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A new hybrid scheme for computing discontinuous solutions of hyperbolic

equations

In this work, the hybrid scheme is analyzed. It was introduced earlier as a
technique to monotonize bicompact schemes for hyperbolic equations and systems.
Its imperfections are discussed. They include the disregard of the various behavior
of solution components in the general case, monotonizing nature dependence on
a system of units and on a scale of initial and boundary conditions; the lack of
a priori estimations of the hybrid scheme tuned parameter. To eliminate these
imperfections a new hybrid scheme is constructed. It involves the component-
wise monotonization and the solution normalization. The correct normalization
is obtained. The general algorithm for a priori estimation of the hybrid scheme
parameter is proposed. Numerical examples for the hybrid bicompact scheme
with the first-order explicit upwind scheme monotonizer are considered.
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Introduction

Many models in physics and technology are based on hyperbolic equations
and systems of equations. Numerical methods are used to calculate their solutions
in the majority of practically interesting cases since analytical methods are either
limited or lacking. The problem of constructing reliable high-order numerical
methods for hyperbolic equations remains actual nowadays.

It is common for solutions of hyperbolic equations to have strong discontinu-
ities. High-order schemes, however, generate spurious, non-physical oscillations
(nonmonotonicities) near discontinuities. Such behavior is called the Gibbs phe-
nomenon [1] and is explained by the well-known Godunov theorem [2]. At the
same time, a numerical method should provide an adequate solution which is free
of any non-physical features. Therefore, there is a need of a monotonization (e. g.
limiting, filtering, weighting . . . ) of high-order schemes with no substantial loss
in their high accuracy.

There exists a large variety of different monotonization techniques at the
present time. Let us mention the most popular and (or) the most novel ones.

In [3, 4] special numerical flux limiters are introduced in order to suppress
oscillations near discontinuities. Numerical filters are used in [5–8] for monotoniza-
tion. The classical idea of artificial viscosity [9] is developed in [10–13]. One often
employs a scheme, in which compact Hermit interpolations on candidate stencils
are used to compute fluxes at cell faces, and then either ENO algorithm [14] is
used to choose a proper stencil or WENO algorithm [15–20] is used to compute
weighting coefficients of compact interpolations on candidate stencils.

Recently, hybrid schemes were proposed in [21–25]. They develop the ideas of
R. P. Fedorenko [26]. The transition operator of a hybrid scheme is constructed as
a nonlinear convex combination of transition operators of a monotone first-order
scheme and a non-monotone high-order scheme. The key difference between hy-
brid schemes transition operator and other similar operators is that it is totally
local: the solution of a hybrid scheme depends on values of partner schemes so-
lutions only at the current spatiotemporal point. The technique for constructing
hybrid schemes [21, 27] was successfully used to monotonize a non-central mul-
tioperator scheme of ninth-order accuracy in space and fourth-order accuracy in
time [28].

In this work, a new hybrid scheme is proposed which eliminates imperfections
of hybrid schemes [21–25] The work is organized as follows. In Section 1 the
hybrid scheme from [24] is analyzed (it is similar to those in [21–23, 25]) and its
imperfections are revealed. In Section 2 the new hybrid scheme is proposed. This
new hybrid scheme eliminates the imperfections from Section 1. In Section 3
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the correct normalization for the new hybrid scheme is found. In addition, a
numerical example is considered, where the correct normalization is compared
with normalizations from [25]. In Section 4 the problem of a priori estimation of
the hybrid scheme tuned parameter C1 is discussed.

1. The original hybrid scheme and its imperfections

Let us analyze the original hybrid scheme [24] and reveal some of its imper-
fections connected with the construction of the weighting coefficient. We shall
also call this scheme the old hybrid scheme. First, let us describe the technique
for constructing this scheme in the most general case.

Consider the following system of multidimensional quasilinear hyperbolic
equations:

∂tQ +
d∑

k=1

∂xkFk(Q) = S(x, t,Q), x = (x1, . . . , xd) ∈ D, 0 < t 6 T. (1)

Here Q = (Q1, . . . ,Qm) = Q(x, t) ∈ Rm is the unknown vector of conservative
variables, Fk are flux vectors, S is the vector of source terms, D ⊂ Rd is the
computational domain. System (1) is supposed to be complemented with some
conditions that include an initial condition at t = 0 and a boundary condition at
the boundary ∂D of the domain D. Assume that a unique solution of the mixed
problem described above exists in {x ∈ D, 0 6 t 6 T} where D = D ∪ ∂D.

Suppose the mixed problem for system (1) is solved numerically using two
schemes, both one-step in time: a monotone first-order scheme A and a non-
monotone high-order scheme B. Also, the spatial grid Ω = {xj}Nx

j=0 is introduced
in the closed domain D and the time interval [0, T ] is split (maybe non-uniformly)
by levels tn (n = 0, . . . , Nt), t0 = 0, tNt = T . The time step is denoted by τ =
τn+1 = tn+1 − tn. In the text below the upper index n+ 1 is omitted for brevity.

