ {0, 1}.

A function 𝑓(𝑥1, . . . , 𝑥𝑛) is said to be a conjunction if it may be represented
as 𝑐0(𝑐1 ∨ 𝑥1)(𝑐2 ∨ 𝑥2) · · · (𝑐𝑛 ∨ 𝑥𝑛) for some constants 𝑐0, 𝑐1, . . . , 𝑐𝑛 ∈ {0, 1}. A
function 𝑓(𝑥1, . . . , 𝑥𝑛) is said to be a disjunction if it may be represented as
𝑐0 ∨ (𝑐1𝑥1) ∨ (𝑐2𝑥2) ∨ . . . ∨ (𝑐𝑛𝑥𝑛) for some constants 𝑐0, 𝑐1, . . . , 𝑐𝑛 ∈ {0, 1}.

Closed classes of Boolean functions are exhausted by the list below.

1. The class of all Boolean functions 𝑃2.

2. The class of 0-preserving functions 𝑇0; 1-preserving functions 𝑇1;
constant preserving functions 𝑇01.

3Unfortunately, the closed classes in Russian literature are denoted by symbols that differ from the symbols
traditionally used for clones from Post’s lattice.
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3. The class of monotone functions 𝑀 ; 0-preserving monotone func-
tions 𝑀0; 1-preserving monotone functions 𝑀1; constant preserving
monotone functions𝑀01.

4. The class of self-dual functions 𝑆; constant preserving self-dual func-
tions 𝑆01; monotone self-dual functions 𝑆𝑀 .

5. Countable class families 𝐼𝜇,𝑀𝐼𝜇, 𝐼𝜇1 ,𝑀𝐼𝜇1 (𝜇 = 2, 3, . . . ,∞) of functions
that possess the property ⟨1𝜇⟩, are monotone (𝑀𝐼𝜇, 𝑀𝐼𝜇1 ) and 1-
preserving (𝐼𝜇1 ,𝑀𝐼𝜇1 ).

6. Countable class families 𝑂𝜇, 𝑀𝑂𝜇, 𝑂𝜇
0 , 𝑀𝑂𝜇

0 (𝜇 = 2, 3, . . . ,∞) of
functions that possess the property ⟨0𝜇⟩, are monotone (𝑀𝑂𝜇, 𝑀𝑂𝜇

0 )
and 0-preserving (𝑂𝜇

0 ,𝑀𝑂𝜇
0 ).

7. The class of affine functions 𝐿; 0-preserving affine functions 𝐿0; 1-
preserving affine functions 𝐿1; self-dual affine functions 𝑆𝐿; constant
preserving affine functions 𝐿01.

8. The class of conjunctions𝐾; 0-preserving conjunctions𝐾0; 1-preserving
conjunctions𝐾1; constant preserving conjunctions𝐾01.

9. The class of disjunctions𝐷; 0-preserving disjunctions𝐷0; 1-preserving
disjunctions𝐷1; constant preserving disjunctions𝐷01.

10. The class of essentially unary functions 𝑈 ; self-dual unary functions
𝑆𝑈 ; monotone unary functions 𝑀𝑈 ; constant preserving unary func-
tions 𝑈01.

11. The class of constants4 𝐶; 0-preserving constants 𝐶0; 1-preserving
constants 𝐶1.

The Hasse diagram of closed classes is represented in fig. 1.

Classes, containing𝑀01

Statement 1 [4].𝑊𝑀01
(𝑝) = [0, 1] for all 𝑝 ∈ (0, 1).

Proof. Consider the following Boolean functions

𝑓𝑛,𝑚 =
𝑚⋁︁
𝑖=1

𝑥𝑖1𝑥𝑖2 · · ·𝑥𝑖𝑛.

4These are the classes that are not clones.
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Figure 1

Evidently, 𝑓𝑛,𝑚 ∈ 𝑀01. One can easily verify that ℎ𝑓𝑛,𝑚(𝑝) = 1− (1− 𝑝𝑛)𝑚. Let
us now demonstrate that for all 𝑝 ∈ (0, 1), any 𝜉 ∈ [0, 1] and arbitrary 𝜀 > 0
there exist such 𝑁,𝑀 , that ℎ𝑓𝑁,𝑀

(𝑝) ∈ (𝜉 − 𝜀, 𝜉 + 𝜀).
If 𝜉 = 0, let us consider the functions 𝑓𝑛,1: ℎ𝑓𝑛,1(𝑝) = 𝑝𝑛. One can easily

see that for any 𝜀 > 0 there exists such an𝑁 , that 𝑝𝑁 < 𝜀, which implies that
ℎ𝑓𝑁,1

(𝑝) approximates the point 𝜉 = 0with precision 𝜀. In a similar way, there
exists such an𝑀 that ℎ𝑓1,𝑀 (𝑝) approximates the point 𝜉 = 1 with precision 𝜀.
We further restrict our proof to 𝜉 ∈ (0, 1).

Let 𝑁 be such that 1 − 𝑝𝑁 > 1 − 𝜉 and 𝑝𝑁 < 𝜀. Note that the sequence
(1 − 𝑝𝑁)𝑚,𝑚 = 1, 2, . . . is decreasing to zero, since 1 − 𝑝𝑁 < 1 and lim

𝑚→∞
(1 −

𝑝𝑁)𝑚 = 0. Therefore there exists such an𝑀 that

(1− 𝑝𝑁)𝑀+1 6 1− 𝜉 < (1− 𝑝𝑁)𝑀 .

Consider the difference:

(1− 𝑝𝑁)𝑀 − (1− 𝜉) 6 (1− 𝑝𝑁)𝑀 − (1− 𝑝𝑁)𝑀+1 = (1− 𝑝𝑁)𝑀𝑝𝑁 6 𝑝𝑁 < 𝜀.

Hence, (1 − 𝑝𝑁)𝑀 ∈ (1 − 𝜉, 1 − 𝜉 + 𝜀), which implies 1 − (1 − 𝑝𝑁)𝑀 ∈
∈ (𝜉 − 𝜀, 𝜉) ⊂ (𝜉 − 𝜀, 𝜉 + 𝜀).
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By virtue of property 4 the statement 1 is easily generalized into

Statement 2. Let𝒜 be one of the closed classes𝑀01,𝑀0,𝑀1, 𝑇0, 𝑇1, 𝑇01,𝑀 ,
𝑃2. Then𝑊𝒜(𝑝) = [0, 1] for any 𝑝 ∈ (0, 1).

Corollary. Let 𝑝 ∈ (0, 1), 𝜉 ∈ [0, 1], 𝜀 > 0 be fixed and 𝒜 be one of the closed
classes𝑀01,𝑀0,𝑀1, 𝑇0, 𝑇1, 𝑇01,𝑀 , 𝑃2. Then there exists such a function 𝑓 ∈ 𝒜,
that ℎ𝑓(𝑝) ∈ (𝜉 − 𝜀, 𝜉 + 𝜀).

Classes 𝑆 and 𝑆01

By virtue of property 2 for any self-dual function 𝑓 the identity ℎ𝑓(𝑝) =
1− ℎ𝑓(1− 𝑝) holds, consequently ℎ𝑓(1/2) = 1/2, which implies

Statement 3.𝑊𝑆(1/2) = {1/2},𝑊𝑆01
(1/2) = {1/2}.

Let us show that with the exception of the “special” point 𝑝 = 1/2 the
functions from classes 𝑆 and 𝑆01 also allow the approximation of an arbitrary
Bernoulli distribution.

We shall say that a Boolean function 𝑓 at the point 𝑝 ∈ (0, 1) is a
0𝜀-function, if ℎ𝑓(𝑝) < 𝜀 (respectively, a 1𝜀-function if ℎ𝑓(𝑝) > 1− 𝜀).

Let us show that substituting 0𝜀- and 1𝜀-functions for another func-
tion’s variables differs very little from substituting the constants 0 and 1
respectively.

Lemma 1 [4]. Let 𝑓(𝑥1, . . . , 𝑥𝑛) be an arbitrary Boolean function, 𝑝 ∈ (0, 1),
𝜀 > 0 be fixed and 𝑔 be a Boolean function which is an 𝛼𝜀-function at the point 𝑝.
Let 𝑓𝛼 = 𝑓(𝛼, 𝑥2, . . . , 𝑥𝑛), 𝑓 ′ = 𝑓(𝑔, 𝑥2, . . . , 𝑥𝑛). Then |ℎ𝑓𝛼(𝑝)− ℎ𝑓 ′(𝑝)| < 𝜀.

Proof. Let 𝑓𝛼̄ = 𝑓(𝛼̄, 𝑥2, . . . , 𝑥𝑛). Using the function 𝑓 decomposition on its
variable 𝑥1 we obtain

ℎ𝑓 ′(𝑝) = (1− ℎ𝑔(𝑝))ℎ𝑓0(𝑝) + ℎ𝑔(𝑝)ℎ𝑓1(𝑝). (1)

Consider first 𝛼 = 0. Then 𝑓𝛼 = 𝑓0, and (1) implies:

ℎ𝑓𝛼(𝑝)− ℎ𝑓 ′(𝑝) = ℎ𝑓0(𝑝)− ℎ𝑓 ′(𝑝) = ℎ𝑔(𝑝)(ℎ𝑓0(𝑝)− ℎ𝑓1(𝑝)).

Since 𝑔 is a 0𝜀-function we obtain that |ℎ𝑓𝛼(𝑝)− ℎ𝑓 ′(𝑝)| < 𝜀|ℎ𝑓0(𝑝)− ℎ𝑓1(𝑝)|.
Let now 𝛼 = 1. Then 𝑓𝛼 = 𝑓1, and (1) implies:

ℎ𝑓𝛼(𝑝)− ℎ𝑓 ′(𝑝) = (1− ℎ𝑔(𝑝))(ℎ𝑓1(𝑝)− ℎ𝑓0(𝑝)).

Since 𝑔 is a 1𝜀-function, we obtain that |ℎ𝑓𝛼(𝑝)− ℎ𝑓 ′(𝑝)| < 𝜀|ℎ𝑓1(𝑝)− ℎ𝑓0(𝑝)|.
Note that |ℎ𝑓1(𝑝)− ℎ𝑓0(𝑝)| 6 max{ℎ𝑓1(𝑝), ℎ𝑓0(𝑝)} 6 1, which in both cases

implies |ℎ𝑓𝛼(𝑝)− ℎ𝑓 ′(𝑝)| < 𝜀. The lemma is proved.
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Corollary [4]. Let 𝑓(𝑥1, . . . , 𝑥𝑛) be an arbitrary Boolean function, 𝑝 ∈ (0, 1),
𝜀 > 0 and constants𝛼1, . . . , 𝛼𝑚 ∈ {0, 1} be fixed andBoolean functions 𝑔1, . . . , 𝑔𝑚
be (𝛼𝑖)𝜀-functions at the point 𝑝. Let

𝑓𝛼 = 𝑓(𝛼1, . . . , 𝛼𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛), 𝑓 ′ = 𝑓(𝑔1, . . . , 𝑔𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛).

Then |ℎ𝑓𝛼(𝑝)− ℎ𝑓 ′(𝑝)| < 𝑚𝜀.

The above corollary allows to reduce the verification of every point’s
approximability to the approximability of just two points 0 and 1 for many
closed classes.