Assume the solution Qn at the time level tn is known. Let us use it as an
initial value for schemes A and B and compute independently their solutionsQn+1

A

and Qn+1
B respectively at the level tn+1. The resulting solution at the level tn+1

at each node xj of the grid Ω is computed then using the formula

Qn+1(xj) = α(xj)Q
n+1
A (xj) + (1− α(xj))Q

n+1
B (xj) (2)

where the weighting coefficient α at the node xj is given by

α(xj) = f(w(xj)), w(xj) =
C1‖Qn+1

A (xj)−Qn+1
B (xj)‖∞

τ
. (3)
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The norm in formula (3) is taken not along space, but in components of the
difference Qn+1

A − Qn+1
B at the node xj. Therefore, the weighting coefficient α

may generally take on different values at different nodes of the grid Ω. The
function f(w) is supposed to be known; it is determined on the whole semi-
axis w > 0 and must meet the following requirements:
1) 0 6 f(w) 6 1 for all w > 0 (combination (2) is convex);
2) f(0) = 0, f(+∞) = 1, f(w) is monotone nondecreasing for w > 0;
3) f(w) = const ·wq + o(wq) when w → 0 where q > p − 1 and p is order of

accuracy of scheme B.
For example, one may choose the function f(w) as the

f(w) =
wq

1 + wq
, q > p− 1. (4)

Function (4) belongs to C∞[0,+∞). The quantity C1 = const > 0 is the single
tuned parameter of the hybrid scheme. Parameter C1 depends on the problem
solved (i. e. on actual expressions for Fk and S, on initial and boundary condi-
tions) and on the choice of schemes A, B.

Let us explain the meaning of formula (2). Where the exact solutionQE(x, t)
of the mixed problem for system (1) is smooth, the difference between A and B
solutions is small, α ≈ 0 and Qn+1 ≈ Qn+1

B . Where QE(x, t) changes abruptly
or shockwise, the scheme B generates spurious, non-physical oscillations (the
Gibbs phenomenon), the difference between A and B solutions is large (since the
scheme A is monotone), α ≈ 1 and Qn+1 ≈ Qn+1

A .
Note that if the function f is chosen as function (4), the scheme B shall still

be monotonized even in smoothness regions of the exact solution since f(w) = 0
only at w = 0. However, this fact does not result into an accuracy reduction of
the hybrid scheme in such regions. To show this, let us rewrite formula (2) in the
form

Qn+1(xj) =

= Qn+1
B (xj) + α(xj)

(
Qn+1
A (xj)−Qn+1

B (xj)
)

= Qn+1
B (xj) + Zn+1(xj)

where Zn+1(xj) = α(xj)
(
Qn+1
A (xj)−Qn+1

B (xj)
)
. Because of the exact solution

smoothness, expression (3) for the weighting coefficient and the third property of
the function f we have Zn+1 ∼ τ q · τ 2 6 τ p+1, i. e. the addition to the solution
Qn+1
B of scheme B is negligibly small in comparison to the B’s approximation

error. Therefore, if the function f is chosen as function (4), the accuracy of the
hybrid scheme shall not reduce to the accuracy of the scheme A in smoothness
regions of the exact solution, which was to be shown.

It is important to note that hybrid scheme formula (2) includes only quan-
tities taken at the current spatiotemporal point (xj, t

n+1). From this viewpoint
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formula (2) is totally local. It does not involve neighboring nodes neither in x,
nor in t. That is why the construction of hybrid scheme is versatile in sense of
D geometry or the grid Ω. The grid can be either structured or unstructured. It
is easy to see that the form of equations in system (1) also does not affect the
notation of hybrid scheme (2): left-hand sides of equations in system (1) can be
written in a non-conservative form; system coefficients can depend on x and t and
so on. Neither a choice of schemes A and B, nor their stencils have any effect on
the hybrid scheme notation. These properties make the hybrid scheme to stand
out among other monotonization methods mentioned in the Introduction.

Nevertheless, all the factors listed in the paragraph above determine the
choice of the parameter C1; the particular function f depends on the B’s order
of accuracy. The constant C1 is recommended to be found by the method of
successive approximations during preliminary calculations on coarse grids.

Now let us discuss the construction of the weighting coefficient α (see (3)).
It has a number of imperfections.

The first imperfection: all components QAi,QBi (i = 1, . . . ,m) of vec-
tors QA,QB at the point (xj, t

n+1) are weighted with the same weight α(xj).
For instance, assume that in a neighborhood of the point xj some components
change smoothly, while others change sharply. Then, even the smoothly changing
components are monotonized although there is no need for them to be mono-
tonized. This can be seen from formula (3): the norm ‖Qn+1

A (xj)−Qn+1
B (xj)‖∞

is reached on a “discontinuous” component, the weight α(xj) is not close to 0,
and the “continuous” components are monotonized substantially and undesirable.
For example, the norm ‖.‖∞ may be replaced with norms ‖.‖1, ‖.‖2, . . ., but that
shall not change the situation in the main. A suitable initial condition can always
be chosen in a way that the number i0 exists, for which

|QAi0(xj, t
n+1)−QBi0(xj, t

n+1)| �
� (m− 1)|QAi(xj, t

n+1)−QBi(xj, t
n+1)|, i 6= i0

(the large “discontinuity” of the component i0) and norms ‖.‖1, ‖.‖2, . . . shall be
reduced to the norm ‖.‖∞.

One may face the first imperfection in the following practical case: system (1)
is the Euler gas dynamics equations, their solution is a large contact discontinu-
ity, and the primitive variables Ui (density, velocity, pressure) are used instead
of conservative variables Qi (density, mass flux, energy per unit volume). In a
neighborhood of the contact the large jump in density shall result into the mono-
tonization of pressure at the same place though pressure is changing continuously.

The second imperfection: the difference Qn+1
A (xj)−Qn+1

B (xj) enters the
formula for the argument w(xj) in (3) without any kind of normalization. Though
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the presence of the component norm means indirectly that system (1) has been
already nondimensionalized, i. e. [Qi] = 1 (i = 1, . . . ,m)1, any other choice of
dimensional scales or a variation of the initial/boundary conditions range in non-
dimensional units shall make all α weights at all nodes xj ∈ Ω to change. It
shall be so if the constant C1 remains unvaried. Therefore, one needs to either
re-calculate C1 or accept a new monotonization behavior. The first seems to be
inconvenient while the last seems to be unreasonable.

The presence of τ in formula (3) is questionable. The statement that the
parameter C1 can be estimated during preliminary calculations on coarse grids is
correct until the relation r = τ/h changes weakly when the grid is refined. Here h
is the typical linear scale of the spatial grid Ω. (If the grid Ω is cartesian, then
h = max(h1, . . . , hd) where h1, . . . , hd are Ox1, . . . , Oxd axises steps respectively.)

The third imperfection: the necessity of selecting the constant C1 for
every single problem. One would like to have some sort of an “optimal” value
of the parameter C1 found in not even the general case, but in some special
(toy) cases (e. g. the simple one-dimensional linear advection equation, the one-
dimensional gas dynamics). Of course, it shall not be strictly applicable in the
general case. This value shall be enough within engineer accuracy or shall serve
as a good initial approximation for the step-by-step choice of C1 in a particular
problem.

Thus, our purpose shall be an elimination of the imperfections listed above.

2. The new hybrid scheme

Let us construct a new scheme in a way which eliminates the imperfections of
the old hybrid scheme. The first and the second imperfections are eliminated in a
quite simple way which is already contained in their description. To avoid the first
imperfection the vector weighting should be replaced with the component-wise
weighting. The second imperfection is solved by introducing a proper normaliza-
tion and by removing τ from the formula for the argument w.

Taking these notes into account, we rewrite the old hybrid scheme (see (2)–
(3)): at each node xj of the grid Ω for all i = 1, . . . ,m

Qn+1
i (xj) = αi(xj)Q

n+1
Ai (xj) + (1− αi(xj))Qn+1

Bi (xj) (5)

where the weighting coefficient

αi(xj) = f(wi(xj)), wi(xj) =
C1|Qn+1

Ai (xj)−Qn+1
Bi (xj)|

N (Qn+1
Ai )

. (6)

1Hereafter square brackets mean the dimension of a quantity.
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Here N (.) is the functional which determines the normalization as it was called
above. It assigns a positive number to each scalar function determined on the
grid Ω. Let us call hybrid scheme (5)–(6) as the new hybrid scheme.

It is easy to see that both the old and the new hybrid schemes have the
same working principle. When the function f is chosen as (4), the accuracy of
the new hybrid scheme does not reduce to the A’s accuracy in smoothness areas
of the exact solution, as it is shown in Section 1. The new hybrid scheme inherits
all positive properties of the old one including locality. The correction done in
formulas (5)–(6) is not qualitative but quantitative. This modification makes
the monotonization more accurate since only “discontinuous” components of the
numerical solution are monotonized.

In order to eliminate the second imperfection completely, one should find the
normalization N (.) which always transforms Qn+1

Ai ’s and Qn+1
Bi ’s value ranges (ap-

proximately for Qn+1
Bi because of its nonmonotonicities) into the standard closed

interval [0, 1].

3. The correct normalization

Let us solve the problem of choosing the normalization N (.). This problem
was formulated at the end of the previous Section.

Assume ξ, η are some quantities that vary in the range [a, b]. Then quantities

ξ′ =
ξ − a
b− a, η′ =

η − a
b− a

vary in the range [0, 1]. Consider their difference ξ′ − η′:

ξ′ − η′ = ξ − η
b− a ∈ [−1, 1],

and its absolute value
|ξ′ − η′| = |ξ − η|

b− a ∈ [0, 1].

Therefore we obtain the desired normalization

Nspan(Qn+1
Ai ) = max

Ω
Qn+1
Ai −min

Ω
Qn+1
Ai . (7)

Note Nspan(const) = 0. It is clear that the functional Nspan(.) is a semi-norm in
the linear space of mesh functions determined on Ω.