Lemma 2 [4]. Let𝒜 be a closed class of Boolean functions,𝒜 ̸⊆ 𝐿,𝐾,𝐷. For
a fixed 𝑝 ∈ (0, 1) the set𝑊𝒜(𝑝) coincides with [0, 1] iff 0, 1 ∈ 𝑊𝒜(𝑝).

Proof. The necessity of the condition is evident, let us show its sufficiency.
Let 𝑝 ∈ (0, 1) be fixed, we shall demonstrate that for every 𝜉 ∈ [0, 1] and 𝜀 > 0
there exists such a function 𝑓 ∈ 𝒜, that ℎ𝑓(𝑝) ∈ (𝜉 − 𝜀, 𝜉 + 𝜀).

Consider the class5 [𝒜 ∪ {0, 1}]. Since 𝒜 ̸⊆ 𝐿,𝐾,𝐷, the class [𝒜 ∪ {0, 1}]
is either 𝑀 or 𝑃2. In both cases the corollary of statement 2 implies there
exists such a function 𝑔 ∈ [𝒜 ∪ {0, 1}], that ℎ𝑔(𝑝) ∈ (𝜉 − 𝜀/2, 𝜉 + 𝜀/2).

Then there exists such a function 𝜙 ∈ 𝒜 that

𝑔(𝑥1, . . . , 𝑥𝑛) = 𝜙(𝛼1, . . . , 𝛼𝑚, 𝑥1, . . . , 𝑥𝑛),

where 𝛼1, . . . , 𝛼𝑚 ∈ {0, 1}. Since by lemma’s conditions 0, 1 ∈ 𝑊𝒜(𝑝) at the
given point 𝑝, the class 𝒜 contains functions 𝜙0 and 𝜙1, which are a 0𝜀/2𝑚-
and a 1𝜀/2𝑚-function respectively.

Consider the function

𝑓 = 𝜙(𝜙𝛼1
, . . . , 𝜙𝛼𝑚

, 𝑥1, . . . , 𝑥𝑛).

By virtue of lemma 1 we obtain that

|ℎ𝑓(𝑝)− ℎ𝑔(𝑝)| < 𝑚 · 𝜀

2𝑚
=

𝜀

2
.

Together with the condition ℎ𝑔(𝑝) ∈ (𝜉 − 𝜀/2, 𝜉 + 𝜀/2) this implies that
ℎ𝑓(𝑝) ∈ (𝜉 − 𝜀, 𝜉 + 𝜀), q.e.d.

The above lemma allows a complete description of𝑊𝑆(𝑝).

Statement 4.𝑊𝑆(𝑝) =

{︃
[0, 1] for 𝑝 ̸= 1/2,

{1/2} for 𝑝 = 1/2.

5The notation [ℬ] stands for closure under superposition of the function set ℬ.
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Proof. The case 𝑝 = 1/2 is described by statement 3. Since the class 𝑆 is
dual to itself, the property 3 allows to restrict our consideration to values
𝑝 ∈ (0, 1/2). Let us show that for such values of 𝑝 we have 0, 1 ∈ 𝑊𝑆(𝑝).

Let 𝑚(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2 ∨ 𝑥1𝑥3 ∨ 𝑥2𝑥3 be the majority function. Consider
a sequence of functions defined as follows: 𝑓0 = 𝑚, 𝑓𝑛+1 = 𝑚(𝑓𝑛, 𝑓𝑛, 𝑓𝑛).
Evidently, 𝑓𝑛 ∈ 𝑆.

Let 𝐹 (𝑝) = ℎ𝑚(𝑝) = 3𝑝2(1− 𝑝) + 𝑝3. One can easily verify that

ℎ𝑓𝑛+1
(𝑝) = 𝐹 (ℎ𝑓𝑛(𝑝)) = 𝐹 (𝐹 (. . . 𝐹⏟  ⏞  

𝑛+1 times

(𝑝))).

For 𝑝 ∈ (0, 1/2) we have 𝐹 (𝑝) < 𝑝, which implies that ℎ𝑓𝑛(𝑝) decreases
monotonously as 𝑛 increases. Since ℎ𝑓𝑛(𝑝) > 0, there exists a limit 𝜉 =
lim
𝑛→∞

ℎ𝑓𝑛(𝑝), for which 𝐹 (𝜉) = 𝜉 holds. It is easy to see that 𝜉 = 0, hence
ℎ𝑓𝑛(𝑝) → 0 as 𝑛 → ∞. Therefore within the sequence 𝑓𝑛 there exist 0𝜀-
functions for any 𝜀 > 0 given beforehand, hence 0 ∈ 𝑊𝑆(𝑝).

Besides that, 𝑓𝑛 ∈ 𝑆 and ℎ𝑓𝑛
(𝑝) → 1 as 𝑛 → ∞, which implies that

1 ∈ 𝑊𝑆(𝑝). Thus, 0, 1 ∈ 𝑊𝑆(𝑝) for 𝑝 ∈ (0, 1/2) and by virtue of lemma 2 we
obtain𝑊𝑆(𝑝) = [0, 1].

Unlike the class 𝑆, the class 𝑆01 does not contain negation, yet it still
allows the approximation of arbitrary Bernoulli distributions for 𝑝 ̸= 1/2.

Statement 5.𝑊𝑆01
(𝑝) =

{︃
[0, 1] for 𝑝 ̸= 1/2,

{1/2} for 𝑝 = 1/2.

Proof. As in the proof above, we restrict ourselves to the values 𝑝 ∈ (0, 1/2).
The functions 𝑓𝑛 from the proof of statement 4 belong to 𝑆01 as well, hence
0 ∈ 𝑊𝑆01

(𝑝).
Let us now show that 1 ∈ 𝑊𝑆01

(𝑝). Consider a sequence of Boolean
functions

𝑔𝑛(𝑥1, . . . , 𝑥𝑛) =

⎧⎪⎨⎪⎩
0, if 𝑥1 = . . . = 𝑥𝑛 = 0,

1, if 𝑥1 = . . . = 𝑥𝑛 = 1,

𝑥1, on all other tuples.