Earlier the global and the local normalizations were proposed in [25]. The
global normalization is

Nglobal(Q
n+1
Ai ) = ‖Qn+1

Ai ‖∞ = max
Ω
|Qn+1

Ai | (8)
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and the local is
Nlocal,xj(Q

n+1
Ai ) = |Qn+1

Ai (xj)|. (9)

The local normalization (9) differs from the one considered in [25]. It is written
in a form which allows to use this normalization for the arbitrary grid Ω and for
arbitrary geometries of the domain D. This difference does not change the nature
of the normalization. Note that functional Nlocal,xj(.) values depends not only on
the mesh function but also on the grid node where this functional is computed.

Let us write the expressions for the weighting coefficient argument (6) that
correspond to normalizations (7), (8), (9). If N = Nspan,

wi(xj) =
C1|Qn+1

Ai (xj)−Qn+1
Bi (xj)|

max
Ω

Qn+1
Ai −min

Ω
Qn+1
Ai + εm

. (10)

If N = Nglobal,

wi(xj) =
C1|Qn+1

Ai (xj)−Qn+1
Bi (xj)|

max
Ω
|Qn+1

Ai |+ εm
. (11)

If N = Nlocal,xj ,

wi(xj) =
C1|Qn+1

Ai (xj)−Qn+1
Bi (xj)|

|Qn+1
Ai (xj)|+ εm

. (12)

The quantity εm is a small positive number which prevents from dividing by zero
(e. g. a “machine precision”).

Unlike normalization (7), normalizations (8) and (9) do not avoid troubles.
They both are “vulnerable” to any shift of the Qn+1

Ai ’s value range. Let us demon-
strate this on the following example. Consider two variants of initial/boundary
conditions for system (1). Assume the index i and the moment of time t0 are
fixed. Suppose there is a discontinuity of the component i in some part of D
at t = t0. Let QEi take on values q1, q2 at sides of the discontinuity for the first
variant and values q1 + ∆q, q2 + ∆q for the second variant. The addition ∆q > 0
and ∆q � |q1 − q2|. Let ‖QEi|t=t0‖∞ ∼ max(|q1|, |q2|). Turn now to the time
level tn+1 = t0. Then weighting coefficient distributions across the discontinu-
ity are different for these two variants of conditions. In the second variant these
weights are smaller since arguments wi(xj) are smaller because of the addition ∆q
in the denominator and since properties of the function f . Therefore, nonmono-
tonicities in the second variant are greater in comparison with those in the first
variant. Thus, a simple translation of value range leads to a change in mono-
tonization behavior. It is absolutely unreasonable since the scale |q1 − q2| of the
discontinuity is the same for both variants. Let us add that if q1 ≈ 0 or q2 ≈ 0
then local normalization shall produce huge numerical dissipation near the dis-
continuity front.
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Consider the simplest special case of system (1) — the one-dimensional ho-
mogeneous scalar linear advection equation

∂tu+ a ∂xu = 0, a = const > 0, x > 0, 0 < t 6 T, (13)

(d = 1, x = x1 = x, D = (0,+∞), Q = u, F1 = au, S = 0),

where u = u(x, t) is the unknown function. Also, we examine 4 variants of initial
and boundary conditions for equation (13). Let us call them tests.

Test 1:

u|t=0 =

{
1, x < xs,

0, x > xs,
x > 0; u|x=0 = 1, 0 < t 6 T. (14)

Test 2:

u|t=0 =

{
106, x < xs,

0, x > xs,
x > 0; u|x=0 = 106, 0 < t 6 T. (15)

Test 3:

u|t=0 =

{
1001, x < xs,

1000, x > xs,
x > 0; u|x=0 = 1001, 0 < t 6 T. (16)

Test 4:

u|t=0 =

{
2 · 106, x < xs,

106, x > xs,
x > 0; u|x=0 = 2 · 106, 0 < t 6 T. (17)

Denote by u1,2,3,4(x, t) solutions of equation (13) complemented with condi-
tions (14)–(17) respectively. At each point (x, t) ∈ {0 6 x < +∞, 0 6 t 6 T}
these solutions satisfy the equality

u1(x, t) =
u2(x, t)

106
= u3(x, t)− 1000 =

u4(x, t)

106
− 1 (18)

whether they are obtained analytically or numerically using an arbitrary linear
scheme for (13). Obviously this equality is a consequence of the superposition
principle which is true for linear equations and schemes.

Let us clarify the meaning of these tests. Test 1 is about a standard monotone
nonincreasing “jump” of unit amplitude. In tests 2–4 this “jump” is a subject to
the following linear transformations at t = 0: in test 2 it is scaled by 106 times, in
test 3 it is translated by 1000 and in test 4 it is both translated by 1 and scaled
by 106 times.
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Using tests 1–4 as the examples, let us show the work of normalizations (7)–
(9) as well as the work of the normalization Nno ≡ 1 (it means no normalization
and corresponds to the old hybrid scheme). The schemeA is the first-order explicit
upwind scheme, the scheme B is the bicompact scheme [24]. The time integration
method used in the bicompact scheme is the L-stable stiffly accurate diagonally
implicit Runge–Kutta method of the 3rd order (see its Butcher’s tableau (20)
in [24]). Parameters are chosen as

a = 1, T = 1, xs = 1, h = 0.01, κ = 0.4, C1 = 100

where κ = aτ/h is the Courant number. The parameter q = 2 in the func-
tion f (4). Half-integer nodes in the scheme B are treated as integer by the
scheme A. Particularly, the Courant number for the scheme A is equal to 2κ,
not κ.

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u

x

u1(x, T )
u2(x, T )/10

6

u3(x, T )− 103

u4(x, T )/10
6 − 1
Exact

Fig. 1. Solutions of tests 1–4 ob-
tained using the new hybrid scheme

with Nspan

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u

x

u1(x, T )
u2(x, T )/10

6

u3(x, T )− 103

u4(x, T )/10
6 − 1
Exact

Fig. 2. Solutions of tests 1–4 ob-
tained using the new hybrid scheme

with Nglobal

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u

x

u1(x, T )
u2(x, T )/10

6

u3(x, T )− 103

u4(x, T )/10
6 − 1
Exact

Fig. 3. Solutions of tests 1–4 ob-
tained using the new hybrid scheme

with Nlocal

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u

x

u1(x, T )
u2(x, T )/10

6

u3(x, T )− 103

u4(x, T )/10
6 − 1
Exact

Fig. 4. Solutions of tests 1–4 obtained
using the new hybrid scheme with Nno



12

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u
1
(x
,T

)

x

Span
Global
Local

No
Exact

Fig. 5. Solutions obtained using the
new hybrid scheme with various nor-

malizations, test 1

−2.0 · 105

0.0 · 100

2.0 · 105

4.0 · 105

6.0 · 105

8.0 · 105

1.0 · 106

1.2 · 106

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u
2
(x
,T

)

x

Span
Global
Local

No
Exact

Fig. 6. Solutions obtained using the
new hybrid scheme with various nor-

malizations, test 2

999.8

1000

1000.2

1000.4

1000.6

1000.8

1001

1001.2

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u
3
(x
,T

)

x

Span
Global
Local

No
Exact

Fig. 7. Solutions obtained using the
new hybrid scheme with various nor-

malizations, test 3

8.0 · 105

1.0 · 106

1.2 · 106

1.4 · 106

1.6 · 106

1.8 · 106

2.0 · 106

2.2 · 106

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

u
4
(x
,T

)

x

Span
Global
Local

No
Exact

Fig. 8. Solutions obtained using the
new hybrid scheme with various nor-

malizations, test 4

Solution profiles u1,2,3,4(x, T ) are presented on Fig. 1–4. The solutions are
obtained using the new hybrid scheme. On each figure the normalization is fixed
while tests are varied. Ranges of the solutions are transformed into the range [0, 1]
according to equalities (18). It can be seen well on Fig. 1 that the normaliza-
tion Nspan is stable to linear transformations of the solution range just as it was
expected. Therefore, the formally nonlinear new hybrid scheme with Nspan inher-
its this property of linear schemes. Let us turn to Fig. 2, 3. It is clear that both
the global and the local normalizations are insensitive to solution range scalings
but they are sensitive to translations as it was mentioned above. It can be seen
also that the larger translation is, the smaller weighting coefficients are. In addi-
tion, the solution of the hybrid scheme is closer to the one of the non-monotone
scheme B. The scheme with no normalization ignores translations but is sensitive
to scalings (see Fig. 4).
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Fig. 5–8 depict solution profiles. Again, the solutions are calculated using
the new hybrid scheme. Now on every figure normalizations are varied while the
test is fixed. These plots allow to analyze differences between Nspan and other
normalizations for each test. All normalizations except the localNlocal give similar
results in test 1 (see Fig. 5). The local normalization works in other way there
because the solution of the scheme A plateaus zero value at x > 2, t = T . At
these points the denominator in the formula for w decreases (see (12)), w itself
goes to +∞ and so f(w) → 1. Therefore, the solution of the hybrid scheme
suffers from excessive dissipation and goes to the solution of the scheme A. The
local normalization behaves similar in test 2 (see Fig. 6). It is clear that a scaling
of initial/boundary values results into a scaling of (uA−uB). The scheme with no
normalization makes all w at all nodes to increase proportionally, all of α go closer
to unity, and unnecessary dissipation turns on as a result (see Fig. 6, 8). Note the
global and the local normalizations behave in the same way in test 3 (see Fig. 7):
a translation results into an underestimation of weighting coefficients (11), (12)
at all nodes. There is a lack of dissipation and nonmonotonicities of the scheme B
appear.

Thus the correct normalization (10) has been constructed for the new hybrid
scheme (5)–(6). Also, the numerical example has been considered. It has showed
the work of this normalization and its differences from other normalizations.

4. Finding an optimal value of the parameter C1

Now let us discuss the problem of finding an “optimal” value of the parame-
ter C1 (see the third imperfection in Section 1). It is reasonable to consider this
problem concerning the typical case of “jump” profile linear advection, namely,
test 1 from Section 3.