Note that 𝑔𝑛 ∈ 𝑆01, ℎ𝑔𝑛(𝑝) = 1− 𝑝− (1− 𝑝)𝑛 + 𝑝𝑛.
Let 𝜀 > 0 be fixed and let 𝑓 ∈ 𝑆01 be some 0𝜀/2-function for the given

𝑝 ∈ (0, 1/2). Since 0 ̸∈ 𝑆01, we have 0 < ℎ𝑓(𝑝) < 𝜀/2.
Consider the functions 𝜙𝑛 = 𝑔𝑛(𝑓, . . . , 𝑓). Then

ℎ𝜙𝑛
(𝑝) = ℎ𝑔𝑛(ℎ𝑓(𝑝)) = 1−ℎ𝑓(𝑝)−(1−ℎ𝑓(𝑝))

𝑛+(ℎ𝑓(𝑝))
𝑛 > 1−(ℎ𝑓(𝑝)+(1−ℎ𝑓(𝑝))

𝑛).
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Since ℎ𝑓(𝑝) > 0, we have 1 − ℎ𝑓(𝑝) < 1, and, hence, there exists such an 𝑁
that (1− ℎ𝑓(𝑝))

𝑁 < 𝜀/2. Therefore

ℎ𝜙𝑁
(𝑝) > 1−

(︁𝜀
2
+

𝜀

2

)︁
= 1− 𝜀.

Consequently, 𝜙𝑁 at the point 𝑝 is a 1𝜀-function. Then 1 ∈ 𝑊𝑆01
(𝑝) and by

virtue of lemma 2 we have𝑊𝑆01
(𝑝) = [0, 1].

Classes, contained within 𝐿,𝐾 or𝐷

The following statements are easily verified.

Statement 6 [4]. Let 𝒜 be one of the classes 𝐾,𝐾0, 𝐾1, 𝐾01. Then for any
𝑝 ∈ (0, 1) we have𝑊𝒜(𝑝) ⊆

⋃︀
𝑛
{𝑝𝑛} ∪ {0, 1}.

Statement 7 [4]. Let 𝒜 be one of the classes 𝐷,𝐷0, 𝐷1, 𝐷01. Then for any
𝑝 ∈ (0, 1) we have𝑊𝒜(𝑝) ⊆

⋃︀
𝑛
{1− (1− 𝑝)𝑛} ∪ {0, 1}.

The sets𝑊𝒜(𝑝) for classes of affine functions are also at most countable.

Statement 8 [4]. Let𝒜 be one of the classes 𝐿,𝐿0, 𝐿1, 𝐿01, 𝑆𝐿. Then for any
𝑝 ∈ (0, 1) we have𝑊𝒜(𝑝) ⊆

⋃︀
𝑛
{1
2(1± (1− 2𝑝)𝑛)} ∪ {1

2}.

Proof. Let 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ 𝐿. Without loss of generality we may suppose that
all variables of the function 𝑓 are essential. Then 𝑓 = 𝑥1 ⊕ 𝑥2 ⊕ . . .⊕ 𝑥𝑛 ⊕ 𝑐.
Hence, ℎ𝑓(𝑝) =

∑︀
odd 𝑖

(︀
𝑛
𝑖

)︀
𝑝𝑖(1 − 𝑝)𝑛−𝑖 for 𝑐 = 0 and ℎ𝑓(𝑝) =

∑︀
even 𝑖

(︀
𝑛
𝑖

)︀
𝑝𝑖(1 − 𝑝)𝑛−𝑖 for

𝑐 = 1.
Since

∑︀
𝑖

(︀
𝑛
𝑖

)︀
𝑝𝑖(1−𝑝)𝑛−𝑖 = 1 and

∑︀
𝑖

(︀
𝑛
𝑖

)︀
(−𝑝)𝑖(1−𝑝)𝑛−𝑖 = (1−2𝑝)𝑛, we obtain

that 2
∑︀
odd 𝑖

(︀
𝑛
𝑖

)︀
𝑝𝑖(1−𝑝)𝑛−𝑖 = 1− (1−2𝑝)𝑛 and 2

∑︀
even 𝑖

(︀
𝑛
𝑖

)︀
𝑝𝑖(1−𝑝)𝑛−𝑖 = 1+(1−2𝑝)𝑛,

which implies ℎ𝑓(𝑝) =
1
2(1± (1− 2𝑝)𝑛). One can easily see that the only limit

point of such values is 1/2. The statement is proved.

The following statement is nearly evident.

Statement 9. Let𝒜 be one of the classes 𝑈 , 𝑆𝑈 ,𝑈0,𝑈1,𝑀𝑈 ,𝐶,𝐶0,𝐶1,𝑈01.
Then for any 𝑝 ∈ (0, 1) we have𝑊𝒜(𝑝) ⊆ {0, 1, 𝑝, 1− 𝑝}.
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Classes with properties ⟨0𝜇⟩, ⟨1𝜇⟩, ⟨0∞⟩, ⟨1∞⟩
We first determine the structure of the sets𝑊𝒜(𝑝) for classes that possess

the properties ⟨0∞⟩, ⟨1∞⟩.

Statement10. Let𝒜 be one of the classes 𝐼∞,𝑀𝐼∞, 𝐼∞1 ,𝑀𝐼∞1 . Then𝑊𝒜(𝑝) =
[0, 𝑝].

Let 𝒜 be one of the classes 𝑂∞,𝑀𝑂∞,𝑂∞
0 ,𝑀𝑂∞

0 . Then𝑊𝒜(𝑝) = [𝑝, 1].