Two remarks should be made before determining the term “optimal”. First,
when C1 → +∞ the solution of the hybrid scheme goes to solution of the
scheme A. Second, with any C1 the hybrid scheme gives a solution which is
not accurately monotone according to the Godunov definition. In the following,
we shall use only the Godunov definition of a monotone scheme.

Therefore, the definition of monotonicity should be somehow revised or weak-
ened. Assume the Godunov monotonicity condition is satisfied not absolutely
accurate but with some absolute error ε. Then, the optimal choice of the pa-
rameter C1 means the following: choose the least C1 for which the Godunov
monotonicity condition is satisfied with the absolute error ε.

For instance, the approximate monotonicity condition for the hybrid bicom-
pact scheme from Section 3 is written at the level tn as (suppose uE(x, t) is
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monotone nonincreasing for all 0 6 t 6 T )

unj+ 1
2
− unj+1 > −ε, unj − unj+ 1

2
> −ε, j = 0, 1, . . . (19)

The optimal C1:

Copt
1 = inf{C1 : condition (19) is satisfied at t = T}. (20)

The equality t = T in (20) is equivalent to the equality n = Nt.
It is clear that Copt

1 is a function which depends on many arguments:

Copt
1 = Copt

1 (A,B, f ; ε, h, τ, a, T ). (21)

Assume [u] = 1. Then if we do not consider obvious dependence of Copt
1 on A, B,

and f (hereafter they are not written in the list of arguments), function (21) is
determined by four dimensional arguments h, τ , a, T and one non-dimensional ε.
Among the dimensional arguments only two have independent dimensions. They
are steps h and τ . Let us use the well-known Π theorem [29]. Thus, we obtain
that the function Copt

1 depends actually on only three non-dimensional arguments:
the absolute error ε in the approximate Godunov condition (19), the number of
time steps Nt = T/τ , and the Courant number κ = aτ/h, i. e.

Copt
1 = Copt

1 (ε,Nt, κ). (22)

Despite function (22) depends on only three arguments, it is desirable to go
further and somehow exclude the Courant number. This is due to the fact that
in nonlinear problems the Courant number varies from node to node while the
parameter C1 is taken constant for the whole computation or at least for a time
step. It is necessary to have some C1 estimation which depends only on ε and Nt.
Other words, some effective value of the optimal C1 is required.

Let κ1,2 (where κ1 < κ2) be practically used stability limits of the hybrid
scheme. For the hybrid scheme with the first-order explicit upwind monotonizer
from Section 3 κ1 = 0.05, κ2 = 0.45 (they become 0.1, 0.9 respectively for
scheme A). Consider two variants of effective value mentioned above: average
one

C1 =
1

κ2 − κ1

κ2∫
κ1

Copt
1 (ε,Nt, κ) dκ (23)

and maximum one
C∗1 = max

[κ1,κ2]
Copt

1 (ε,Nt, κ). (24)

By the construction

C1 = C1(ε,Nt), C∗1 = C∗1(ε,Nt).
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Fig. 9, 10 depict plots of functions C1(ε,Nt), C∗1(ε,Nt) obtained numerically
for the hybrid bicompact scheme with the first-order explicit upwind monotonizer
and the normalization Nspan. Let us describe the technique of the numerical
calculation of C1 and C∗1 .
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Fig. 9. The function C1(ε,Nt)
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Fig. 10. The function C∗1(ε,Nt)

The closed interval [κ1, κ2] is discretized using a uniform grid which consists
of nodes θl (l = 0, . . . , Nκ; the number Nκ was equal to 100 during calcula-
tions). The point (ε,Nt) is fixed. Next, Copt

1 (ε,Nt, θl) is found for the set of ar-
guments (ε,Nt, θl). The search is conducted in the following way. First, C1 = 2 is
taken, test 1 is computed using the hybrid scheme with parameters ε, Nt, θl, C1.
After that, condition (19) is checked: if it is satisfied then Copt

1 = C1, else C1

increases by ∆C1 and the procedure repeats. The increment ∆C1 is variable:

∆C1 =


2 if 2 6 C1 < 200,

20 if 200 6 C1 < 2000,

200 if 2000 6 C1 < 20000,

. . .

Finally, sought values C1 and C∗1 are approximately calculated according to their
definitions (23) and (24):

C1 ≈
1

Nκ + 1

Nκ∑
l=0

Copt
1 (ε,Nt, θl), C∗1 ≈ max

l
Copt

1 (ε,Nt, θl).

Note that in real computer calculations the index j can not run to infinity,
actually j = 0, . . . , Nx. In other words, x varies between 0 and some L. However,
if L is sufficiently great, then it is not in the list of governing parameters in
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formula (21) since at t = T the solution of the hybrid scheme (and ones of
schemes A and B) plateaus zero quickly enough. In test 1, the jump finds itself
at the point x = xs + aT at t = T . The initial position xs of the jump also
plays no part, for instance, let xs = aT . Then, L = 3aT is sufficient. At last,
express Nx in terms of κ and Nt:

κ =
aτ

h
= a

T/Nt

L/Nx
=

Nx

3Nt
; Nx = 3κNt.