Proof. Since classes 𝑂∞,𝑀𝑂∞, 𝑂∞
0 ,𝑀𝑂∞

0 are dual to classes 𝐼∞,𝑀𝐼∞, 𝐼∞1 ,
𝑀𝐼∞1 respectively, it suffices to prove the statement for classes 𝐼∞,𝑀𝐼∞, 𝐼∞1 ,
𝑀𝐼∞1 .

Let 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ 𝐼∞. Then without loss of generality we may represent
𝑓 as 𝑥1𝑓 ′(𝑥2, . . . , 𝑥𝑛) and consequently ℎ𝑓(𝑝) = 𝑝ℎ𝑓 ′(𝑝) 6 𝑝. Hence,𝑊𝐼∞(𝑝) ⊆
[0, 𝑝].

By virtue of statement’s 2 corollary for any 𝜉 ∈ [0, 1], 𝜀 > 0 there exists
such a function 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ 𝑀01, that ℎ𝑓(𝑝) ∈ (𝜉 − 𝜀, 𝜉 + 𝜀). Consider 𝑔 =
𝑦𝑓(𝑥1, . . . , 𝑥𝑛), where 𝑦 is a variable different from 𝑥1, . . . , 𝑥𝑛. Then 𝑔 ∈ 𝑀𝐼∞1
and ℎ𝑔(𝑝) = 𝑝ℎ𝑓(𝑝). Since 𝜉 is arbitrary, we obtain that𝑊𝑀𝐼∞1 (𝑝) ⊇ [0, 𝑝].

Due to the relations between the considered classes and by virtue of
property 4 we obtain that

𝑊𝐼∞(𝑝) = 𝑊𝑀𝐼∞(𝑝) = 𝑊𝐼∞1 (𝑝) = 𝑊𝑀𝐼∞1 (𝑝) = [0, 𝑝].

The statement is proved.

To describe the sets of distributions approximable by classes with prop-
erties ⟨0𝜇⟩, ⟨1𝜇⟩, we need two auxiliary statements.

Lemma 3 (generalization of the Erdös—Ko—Rado theorem [7]). Let
𝑋 be a finite set of cardinality 𝑛. Let ℱ be a family of subsets of 𝑋 all having

cardinality 𝑖, such that for any 𝐹1, . . . , 𝐹𝑘 ∈ ℱ holds
𝑘⋂︀

𝑗=1

𝐹𝑗 ̸= ∅. If the inequality

𝑘𝑖/(𝑘 − 1) 6 𝑛 holds then |ℱ| 6
(︀
𝑛−1
𝑖−1

)︀
.

Corollary. Let a Boolean function 𝑓(𝑥1, . . . , 𝑥𝑛) possess the property ⟨1𝜇⟩
and let 𝜇𝑖/(𝜇 − 1) 6 𝑛. Then 𝐴𝑖 (the number of tuples of weight 𝑖, on which
𝑓 equals 1) does not exceed

(︀
𝑛−1
𝑖−1

)︀
.

Lemma 4. Let 𝑞 ∈ (0, 1) and 𝑘 < 𝑛𝑞. Then

𝑘∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑞𝑖(1− 𝑞)𝑛−𝑖 6

𝑛𝑞(1− 𝑞)

(𝑞𝑛− 𝑘)2
.
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Proof. Let𝑋 be a random variable having binomial distribution with param-
eters 𝑛 and 𝑞. Then

𝑘∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
𝑞𝑖(1−𝑞)𝑛−𝑖 = P{𝑋 6 𝑘} = P{E𝑋−𝑋 > E𝑋−𝑘} 6 P{|𝑋−E𝑋| > E𝑋−𝑘},

where E𝑋 is the mean of the random variable 𝑋. For the chosen 𝑋 its
mean equals E𝑋 = 𝑛𝑞, while its variance equals D𝑋 = 𝑛𝑞(1− 𝑞). Due to the
condition 𝑘 < 𝑛𝑞, we have E𝑋 − 𝑘 > 0. Using Chebyshev’s inequality [8], we
obtain

P{|𝑋 − E𝑋| > E𝑋 − 𝑘} 6
D𝑋

(E𝑋 − 𝑘)2
=

𝑛𝑞(1− 𝑞)

(𝑞𝑛− 𝑘)2
.

The lemma is proved.

Statement 11. Let 𝒜 be one of the classes 𝐼𝜇,𝑀𝐼𝜇, 𝐼𝜇1 ,𝑀𝐼𝜇1 . Then

𝑊𝒜(𝑝) =

{︃
[0, 𝑝], if 0 < 𝑝 6 1− 1

𝜇 ,

[0, 1], if 1− 1
𝜇 < 𝑝 < 1.

Let 𝒜 be one of the classes 𝑂𝜇,𝑀𝑂𝜇,𝑂𝜇
0 ,𝑀𝑂𝜇

0 . Then

𝑊𝒜(𝑝) =

{︃
[0, 1], if 0 < 𝑝 < 1

𝜇 ,

[𝑝, 1], if 1
𝜇 6 𝑝 < 1.

Proof. By virtue of property 3 it suffices to prove the statement for classes
𝐼𝜇,𝑀𝐼𝜇, 𝐼𝜇1 ,𝑀𝐼𝜇1 . Taking into account the property 4 and the statement 10,
we obtain that𝑊𝐼𝜇(𝑝),𝑊𝑀𝐼𝜇(𝑝),𝑊𝐼𝜇1

(𝑝),𝑊𝑀𝐼𝜇1
(𝑝) ⊇ [0, 𝑝].