Let us analyze the results that are presented on Fig. 9, 10. It can be seen
well, that effective values C1 and C∗1 of the parameter C1 do not depend on Nt

practically and do linearly (in logarithmic scale) depend on ε. Very weak depen-
dence on Nt and deviations from linearity in ε for C∗1 can be explained apparently
by a rough choice of ∆C1. The choice of ∆C1 is less important for C1 because of
the averaging which smooths errors in calculating Copt

1 for given ε, Nt, θl.
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method approximation
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Fig. 11, 12 represent cuts of C1(ε,Nt), C∗1(ε,Nt) plots at the plane Nt = 500
(points with error bars) as well as their minimum squares approximations (solid
lines). These approximations appeared to be

C1(ε) = 0.3076 · ε−1.126, C∗1(ε) = 0.7015 · ε−1.214. (25)

Thus, we have solved the problem of finding the parameter C1 for the hybrid
bicompact scheme with the first-order explicit upwind monotonizer. We have
obtained explicit formulas (25) that can be used to calculate C1 depending on ε.
The parameter ε has a clear meaning. Maximum tolerable nonmonotonicities in
integer nodes can not be greater by their relative value than 2ε.
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The ideas of this Section can be extended on the case of arbitrary schemes A
and B. Let us give the algorithm (test 1 is the toy problem again):
1) Choose the monotone scheme A.
2) Choose the high-order scheme B. Find p, its order of approximation. Choose

the function f using formula (4), taking q = p− 1.
3) Construct the hybrid scheme using formulas (5), (6), (7). Find κ1,2.
4) According to schemes A and B specifics, formulate the approximate Godunov

monotonicity condition similar to (19).
5) Calculate functions C1(ε,Nt), C∗1(ε,Nt) either analytically or numerically.

Then, in a real problem the parameter C1 is estimated using the function C1(ε,Nt)
or C∗1(ε,Nt). Numbers ε and Nt are supposed to be given beforehand. Finally,
one is either satisfied with this estimation or makes it more precise during some
tests on coarse grids (if it is possible).

Concluding remarks

The old hybrid scheme [24] has been analyzed. Its three imperfections have
been revealed. The first imperfection is the vector weighting which makes all solu-
tion components to be weighted with the same weight. The second imperfection
is the sufficient and spurious dependence of the motonizing nature on a choice
of system of units and (or) on a initial/boundary values amplitude. The third
imperfection is the necessity of choosing the tuned parameter with no a priori
estimations available.

The new hybrid scheme has been proposed. It includes the normalization and
the component-wise weighting. This scheme does not have the first imperfection
by the construction. The correct normalization has been found for the new hybrid
scheme which eliminated also the second imperfection. The a priori estimation of
the hybrid scheme parameter has been proposed. The estimation depends on a
limit of nonmonotonicities amplitudes and on a number of time steps. Therefore,
the third imperfection has been eliminated. The hybrid bicompact scheme with
the first-order explicit upwind scheme monotonizer has been considered as an ex-
ample. It has been shown, that in the case of this scheme the proposed estimation
does not depend on the number of time steps. Explicit formulas has been found
that allow to calculate the hybrid scheme tuned parameter straightaway.
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7. Yee H. C., Sjögreen B. Adaptive filtering and limiting in compact high order
methods for multiscale gas dynamics and MHD systems // Comput. Fluids. —
2008. — Vol. 37, no. 5. — P. 593–619.

8. Darian H. M., Esfahanian V., Hejranfar K. A shock-detecting sensor for fil-
tering of high-order compact finite difference schemes // J. Comput. Phys. —
2011. — Vol. 230, no. 3. — P. 494–514.

9. Von Neumann J., Richtmyer R. D. A method for the numerical calculation of
hydrodynamic shocks // J. Appl. Phys. — 1950. — Vol. 21, no. 3. — P. 232–237.

10. Ostapenko V. V. Symmetric compact schemes with artificial viscosities of in-
creased order of divergence // Comput. Math. Math. Phys. — 2002. — Vol. 42,
no. 7. — P. 980–999.

11. Fiorina B., Lele S. K. An artificial nonlinear diffusivity method for supersonic
reacting flows with shocks // J. Comput. Phys. — 2006. — Vol. 222. — P. 246–
264.

http://dx.doi.org/10.1007/s10915-006-9075-y
http://dx.doi.org/10.1137/0731033
http://dx.doi.org/10.1006/jcph.1996.5608
http://dx.doi.org/10.1006/jcph.1999.6360
http://dx.doi.org/10.1006/jcph.1998.6177
http://dx.doi.org/10.1016/j.compfluid.2007.07.015
http://dx.doi.org/10.1016/j.jcp.2010.09.028
http://dx.doi.org/10.1016/j.jcp.2006.07.020


19

12. Kawai S., Lele S. K. Localized artificial diffusivity scheme for discontinuity
capturing on curvilinear meshes // J. Comput. Phys. — 2008. — Vol. 227,
no. 22. — P. 9498–9526.