Let us now show that for 𝑝 < 1 − 1
𝜇 we have 𝑊𝐼𝜇(𝑝) ⊆ [0, 𝑝]. Let

𝜉 = max𝑊𝐼𝜇(𝑝). Since the set 𝑊𝐼𝜇(𝑝) contains all its limit points 𝜉 is well-
defined. If 𝜉 = 1, then by virtue of lemma 2 we have 𝑊𝐼𝜇(𝑝) = [0, 1]. In all
other cases, by virtue of property 5 we obtain

[0, 𝜉] ⊇ 𝑊𝐼𝜇(𝑝) ⊇ 𝑊𝐼𝜇(𝜉) ⊇ [0, 𝜉].

Hence𝑊𝐼𝜇(𝑝) = [0, 𝜉]. Let 𝑓(𝑥1, . . . , 𝑥𝑛) ∈ 𝐼𝜇. Then ℎ𝑓(𝑝) =
𝑛∑︀

𝑖=0

𝐴𝑖𝑝
𝑖(1− 𝑝)𝑛−𝑖.

According to lemma 3 corollary we have 𝐴𝑖 6
(︀
𝑛−1
𝑖−1

)︀
for 𝑖 6 𝑛(1 − 1

𝜇). For all
other values of 𝑖 we use the trivial upper bound 𝐴𝑖 6

(︀
𝑛
𝑖

)︀
. Let 𝑘 = ⌊𝑛(1− 1

𝜇)⌋.
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Then

ℎ𝑓(𝑝) 6
𝑘∑︁

𝑖=0

(︂
𝑛− 1

𝑖− 1

)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖 +

𝑛∑︁
𝑖=𝑘+1

(︂
𝑛

𝑖

)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖 =

=
𝑘∑︁

𝑖=1

(︂
𝑛− 1

𝑖− 1

)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖 +

𝑛∑︁
𝑖=𝑘+1

(︂(︂
𝑛− 1

𝑖

)︂
+

(︂
𝑛− 1

𝑖− 1

)︂)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖 =

=
𝑛∑︁

𝑖=1

(︂
𝑛− 1

𝑖− 1

)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖 +

𝑛∑︁
𝑖=𝑘+1

(︂
𝑛− 1

𝑖

)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖 =

=
𝑛−1∑︁
𝑖=0

(︂
𝑛− 1

𝑖

)︂
𝑝𝑖+1(1− 𝑝)𝑛−1−𝑖 +

𝑛−𝑘−1∑︁
𝑗=0

(︂
𝑛− 1

𝑗 − 1

)︂
(1− 𝑝)𝑗𝑝𝑛−𝑗 =

= 𝑝+ (1− 𝑝)
𝑛−𝑘−2∑︁
𝑗=0

(︂
𝑛− 1

𝑗

)︂
(1− 𝑝)𝑗𝑝𝑛−1−𝑗.

We now apply the inequality from lemma 4 to the resulting sum above,
letting 𝑞 = 1 − 𝑝. Let us verify the inequality (𝑛 − 1)(1 − 𝑝) > 𝑛 − 𝑘 − 2.
Indeed:

(𝑛− 1)(1− 𝑝)− (𝑛− 𝑘− 2) = 𝑛− 1− 𝑝(𝑛− 1)− 𝑛+ 𝑘 + 2 = 𝑘 + 1− (𝑛− 1)𝑝.

By choice of 𝑘 we have 𝑘 > 𝑛
(︁
1− 1

𝜇

)︁
− 1, and besides 𝑝 < 1 − 1

𝜇, which
implies

𝑘 + 1− (𝑛− 1)𝑝 > 𝑛

(︂
1− 1

𝜇

)︂
− (𝑛− 1)

(︂
1− 1

𝜇

)︂
= 1− 1

𝜇
> 0.

Thus, by virtue of the inequality from lemma 4 we have

ℎ𝑓(𝑝) 6 𝑝+ (1− 𝑝)
(𝑛− 1)𝑝(1− 𝑝)

(𝑘 + 1− (𝑛− 1)𝑝)2
.

One can easily verify that considering 𝑘 as a function of 𝑛, 𝑘(𝑛), for 𝑝 < 1− 1
𝜇

we have
lim
𝑛→∞

(𝑛− 1)𝑝(1− 𝑝)

(𝑘(𝑛) + 1− (𝑛− 1)𝑝)2
= 0.

Otherwise saying, the characteristic polynomials of functions from 𝐼𝜇 with
sufficiently many variables cannot considerably exceed the value 𝑝 at the
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point 𝑝. The obtained estimate easily implies that for every 𝑁 there exists
only a finite number of such functions 𝑓 ∈ 𝐼𝜇, that

ℎ𝑓(𝑝) > 𝑝+ (1− 𝑝)
(𝑁 − 1)𝑝(1− 𝑝)

(𝑘(𝑁) + 1− (𝑁 − 1)𝑝)2
.

Yet, should there be just one such function 𝑓 ′, as proved earlier, the entire
segment [0, ℎ𝑓 ′(𝑝)] would be contained in 𝑊𝐼𝜇(𝑝), hence there should be
infinitely many such functions. This contradiction shows that in fact for all
𝑓 ∈ 𝐼𝜇 and 𝑝 < 1− 1

𝜇 the inequality ℎ𝑓(𝑝) 6 𝑝 holds.
Let now 𝑝 = 1 − 1

𝜇. By the reasoning above for any function 𝑓 ∈ 𝐼𝜇 and
any 𝑝′ < 1− 1

𝜇 we have ℎ𝑓(𝑝
′) 6 𝑝′ < 1− 1

𝜇. By continuity of ℎ𝑓(𝑝) we obtain

that ℎ𝑓

(︁
1− 1

𝜇

)︁
6 1− 1

𝜇.
Thus, for 𝑝 6 1 − 1

𝜇 the equality 𝑊𝐼𝜇(𝑝) = [0, 𝑝] holds and by virtue of
property 4 and statement 10 the same is true for classes 𝐼𝜇1 ,𝑀𝐼𝜇,𝑀𝐼𝜇1 .

Let us now consider the values 𝑝 > 1 − 1
𝜇. We define a sequence of

functions 𝑓𝑛 having 𝑛𝜇 + 1 variables the following way: on tuples of weight
𝑛𝜇 − 𝑛 + 1 or more let 𝑓𝑛 equal 1, on all other tuples let 𝑓𝑛 equal 0 (such
functions have been considered in [9] as well). Then any 𝜇 tuples on which
the function 𝑓𝑛 equals 1 have at most 𝜇𝑛 zero components, and therefore all
share a component that equals 1. Thus 𝑓𝑛 possesses the property ⟨1𝜇⟩. Also,
one can easily see that 𝑓𝑛 are monotone and 1-preserving. Hence, 𝑓𝑛 ∈ 𝑀𝐼𝜇1 .

One can easily verify that

ℎ𝑓𝑛(𝑝) =

𝑛𝜇+1∑︁
𝑖=𝑛𝜇−𝑛+1

(︂
𝑛𝜇+ 1

𝑖

)︂
𝑝𝑖(1− 𝑝)𝑛𝜇+1−𝑖 = 1−

𝑛𝜇−𝑛∑︁
𝑖=0

(︂
𝑛𝜇+ 1

𝑖

)︂
𝑝𝑖(1− 𝑝)𝑛𝜇+1−𝑖.

Let us now apply the inequality from lemma 4 to the obtained sum, letting
𝑞 = 𝑝. We note that due to the condition 𝑝 > 1− 1

𝜇 we have (𝑛𝜇+1)𝑝− (𝑛𝜇−
𝑛) > (𝑛𝜇+ 1)(1− 1

𝜇)− 𝑛𝜇(1− 1
𝜇) = 1− 1

𝜇 > 0. Consequently,

ℎ𝑓𝑛(𝑝) > 1− (𝑛𝜇+ 1)𝑝(1− 𝑝)

((𝑛𝜇+ 1)𝑝− 𝑛(𝜇− 1))2
.

Thus we see that ℎ𝑓𝑛(𝑝) → 1 as 𝑛 → ∞, and consequently, by virtue of
lemma 2 we have𝑊𝑀𝐼𝜇1

(𝑝) = [0, 1]. Due to the property 4 the same is true for
classes 𝐼𝜇, 𝐼𝜇1 ,𝑀𝐼𝜇. The statement is proved.
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Class 𝑆𝑀

Statement 12.𝑊𝑆𝑀(𝑝) =

⎧⎪⎨⎪⎩
[0, 𝑝], for 0 < 𝑝 < 1/2,

1/2, for 𝑝 = 1/2,

[𝑝, 1], for 1/2 < 𝑝 < 1.

Proof. The inclusion of 𝑊𝑆𝑀(𝑝) into the set described in the statement’s
conditions follows straight from the inclusion 𝑆𝑀 ⊆ 𝑀𝐼21 ∩𝑀𝑂2

0. In order
to prove the statement we have to establish that for every 𝑝 ∈ (0, 1) all the
points of the before mentioned set can indeed be approximated.

Since the class 𝑆𝑀 is dual to itself, it suffices to prove the statement only
for 0 < 𝑝 < 1/2, i. e. prove that for every 𝑝 ∈ (0, 1/2), any 𝜉 ∈ (0, 𝑝) and any
𝜀 > 0 there exists such a function 𝑓 ∈ 𝑆𝑀 , that ℎ𝑓(𝑝) ∈ (𝜉 − 𝜀, 𝜉 + 𝜀).

Let𝑚 be the majority function, consider the sequence of functions:

𝑓𝑛(𝑥0, 𝑥1, . . . , 𝑥𝑛) = 𝑚(𝑥0, 𝑥1,𝑚(𝑥0, 𝑥2,𝑚(𝑥0, 𝑥3,𝑚(. . . ,𝑚(𝑥0, 𝑥𝑛−1, 𝑥𝑛) . . .)))).

One easily sees that

ℎ𝑓𝑛(𝑝) = 𝑝(1− (1− 𝑝)𝑛) + (1− 𝑝)𝑝𝑛 = 𝑝− (𝑝(1− 𝑝)𝑛 − (1− 𝑝)𝑝𝑛).

Consider 𝜒𝑛(𝑝) = 𝑝 − ℎ𝑓𝑛(𝑝) = 𝑝(1 − 𝑝)𝑛 − (1 − 𝑝)𝑝𝑛. For all 𝑝 ∈ (0, 1/2) we
have 𝜒𝑛(𝑝) > 0 and 𝜒𝑛(𝑝) → 0 as 𝑛 → ∞. Let us show that 𝜒𝑛(𝑝) converges to
zero uniformly on the segment [0, 1/2].