13. Kurganov A., Liu Y. New adaptive artificial viscosity method for hyper-
bolic systems of conservation laws // J. Comput. Phys. — 2012. — Vol. 231,
no. 24. — P. 8114–8132.

14. Deng X., Maekawa H. Compact high-order accurate nonlinear schemes // J.
Comput. Phys. — 1997. — Vol. 130, no. 1. — P. 77–91.

15. Deng X., Zhang H. Developing high-order weighted compact nonlinear
schemes // J. Comput. Phys. — 2000. — Vol. 165, no. 1. — P. 22–44.

16. Jiang L., Shan H., Liu C. Weighted compact scheme for shock capturing //
Int. J. Comput. Fluid Dyn. — 2001. — Vol. 15, no. 2. — P. 147–155.

17. Zhang S., Jiang S., Shu C.-W. Development of nonlinear weighted com-
pact schemes with increasingly higher order accuracy // J. Comput. Phys. —
2008. — Vol. 227, no. 15. — P. 7294–7321.

18. Ghosh D., Baeder J. D. Compact reconstruction schemes with weighted ENO
limiting for hyperbolic conservation laws // SIAM J. Sci. Comput. — 2012. —
Vol. 34, no. 3. — P. A1678–A1706.

19. Guo Y., Xiong T., Shi Y. A positivity-preserving high order finite volume
compact-WENO scheme for compressible Euler equations // J. Comput.
Phys. — 2014. — Vol. 274. — P. 505–523.

20. Modified weighted compact scheme with global weights for shock capturing /
Huankun Fu, Zhengjie Wang, Yonghua Yan, Chaoqun Liu // Comput. Flu-
ids. — 2014. — Vol. 96. — P. 165–176.

21. Mikhailovskaya M. N., Rogov B. V. Monotone compact running schemes for
systems of hyperbolic equations // Comput. Math. Math. Phys. — 2012. —
Vol. 52, no. 4. — P. 578–600.

22. Rogov B. V., Mikhailovskaya M. N. Monotone high-accuracy compact run-
ning scheme for quasi-linear hyperbolic equations // Math. Models Comput.
Simul. — 2012. — Vol. 4, no. 4. — P. 375–384.

23. Rogov B. V. Monotone bicompact scheme for quasilinear hyperbolic equa-
tions // Doklady Mathematics. — 2012. — Vol. 86, no. 2. — P. 715–719.

http://dx.doi.org/10.1016/j.jcp.2008.06.034
http://dx.doi.org/10.1016/j.jcp.2012.07.040
http://dx.doi.org/10.1006/jcph.1996.5553
http://dx.doi.org/10.1006/jcph.1996.5553
http://dx.doi.org/10.1006/jcph.2000.6594
http://dx.doi.org/10.1016/j.jcp.2008.04.012
http://dx.doi.org/10.1137/110857659
http://dx.doi.org/10.1016/j.jcp.2014.06.046
http://dx.doi.org/10.1016/j.jcp.2014.06.046
http://dx.doi.org/10.1016/j.compfluid.2014.02.022
http://dx.doi.org/10.1016/j.compfluid.2014.02.022
http://dx.doi.org/10.1134/S0965542512040124
http://dx.doi.org/10.1134/S2070048212040060
http://dx.doi.org/10.1134/S2070048212040060
http://dx.doi.org/10.1134/S1064562412050262


20

24. Rogov B. V. High-order accurate monotone compact running scheme for mul-
tidimensional hyperbolic equations // Comput. Math. Math. Phys. — 2013. —
Vol. 53, no. 2. — P. 205–214.

25. Chikitkin A. V., Rogov B. V., Utyuzhnikov S. V. High-order accurate mono-
tone compact running scheme for multidimensional hyperbolic equations //
Appl. Numer. Math. — 2015. — Vol. 93. — P. 150–163.

26. Fedorenko R. P. The application of difference schemes of high accuracy to the
numerical solution of hyperbolic equations // Comput. Math. Math. Phys. —
1962. — Vol. 2, no. 6. — P. 1122–1128.

27. Rogov B. V., Mikhailovskaya M. N. Monotone bicompact schemes for a linear
advection equation // Doklady Mathematics. — 2011. — Vol. 83, no. 1. —
P. 121–125.

28. Tolstykh A. I. Hybrid schemes with high-order multioperators for computing
discontinuous solutions // Comput. Math. Math. Phys. — 2013. — Vol. 53,
no. 9. — P. 1303–1322.

29. Sedov L. I. Similarity and dimensional methods in mechanics. — 10 edition. —
CRC Press, 1993.

http://dx.doi.org/10.1134/S0965542513020097
http://dx.doi.org/10.1016/j.apnum.2014.02.008
http://dx.doi.org/10.1134/S1064562411010273
http://dx.doi.org/10.1134/S0965542513070178

	Introduction
	1. The original hybrid scheme and its imperfections
	2. The new hybrid scheme
	3. The correct normalization
	4. Finding an optimal value of the parameter C1
	Concluding remarks
	Bibliography list