Since 𝜒𝑛(0) = 𝜒𝑛(1/2) = 0 and 𝜒𝑛(𝑝) > 0, the function 𝜒𝑛(𝑝) has a global
maximum on the segment [0, 1/2] at some point 𝑝0, where the equality
𝜒′
𝑛(𝑝0) = 0 holds. Differentiating 𝜒𝑛(𝑝) with variable 𝑝 we obtain that the
condition 𝜒′

𝑛(𝑝0) = 0 is equivalent to

(1− 𝑝0)
𝑛 + 𝑝𝑛0 = 𝑛(𝑝0(1− 𝑝0)

𝑛−1 + 𝑝𝑛−1
0 (1− 𝑝0)),

which implies (︂
1− 𝑝0
𝑝0

)︂𝑛−1

=
1

𝑛

(︂(︂
1− 𝑝0
𝑝0

)︂𝑛

+ 1

)︂
− 1− 𝑝0

𝑝0
. (2)

Since the function 𝜒𝑛(𝑝) has the global maximum on the segment [0, 1/2] at
the point 𝑝0 and due to the relation (2), we obtain

𝜒𝑛(𝑝) 6 𝜒𝑛(𝑝0) = 𝑝0(1−𝑝0)
𝑛−𝑝𝑛0(1−𝑝0) = 𝑝𝑛0(1−𝑝0)

(︃(︂
1− 𝑝0
𝑝0

)︂𝑛−1

− 1

)︃
=

= 𝑝𝑛0(1− 𝑝0)

(︂
1

𝑛

(︂
1− 𝑝0
𝑝0

)︂𝑛

+
1

𝑛
− 1− 𝑝0

𝑝0
− 1

)︂
6

2

𝑛
.
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It follows easily that 𝜒𝑛(𝑝) converges uniformly to zero on the entire segment
[0, 1/2].

Let 𝜀 > 0 be fixed. Then there exists such a number 𝑁 that 𝜒𝑁(𝑝) < 𝜀
for all 𝑝 ∈ [0, 1/2]. Let us construct a sequence of Boolean functions 𝑔𝑖 the
following way. Let 𝑔0 = 𝑓𝑁 , 𝑔𝑖+1 = 𝑓𝑁(𝑔𝑖, . . . , 𝑔𝑖). Then one can easily verify
that

ℎ𝑔𝑖(𝑝) = ℎ𝑓𝑁 (ℎ𝑓𝑁 (. . . ℎ𝑓𝑁⏟  ⏞  
𝑖 times

(𝑝))). (3)

By choice of𝑁 we have that ℎ𝑔𝑖(𝑝)−ℎ𝑔𝑖+1
(𝑝) < 𝜀, while ℎ𝑔𝑖(𝑝) decrease as 𝑖

grows since ℎ𝑓𝑁 (𝑝) < 𝑝, and, due to equation (3) and the equality ℎ𝑓𝑁 (0) = 0,
similarly to the proof of statement 4 we obtain that lim

𝑖→∞
ℎ𝑔𝑖(𝑝) = 0. This

implies that for any point 𝜉 ∈ [0, 𝑝] there exists such a number 𝑖 that
ℎ𝑔𝑖(𝑝) ∈ (𝜉 − 𝜀, 𝜉 + 𝜀). The statement is proved.

Approximable sets

Joining the statements 1–12, we obtain a grouping of Boolean function
closed classes according to the type of the sets of distributions, approximable
by functions from these classes. Fig. 2 represents Post’s lattice with different
types of classes given in different colors. The colors and the characteristics
of the approximable sets are outlined in the table below.

The classification thus obtained allows, by the way, to formulate neces-
sary conditions of distribution approximability in the case of distribution
transformations by read-once Boolean formulas as well.

Color Description Approximable sets

Red

Classes allowing the
approximation of ar-
bitrary distributions
for all 𝑝 ∈ (0, 1), with
possible exception of
𝑝 = 1/2

𝑃2, 𝑇0, 𝑇1, 𝑇01,𝑀0,𝑀1,𝑀01 𝑆, 𝑆01
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Color Description Approximable sets

Green

Classes allowing the
approximation of ar-
bitrary distributions
for some 𝑝 ∈ (0, 1) and
having a continuum
set of approximable
distributions for other
𝑝

𝐼𝜇, 𝐼𝜇1 ,𝑀𝐼𝜇,𝑀𝐼𝜇1 𝑂𝜇, 𝑂𝜇
0 ,𝑀𝑂𝜇,𝑀𝑂𝜇

0
𝜇 = 2, 3, . . . .

Blue

Classes having a con-
tinuum set of approx-
imable distributions
for all 𝑝 ∈ (0, 1), yet
not allowing the ap-
proximation of arbi-
trary distributions for
any 𝑝

𝐼∞, 𝐼∞1 ,𝑀𝐼∞,𝑀𝐼∞1 𝑂∞, 𝑂∞
0 ,𝑀𝑂∞,𝑀𝑂∞

0

𝑆𝑀

Orange

Classes having count-
able sets of approx-
imable distributions
for all 𝑝 ∈ (0, 1)

𝐾,𝐾1 𝐾0, 𝐾01 𝐷,𝐷0

𝐷1, 𝐷01 𝐿 𝐿0

𝐿1 𝑆𝐿 𝐿01
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Color Description Approximable sets

Purple

Classes having finite
sets of approximable
distributions for all
𝑝 ∈ (0, 1)

𝑈 𝑆𝑈 𝑀𝑈

𝑈0 𝑈1 𝐶

𝐶0 𝐶1 𝑈01

Figure 2

The described classification remains essentially unchangedwhen passing
to the case of functions from closed classes applied to independent random
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variables whose distributions belong to some finite set of initial distributions
(i. e. need not be identical).

One can easily check that for all classes containing𝑀𝐼∞1 or𝑀𝑂∞
0 the set

of approximable distributions for a given finite set of initial distributions is
defined by just one element among those distributions — the one producing
the largest set of approximable distributions.

For the class 𝑆𝑀 the presence of two distributions, having probability
of 1 greater and less then 1/2 respectively in the set of initial distributions,
allows the approximation of an arbitrary distribution. Should this not be
the case, just as described above the approximable distributions are then
defined by just one element from the set of initial distributions.

The classes with an approximable set having no more than one limit
point, considering a finite set of initial distributions does not increase the
number of limit points.

The author expresses his gratitude to O.M.Kasim-Zade for the attention
to the present work and to the participants of the Keldysh Institute of
Applied Mathematics theoretical cybernetics sector seminar for the creative
atmosphere that helped writing this paper.
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